隋 瑩,韓振來(lái)
(濟(jì)南大學(xué) 數(shù)學(xué)科學(xué)學(xué)院,山東 濟(jì)南 250022)
1990年,Hilger[1]發(fā)表了時(shí)間尺度上微積分理論,吸引了全世界數(shù)學(xué)家們的廣泛關(guān)注,發(fā)表了許多關(guān)于時(shí)間尺度上動(dòng)態(tài)方程研究成果、專著等,論文可參閱文獻(xiàn)[4-22].本文將考慮下面一類時(shí)間尺度上帶有阻尼項(xiàng)的三階非線性動(dòng)態(tài)方程的振動(dòng)性問(wèn)題:
(r2(r1(yΔ)α)Δ)Δ(t)+p(t)(yΔ)α(σ(t))+q(t)f(y(g(t)))=0,t≥t0>0.
(1)
這里α≥1是正奇數(shù)的比,設(shè)
1)r1,r2,p,q∈Crd(I,R+),r2Δ(t)≥0,其中I=[t0,∞)T,R+=(0,∞)T.
3)f∈C(R,R),xf(x)>0,f(x)/xβ≥k>0,x≠0,其中β為常數(shù),是正奇數(shù)的比.
運(yùn)用Riccati變換和不等式技巧,在相關(guān)的二階動(dòng)態(tài)方程
(2)
振動(dòng)的條件下,給出使方程(1)所有解振動(dòng)的充分條件.
假設(shè)
R1(t,t0)→∞,t→∞,
(3)
R2(t,t0)→∞,t→∞,
(4)
下面給出主要結(jié)果證明中所用到的引理.
引理若
(r2xΔ)Δ(t)+p(t)x(h(σ(t)))≤0,
(5)
有最終正解,其中h(t)≤t.則方程
(r2xΔ)Δ(t)+p(t)x(h(σ(t)))=0
(6)
有最終正解.
證明設(shè)x是不等式(5)的最終正解,x(t)>0,x(h(σ(t)))>0,t≥t0,則有(r2xΔ(t))Δ≤0.
因此,存在t1≥t0,當(dāng)t≥t1時(shí),有xΔ(t)>0,或者當(dāng)t≥t1時(shí),有xΔ(t)<0.若是后者,則有
則式(5)可以寫成
(7)
對(duì)方程(7)從t到u≥t≥t1積分,并令u→∞得
現(xiàn)定義數(shù)列{zj(t)}j∈N0:z0=y(t),
(8)
(r2vΔ)Δ(t)=(r2z)Δ(t)=-p(t)v(h(σ(t))),
通過(guò)Riccati變換的方法,建立方程(1)的振動(dòng)準(zhǔn)則.
(9)
或
(10)
證明設(shè)y是方程(1)在[t1,∞)T,t1≥t0上的一個(gè)非振動(dòng)解,不失一般性,可以假設(shè)y(t)>0,y(g(t))>0,t≥t1.若在[t1,∞)T上L1y>0,則由方程(1)可得
其中x=L1y>0.則由引理得,方程(2)有正解,推出矛盾.接下來(lái),假設(shè)在[t1,∞)T上L1y<0.考慮函數(shù)L2y,當(dāng)t充分大時(shí),L2y(t)≤0不成立,其中t≥t2≥t1.通過(guò)對(duì)下列不等式兩邊積分
(11)
則由式(3) 式得,對(duì)充分大的t有y(t)<0,得到矛盾.因此,設(shè)對(duì)于充分大的t有y(t)>0,L1y(t)<0,
L2y(t)≥0,t≥t3≥t2.對(duì)于v≥u≥t3,有
令u=g(t),v=h(t),得到y(tǒng)(g(t))≥R1(h(t),g(t))(-L1y(h(t)))1/α=R1(h(t),g(t))x(h(t)),其中x(t)=(-L1y(t))1/α>0,t≥t3.由方程(1)知,x是遞減的.因?yàn)間(t)≤h(t)≤t,得到
這里z(t)=xα(t).由于z(t)是遞減的,α≥β,則存在一個(gè)常數(shù)c4>0,使得zβ/α-1(t)≥c4.因此
(r2zΔ)Δ(t)=Q(t)z(h(t)).
(12)
對(duì)于v≥u≥t1,有
(13)
在式(13)中,令u=h(s),v=h(t),t≥s≥t1,得
z(h(s))>-R2(h(t),h(s))r2(h(t))zΔ(h(t)).
h(t)≥t1,且t對(duì)式(12)積分,得
即
(14)
當(dāng)t→∞時(shí)在式(14)的兩端取上極限,與式(9)矛盾.
接下來(lái),從u到t對(duì)式(12)積分,得
(15)
(16)
當(dāng)t→∞時(shí)在式(16)的兩端取上極限,與式(10)矛盾,證畢.
最后,可以很容易把定理1推廣到方程
(r2(r1(yΔ)α)Δ)Δ(t)+p(t)(yΔ(h(σ(t))))α+q(t)f(y(g(t)))=0,
(17)
定理2設(shè)式(3)和式(4)成立,α≥β,假設(shè)方程
(18)
證明設(shè)y是方程(17)在[t1,∞)T,t1≥t0上的一個(gè)非振動(dòng)解,不失一般性,可以假設(shè)y(t)>0,y(g(t))>0,t≥t1.如果在[t1,∞)T上L1y>0,那么由方程(17)可得
其中x=L1y>0.由引理得,方程(18)有正解,推出矛盾.當(dāng)在[t1,∞)T上L1y<0時(shí),證明類似于定理1,因此忽略.
m(t)=1.可以得到
參考文獻(xiàn):
[1] HILGER S.Analysis on measure chains-a unified approach to continuous and discrete calculus [J].Results Math,1990,18:18-56.
[2] BOHNER M,PETERSON A.Dynamic equations on time scales,an introduction with applications[M].Boston:Birkh?user,2001.
[3] 韓振來(lái),孫書榮.時(shí)間尺度上動(dòng)態(tài)方程的振動(dòng)理論[M].濟(jì)南:山東大學(xué)出版社,2014.
[4] AGARWAL R P,BOHNER M,SAKER S H.Oscillation of second order delay dynamic equations[J].Canadian Applied Mathematics Quarterly,2005,13(1):1-18.
[5] HAN Z L,SUN S R,SHI B .Oscillation criteria for a class of second order Emden-Fowler delay dynamic equations on time scales[J].Journal of Mathematical Analysis and Applications,2007,334(2):847-858.
[6] ERBE L,HASSAN T,PATER A.Oscillation criteria for nonlinear damped dynamic equations on time scales[J].Applied Mathematics and Computation,2008,203(1):343-357.
[7] 孫書榮,韓振來(lái),張承慧.時(shí)間尺度上二階Emden-Fowler中立型時(shí)滯動(dòng)力方程的振動(dòng)準(zhǔn)則[J].上海交通大學(xué)學(xué)報(bào),2008,42(12):2070-2075.
[8] 韓振來(lái),孫書榮,張承慧.時(shí)間尺度上二階中立型時(shí)滯動(dòng)力方程的振動(dòng)性[J].中山大學(xué)學(xué)報(bào)(自然科學(xué)版),2010,49(5):21-24.
[9] SUN S R,HAN Z L,ZHANG C H .Oscillation of second-order delay dynamic equations on time scales[J].Journal of Applied Mathematics and Computing,2009,30(1/2):459-468.
[10] LI T X,HAN Z L,SUN S R,et al.Oscillation results for third order nonlinear delay dynamic equations on time scales[J].Bulletin of the Malaysian Mathematical Society,2011,34(3):639-648.
[11] 孫一冰,徐美榮,李同興,等.時(shí)間尺度上二階具阻尼項(xiàng)Emden-Fowler型動(dòng)力方程振動(dòng)性[J].濱州學(xué)院學(xué)報(bào),2011,27(6):13-17.
[12] HAN Z L,LI T X,SUN S R,et al.Oscillation criteria for third order nonlinear delay dynamic equations on time scales[J].Annales Polonici Mathematici,2010,99(2):143-156.
[13] 潘元元,韓振來(lái).時(shí)標(biāo)上二階中立型時(shí)滯動(dòng)力方程的振動(dòng)性[J].濟(jì)南大學(xué)學(xué)報(bào),2012,26(2):191-194.
[14] 李同興,韓振來(lái),張承慧,等.時(shí)間尺度上三階Emden-Fowler時(shí)滯動(dòng)力方程振動(dòng)準(zhǔn)則[J].數(shù)學(xué)物理學(xué)報(bào),2012,32A(1):222-232.
[15] HAN Z L,LI T X,SUN S R,et al.Oscillation of second order quasilinear neutral delay differential equations[J].Journal of Applied Mathematics and Computing,2012,40(1/2):143-152.
[16] 孫一冰,韓振來(lái),孫書榮,等.時(shí)間尺度上一類二階具阻尼項(xiàng)的半線性中立型時(shí)滯動(dòng)力方程的振動(dòng)性[J].應(yīng)用數(shù)學(xué)學(xué)報(bào),2013,36(3):480-494.
[17] 張全信,高麗,劉守華.時(shí)間尺度上具阻尼項(xiàng)的二階半線性時(shí)滯動(dòng)力方程振動(dòng)性的新結(jié)果[J].中國(guó)科學(xué):數(shù)學(xué),2013,43(8):793-806.
[18] LI H,HAN Z L,WANG Y Z.Nonoscillatory solutions for super-linear Emden-Fowler type dynamic equations on time scales[J].Electronic Journal of Qualitative Theory of Differential Equations,2015,2015(53):1-13.
[19] WANG Y Z,HAN Z L,SU S R,et al.Hille and nehari type oscillation criteria for third-order Emden-Fowler neutral delay dynamic equations[J].Bulletin of the Malaysian Mathematical Society,2017,40(3):1187-1217.
[20] SHI Y L,HAN Z L,HOU C X.Oscillation criteria for third order neutral Emden-Fowler delay dynamic equations on time scales[J].Journal of Applied Mathematics and Computing,2017,55:175-190.
[21] HASSAN T S.Oscillation criteria for higher order quasilinear dynamic equations with Laplacians and a deviating argument[J].Journal of the Egyptian Mathematical Society,2017,25(2):178-185.
[22] DENG X H,WANG Q,ZHOU Z.Oscillation criteria for second order neutral dynamic equations of Emden-Fowler type with positive and negative coefficients on time scales[J].Science China,Mathematics,2017,60(1):113-132.
徐州工程學(xué)院學(xué)報(bào)(自然科學(xué)版)2018年2期