亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        植物血紅蛋白基因功能研究進(jìn)展

        2018-06-19 07:06:42,,
        土壤與作物 2018年2期
        關(guān)鍵詞:根瘤固氮擬南芥

        ,,

        (1.中國(guó)科學(xué)院 東北地理與農(nóng)業(yè)生態(tài)研究所 大豆分子設(shè)計(jì)育種重點(diǎn)實(shí)驗(yàn)室,吉林 長(zhǎng)春 130102;2.中國(guó)科學(xué)院大學(xué),北京 100049)

        0 引 言

        血紅蛋白(Hemoglobin,Hb)廣泛存在于動(dòng)物、植物及微生物體內(nèi)[1-2],起到O2輸送與貯存以及運(yùn)輸CO2的作用。植物血紅蛋白在植物根瘤固氮、抗逆脅迫、胚胎發(fā)育以及營(yíng)養(yǎng)生長(zhǎng)等方面具有重要作用[2-9]。自從1939年,Kubo從大豆根瘤中鑒定到植物血紅蛋白以來,已經(jīng)在絕大多數(shù)的物種中發(fā)現(xiàn)了植物血紅蛋白的存在,并進(jìn)行了深入的研究[10-11]。在2014年XVIII 氧結(jié)合和傳感蛋白國(guó)際大會(huì)上,提出了植物血紅蛋白(Phytoglobin)新的命名體系,現(xiàn)已被廣泛采納[12]。目前植物血紅蛋白在決定細(xì)胞命運(yùn)中新功能的發(fā)現(xiàn)等研究[13]已成為了一個(gè)新的研究熱點(diǎn)[14],本文綜述了國(guó)際上目前對(duì)于植物血紅蛋白功能研究上的新進(jìn)展。

        1 植物血紅蛋白類型和命名

        植物血紅蛋白最先在豆科植物的根瘤中發(fā)現(xiàn)。1938年,Pietz與Bakt發(fā)現(xiàn)蠶豆(Viciafaba)根瘤中的紅色素是共生微生物增殖和生長(zhǎng)的必要成分,紅色素參與氧化還原反應(yīng)[15]。1939年Kubo在大豆根瘤中分離出紅色素,進(jìn)一步的結(jié)晶表明紅色素是一種類似于脊椎動(dòng)物馬肌紅蛋白的血紅蛋白(Haemoglobin)[16]。在最初的研究中,僅在豆科植物的根瘤中發(fā)現(xiàn)了血紅蛋白的存在,Virtanen和Laine將存在于豆科植物根瘤中的血紅蛋白命名為豆血紅蛋白或根瘤血紅蛋白(Leghemoglobin,Lb)[15]。隨后的研究中發(fā)現(xiàn),在與植物共生的根瘤中普遍存在與Lb相似的共生血紅蛋白(Symbiotic hemoglobin,sHb)。Fukudome等根據(jù)植物系統(tǒng)進(jìn)化起源和理化性質(zhì)將sHb分為Class 1、Class 2和Class 3 3種類型[7]。

        后續(xù)研究發(fā)現(xiàn),在非豆科植物中存在非共生血紅蛋白(Nonsymbiotic hemoglobin,nsHb)。Appleby等第一次在根瘤菌共生的非豆科雙子葉植物糙葉山麻黃(Parasponiaandersonii)根瘤中發(fā)現(xiàn)并提純了血紅蛋白,打破了血紅蛋白一直以來僅存在于豆科植物根瘤中的論斷,并發(fā)現(xiàn)該血紅蛋白不僅在共生的根瘤中表達(dá),同時(shí)也在植物非共生部位表達(dá)[17]。隨后在山黃麻(Trema)、大麥(Hordeumvulgare)、玉米(Zeamays)、小麥(Triticumaestivum)、黑麥(Secalecereale)、地錢(Marchantiapolymorpha)、水稻(Oryzasativa)、棉花(Gossypiumspp.)、擬南芥(Arabidopsisthaliana)及山黃麻屬等多種單子葉和雙子葉植物中發(fā)現(xiàn)nsHb[4,6],證明了在植物中廣泛存在非共生血紅蛋白[3]。根據(jù)與氧氣親和力的強(qiáng)弱可將nsHb分為nsHb-1和nsHb-2[9]。其中,nsHb-2能夠結(jié)合氧氣,這與sHb的功能類似,而nsHb-1的表達(dá)與低氧脅迫和營(yíng)養(yǎng)物質(zhì)過量供給密切相關(guān),又被稱為壓力誘導(dǎo)的植物血紅蛋白[18-19]。

        進(jìn)一步的研究表明,植物存在截短血紅蛋白(Truncated hemoglobin,tHb)。Watts等在擬南芥中發(fā)現(xiàn)比正常血紅蛋白少20~40氨基酸的植物血紅蛋白,并將此命名為截短血紅蛋白,它與nsHb在清除植物體內(nèi)NO功能性質(zhì)方面具有相似性,同時(shí),tHb與其他兩類植物血紅蛋白相比具有更低的氧氣親和力[6]。另外,在棉花(Gossypiumspp.)、水稻(O.sativa)、栽培稻秈稻(O.sativavar.indica)和粳稻(O.sativavar.japonica)等植物中也發(fā)現(xiàn)了tHb[9],證明該種血紅蛋白也廣泛存在于植物體中。

        2014年的新植物血紅蛋白命名體系,為解決目前植物血紅蛋白命名混亂的現(xiàn)狀提供了一個(gè)很好的解決途徑,開始被研究者接受和使用。在此系統(tǒng)中Phytogb0代表藻類、苔蘚及裸子植物中的非共生血紅蛋白(nsHb),Phytogb1代表被子植物中的非共生血紅蛋白nsHb-1,Phytogb2代表被子植物中的非共生血紅蛋白nsHb-2,SymPhytogb代表非豆科的共生血紅蛋白(sHb),Lb代表豆科血紅蛋白,Phytogb3代表藻類和陸生植物中的截短血紅蛋白。各類蛋白質(zhì)的性質(zhì)詳見表1。

        表1 植物(藻類、陸生植物)血紅蛋白的系統(tǒng)和特征的命名法Table 1 System and characteristics of the accepted nomenclature for plant (algae+land plants) Phytoglobins

        2 共生血紅蛋白(sHb)功能

        共生血紅蛋白是由植物球蛋白和來自外源根瘤菌的亞鐵血紅素輔基(Ferroheme)組成的復(fù)合蛋白,它能在根瘤中特異表達(dá),被認(rèn)為是豆科植物根瘤固氮的重要指標(biāo)[20]。植物根瘤的形成過程與植物血紅蛋白具有密切關(guān)系:在形成初期即根瘤菌侵入及感染過程中,植物根瘤中不含有植物血紅蛋白,不具有固氮功能;在根瘤發(fā)育過程中,隨血紅蛋白的形成,根瘤開始具有固氮功能;隨根瘤及根瘤菌的退化,血紅蛋白含量與固氮作用也隨之降低,根瘤中植物血紅蛋白含量與根瘤有效性呈正相關(guān)關(guān)系[21]。在豆科植物根瘤固氮過程中,植物共生血紅蛋白存在于根瘤菌固氮的場(chǎng)所—細(xì)菌周膜,它對(duì)O2親和力強(qiáng),能夠可逆地結(jié)合O2,促進(jìn)O2擴(kuò)散供給固氮微生物,降低菌體內(nèi)部氧分壓,將類菌體周圍的O2環(huán)境維持在7~11 nmol·L-1,為固氮酶提供適宜氧環(huán)境,從而保護(hù)菌體內(nèi)部的固氮酶活性[22],同時(shí),促進(jìn)游離氧的擴(kuò)散[23]。

        在百脈根中通過RNAi沉默血紅蛋白基因,發(fā)現(xiàn)當(dāng)根瘤中的游離氧含量增加時(shí),類菌體內(nèi)的固氮酶受損,甚至喪失固氮能力,證實(shí)了sHb在植物根瘤共生固氮過程中具有關(guān)鍵性作用[24]。sHb通過結(jié)合O2,促進(jìn)游離氧擴(kuò)散,從而為類菌體提供低氧環(huán)境和ATP,并保護(hù)對(duì)O2敏感的固氮酶活性,這對(duì)特定環(huán)境下植物細(xì)胞呼吸代謝和耐澇具有重要意義。sHb的作用在植物-微生物共生中尤為重要,植物通過sHb調(diào)節(jié)NO并結(jié)合植物激素調(diào)控自身防御反應(yīng),NO通過與生長(zhǎng)素(Auxin)相互作用參與植物根系的發(fā)育,并為極端條件提供ATP和低氧環(huán)境,維持固氮酶活性[25-27]。

        3 非共生血紅蛋白(nsHb)功能

        植物非共生血紅蛋白不僅能夠運(yùn)輸和存儲(chǔ)氧氣,促進(jìn)氧氣擴(kuò)散,控制微生物菌群體內(nèi)的NO水平,并利用NO控制O2的水平,從而控制氧化還原反應(yīng)信號(hào)通路[9,29-31];還可通過控制類菌體與自由基之間的活性和反應(yīng)結(jié)合并運(yùn)輸CO、硫化物和油脂等,使植物免受其害[8-9,32-33];在結(jié)瘤植物中通過NO參與發(fā)生在土壤、微生物和植物中的不同生物過程,觸發(fā)不同的植物-微生物互作的必要途徑[27],作為干擾激素合成、影響其活性的重要信號(hào)分子[34],此外,nsHb還具有清除含氯化物等功能[8,35]。

        注:參考[37]和[38]文獻(xiàn)并做修改。虛線代表潛在的或者假設(shè)的物質(zhì)轉(zhuǎn)運(yùn)機(jī)制。外膜:Outer Membrane(OM);內(nèi)膜:Inner Membrane(IM);嵴:Cristae Junction(CJ);基質(zhì):Matrix(M);線粒體膜間隙:Mitochondrial Intermembrane Space(IMS);類菌體細(xì)胞膜:Peribacteroid Membrane(PBM);類菌體間隙:Peribacteroid Space(PBS);周質(zhì):Periplasm(P);細(xì)胞基質(zhì):Cytosol(C);亞硝酸鹽轉(zhuǎn)運(yùn)蛋白:Nitrite Transporter(NiT);線粒體復(fù)合體Ⅰ:Mitochondrial Complex I (Ⅰ);輔酶Q:Ubiquinone(Q);細(xì)胞色素bc1(復(fù)合體Ⅲ):Cytochrome bc1(Complex III)(Cyt bc1);細(xì)胞色素氧化酶: Cytochrome Oxidase(COX);細(xì)胞色素C:Cytochrome c(Cyt c);硝酸鹽還原酶:Nitrate Reductase(NR) ;植物球蛋白:Phytoglobin(Pgb);硝酸鹽還原酶:Nitrate Reductase(Nap);亞硝酸鹽還原酶:Nitrite Reductase(Nir);NO還原酶:NO Reductase(Nor);一氧化二氮還原酶:Nitrous Oxide Reductase(Nos);細(xì)胞色素cb:Cytochrome cb(Cyt cb);NADH-對(duì)苯二酚氧化還原酶:NADH-quinol oxidoreductase(DH)。Note:Revised[37] and [38] references.Dashed lines represent potential or bypothetical material transport mechanism.圖1 低氧條件下根瘤中線粒體Pgb-NO循環(huán)Fig.1 Schematic of mitochondrial Pgb-NO cycle pathway operation in hypoxic nodules

        4 截短血紅蛋白(tHb)功能

        截短血紅蛋白與非共生植物血紅蛋白在清除NO、CO和H2S等方面的功能相似,而不同的特性及分子結(jié)構(gòu)又體現(xiàn)出不同于共生、非共生植物血紅蛋白的功能[6]。截短血紅蛋白具有保守的家族特征和序列的多樣性,由于配體結(jié)構(gòu)是由截短血紅蛋白氮調(diào)控[39],因而異常靈活,使其在植物進(jìn)化中對(duì)O2有從高到低的親和力,對(duì)環(huán)境變化具有快速的功能適應(yīng)性[40-41]。截短血紅蛋白和共生血紅蛋白進(jìn)化起源不同,其最早在原核生物及真核藻類中被發(fā)現(xiàn)[6],在百脈根和弗蘭克氏菌屬中被誘導(dǎo)產(chǎn)生,通過調(diào)控自身的表達(dá)參與植物體內(nèi)NO的內(nèi)穩(wěn)態(tài),后來在原核生物、藍(lán)細(xì)菌、細(xì)菌、古生菌、真核藻類及植物中均被發(fā)現(xiàn)[36,42-43]。

        5 植物血紅蛋白調(diào)控胚胎發(fā)育及抗逆脅迫的功能

        細(xì)胞程序性死亡(Programmed cell death,PCD)是影響植物體細(xì)胞胚胎發(fā)生的重要因素之一[50]。植物血紅蛋白能夠調(diào)節(jié)NO含量,而NO作為植物調(diào)控PCD的重要信號(hào)分子進(jìn)一步調(diào)控植物體細(xì)胞胚胎發(fā)育。植物特定血紅蛋白的表達(dá)可減少NO含量,改變植物對(duì)逆境脅迫的反應(yīng),終止PCD[51]。同時(shí),體細(xì)胞胚胎發(fā)生能夠調(diào)控特定細(xì)胞血紅蛋白表達(dá),改變胚胎發(fā)育進(jìn)程的模式系統(tǒng),影響植物激素生物合成、細(xì)胞代謝過程的PCD和胚性潛能的表達(dá)[50]。細(xì)胞內(nèi)NO含量增加會(huì)導(dǎo)致與PCD相關(guān)的Zn2+和ROS含量增加,同時(shí)降低負(fù)反饋調(diào)控IAA-的MYC2表達(dá),影響體細(xì)胞胚胎發(fā)生[50]。在NO含量升高時(shí)ZmPgb能誘導(dǎo)玉米(Z.mays)在體細(xì)胞胚胎發(fā)生過程中發(fā)生PCD[52];在擬南芥中,NO能激活茉莉酸生物合成通路中的關(guān)鍵酶丙二烯氧化合酶和脂氧化酶2基因的表達(dá),促進(jìn)擬南芥胚胎組織內(nèi)JA含量增加[53],與NO共同調(diào)節(jié)體細(xì)胞內(nèi)的抑制劑MYC2和茉莉酸酯蛋白基因(JASMONATE-ZIM-PROTEIN,JAZ1),同時(shí),JA通過植物血紅蛋白(Class 2 Pgb)調(diào)控體細(xì)胞胚胎發(fā)生[35,47]。

        同時(shí),植物血紅蛋白在抗逆脅迫中具有重要作用。在受到低氧脅迫時(shí),抑制玉米(Z.mays)血紅蛋白基因(ZmPgb1.1或ZmPgb1.2)表達(dá)會(huì)導(dǎo)致根部頂端分生組織異常分化,抑制根部生長(zhǎng);此外,Pgbs通過調(diào)節(jié)NO,間接調(diào)控乙烯含量,控制活性氧含量(Reactive Oxygen Spices,ROS),實(shí)現(xiàn)低氧脅迫下保護(hù)根尖分生組織的功能[53]。Pgb保護(hù)細(xì)胞分生功能的作用可能是植物應(yīng)對(duì)諸如鹽分和干旱等脅迫的反應(yīng),如紫花針茅(Stipapurpurea)中的StipurPhytogb1具有提高轉(zhuǎn)基因擬南芥在干旱和漬澇條件下的耐受能力[27],進(jìn)一步研究發(fā)現(xiàn),這是由StipurPhytogb1通過抑制NO的積累,調(diào)節(jié)抗氧化酶活性,進(jìn)而誘導(dǎo)清除活性氧的相關(guān)通路來提升上述耐受能力。谷類作物在水淹等極端條件下,過量表達(dá)Pgb基因,可增強(qiáng)光合進(jìn)程中有關(guān)的抗氧化酶的活性,抑制抗壞血酸含量及ROS活性,減輕水淹脅迫壓力,確保植物在極端條件脅迫下具有更高的光合速率;反之,植物抗氧化酶活力降低,光合速率下降[54]。

        在擬南芥中,重度PEG脅迫產(chǎn)生水分虧缺時(shí),Class 1 Phytoglobin(AtPgb1)的表達(dá)有利于延遲其頂端分生組織的死亡和退化[55]。當(dāng)根部受到極端脅迫時(shí),抑制AtPgb1表達(dá)導(dǎo)致細(xì)胞內(nèi)部發(fā)生PCD,這個(gè)過程可通過ROS和乙烯的調(diào)節(jié)得到緩解[56],達(dá)到部分恢復(fù)植物根部生長(zhǎng)的作用[57-58]。PEG脅迫致使植物根部組織細(xì)胞生長(zhǎng)受阻是先于根尖分生組織細(xì)胞結(jié)構(gòu)變化之前發(fā)生的,包括細(xì)胞和特化組織的缺失,這可能會(huì)導(dǎo)致調(diào)節(jié)植物激素的PIN1和PIN4的改變,進(jìn)而增加根部細(xì)胞極性[59-61]。抑制AtPgb1表達(dá)能延緩WOX5的相應(yīng)表達(dá)[62],調(diào)控靜態(tài)細(xì)胞中心(Quiescent center,QCs)的功能[63],導(dǎo)致早期營(yíng)養(yǎng)生長(zhǎng)中莖組織細(xì)胞功能差異和分生組織大小的快速減少[64-65]。同時(shí)發(fā)現(xiàn),擬南芥根部的其它組織細(xì)胞主要基因如SCARECROW(SCR)的表達(dá)調(diào)控內(nèi)皮層和QCs的功能,通過非自主細(xì)胞信號(hào)保持根部原始細(xì)胞的分化能力[66-67];WEREWOLF(WER)的表達(dá)會(huì)嚴(yán)重影響植物側(cè)根的生長(zhǎng)和功能,這同樣會(huì)顯著影響AtPgb1抑制時(shí)PEG脅迫處理對(duì)根部生長(zhǎng)及功能的影響[55,68]。AtPgb1在PEG脅迫時(shí)起到保護(hù)擬南芥根部正常功能的作用,同時(shí)確保根部組織細(xì)胞在極端脅迫下通過保留特定的細(xì)胞行使分生組織分化生長(zhǎng)的功能[69]。

        6 展 望

        關(guān)于植物血紅蛋白的起源、進(jìn)化及功能等方面,前人已進(jìn)行了總結(jié)[5,7-8,17,20,22,46,70],而植物中血紅蛋白基因在體細(xì)胞胚胎發(fā)生中所起的作用才剛剛起步;未來植物血紅球蛋白在植物發(fā)育中所發(fā)揮的作用將會(huì)得到進(jìn)一步的揭示;植物血紅蛋白與NO信號(hào)決定細(xì)胞命運(yùn)以及其在植物抗逆境脅迫上的深入研究將為人們重新認(rèn)識(shí)其在植物生長(zhǎng)發(fā)育的作用開辟一個(gè)新的視角。

        參考文獻(xiàn)(References):

        [1] SUZUKI T,IMAI K.Evolution of myoglobin[J].Cellular and Molecular Life Sciences,1998,54(9): 979-1004.

        [3] TAYLOR E R,NIE X Z,MACGREGOR A W,et al.A cereal haemoglobin gene is expressed in seed and root tissues under anaerobic conditions[J].Plant Molecular Biology,1994,24(6): 853-862.

        [4] HEBELSTRUP K H,IGAMBERDIEV A U,HILL R D.Metabolic effects of hemoglobin gene expression in plants[J].Gene,2007,398(1-2): 86-93.

        [5] HUNT P W,WATTS R A,TREVASKIS B,et al.Expression and evolution of functionally distinct haemoglobin genes in plants[J].Plant Molecular Biology,2001,47(5): 677-692.

        [6] WATTS R A,HUNT P W,HVITVED A N,et al.A hemoglobin from plants homologous to truncated hemoglobins of microorganisms[J].Proceedings of the National Academy of Sciences of the United States of America,2001,98(18): 10119-10124.

        [7] SHANKAR A,FERNANDES J L,KAUR K,et al.Rice phytoglobin regulate responses under low mineral nutrients and abiotic stresses inArabidopsisthaliana[J].Plant Cell and Environment,2017,41(1):215-230.

        [8] DAMIANI I,PAULY N,PUPPO A,et al.Reactive oxygen species and nitric oxide control early steps of theLegume-Rhizobiumsymbiotic interaction[J].Frontiers in Plant Science,2016,7(384): 454-461.

        [9] ARREDONDOPETER R,MORAN J F,SARATH G.Rice(Oryza) hemoglobins[J].Fl000 Research,2014,3: 253-270.

        [10] 吳玉厚,吳冰潔,周國(guó)立,等.植物血紅蛋白研究進(jìn)展[J].生物學(xué)教學(xué),2008,33(1): 10-12,14.

        WU Y H,WU B J,ZHOU G L,et al.Research progress in plant hemoglobin[J].Biology Teaching,2008,33(1): 10-12,14.

        [11] 徐慧妮,趙秀玲,何小釗,等.植物非共生血紅蛋白的研究進(jìn)展[J].植物生理學(xué)報(bào),2012,3: 217-222.

        XU H N,ZHAO X L,HE X Z,et al.Research progress in plant non-symbiotic hemoglobin[J].Plant Physiology Journal,2012,48 (3): 217-222.

        [12] HILL R,HARGROVE M,ARREDONDO-PETER R.Phytoglobin:A novel nomenclature for plant globins accepted by the globin community at the 2014 XVIII conference on oxygen-binding and sensing proteins[J].Fl000 Research,2016,5: 212.

        [13] STASOLLA C,HILL R D.Determining cellular responses:Phytoglobins may direct the traffic[J].Trends in Plant Science,2017,22(10): 820-822.

        [14] MIRA M M,HUANG S,HILL R D,et al.Protection of root apex meristem during stress responses[J].Plant Signaling and Behavior,2018,13(2): e1428517.

        [15] KEILIN D,WANG Y L.Haemoglobin in the root nodules of leguminous plants[J].Nature,1945,155: 227-229.

        [16] KUBO H.Hemoprotein from the root nodules of legumes[J].Acta Phytochim,1939,11: 195-200.

        [17] APPLEBY C A,TJEPKEMA J D,TRINICK M J.Hemoglobin in a nonleguminous plant,Parasponia:Possible genetic origin and function in nitrogen fixation[J].Science,1983,220(4600): 951-953.

        [18] IVARSON E,LEIVAERIKSSON N,AHLMAN A,et al.Effects of overexpression ofWRI1 and hemoglobin genes on the seed oil content ofLepidiumcampestre[J].Frontiers in Plant Science,2016,7: 2032.

        [19] DORDAS C,RIVOAL J,HILL R D.Plant haemoglobins,nitric oxide and hypoxic stress[J].Annals of Botany,2003,91(2): 173-178.

        [20] DAKORA F D.A functional relationship between leghaemoglobin and nitrogenase based on novel measurements of the two proteins in legume root nodules[J].Annals of Botany,1995,75(1): 49-54.

        [21] BERGERSEN F J,BRIGGS M J.Studies on the bacterial component of soybean root nodules:Cytology and organization in the host tissue[J].Journal of General Microbiology,1958,19(3):482-490.

        [22] DOWNIE J A.Legume haemoglobins:Symbiotic nitrogen fixation needs bloody nodules[J].Current Biology,2005,15(6): 196-198.

        [23] PARSONS R,DAY D A.Mechanism of soybean nodule adaptation to different oxygen pressures[J].Plant Cell and Environment,1990,13(6): 501-512.

        [24] OTT T,VAN DONGEN J T,GüNTHER C,et al.Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development[J].Current Biology,2005,15(6): 531-535.

        [25] SHIMODA Y,SHIMODA-SASAKURA F,KUCHO K I,et al.Overexpression of class 1 plant hemoglobin genes enhances symbiotic nitrogen fixation activity betweenMesorhizobiumlotiandLotusjaponicus[J].Plant Journal for Cell and Molecular Biology,2009,57(2): 254-263.

        [26] FUKUDOME M,CALVOBEGUERIA L,KADO T,et al.HemoglobinLjGlb1-1 is involved in nodulation and regulates the level of nitric oxide in theLotusjaponicus-Mesorhizobiumlotisymbiosis[J].Journal of Experimental Botany,2016,67(17): 5275-5283.

        [27] LI X,SUN X D,YANG S H,et al.Molecular cloning and functional analysis of a novel phytoglobin gene from the alpine plantStipapurpurea[J].Plant Ecology and Diversity,2017,10(1):17-27.

        [28] OHWAKI Y,KAWAGISHI-KOBAYASHI M,WAKASA K,et al.Induction of class-1 non-symbiotic hemoglobin genes by nitrate,nitrite and nitric oxide in cultured rice cells[J].Plant and Cell Physiology,2005,46(2):324-331.

        [29] LEIVAERIKSSON N,PIN P A,KRAFT T,et al.Differential expression patterns of non-symbiotic hemoglobins in sugar beet(Betavulgarisssp.vulgaris)[J].Plant and Cell Physiology,2014,55(4): 834-844.

        [30] WEI L,DERRIEN B,GAUTIER A,et al.Nitric oxide-triggered remodeling of chloroplast bioenergetics and thylakoid proteins upon nitrogen starvation inChlamydomonasreinhardtii[J].Plant Cell,2014,26(1): 353-372.

        [31] BOSCARI A,MEILHOC E,CASTELLA C,et al.Which role for nitric oxide in symbiotic N2-fixing nodules:Toxic by-product or useful signaling/metabolic intermediate?[J].Frontiers in Plant Science,2013,4(18): 384-384.

        [32] BLANQUET P,SILVA L,CATRICE O,et al.Sinorhizobiummeliloticontrols nitric oxide-mediated post-translational modification of aMedicagotruncatulanodule protein[J].Molecular Plant Microbe Interactions,2015,28(12): 1353-1363.

        [33] VINOGRADOV S N,MOENS L.Diversity of globin function:Enzymatic,transport,storage,and sensing[J].Journal of Biological Chemistry,2008,283(14): 8773-8777.

        [34] WALLY O S D,MIRA M M,HILL R D,et al.Hemoglobin regulation of plant embryogenesis and plant pathogen interaction[J].Plant Signaling and Behavior,2013,8(8): e25264.

        [35] MINAEVA E,ZALUTSKAYA Z,FILINA V,et al.Truncated hemoglobin 1 is a new player inChlamydomonasreinhardtiiacclimation to sulfur deprivation[J].PLoS ONE,2017,12(10): e0186851.

        [36] BOSCARI A,DEL GLUDICE J,FERRARINI A,et al.Expression dynamics of theMedicagotruncatulatranscriptome during the symbiotic interaction withSinorhizobiummeliloti:Which role for nitric oxide?[J].Plant Physiology,2013,161(1): 425-439.

        [37] BERGER A,BROUQUISSE R,PATHAK P K,et al.Pathways of nitric oxide metabolism and operation of phytoglobins in legume nodules:Missing links and future directions[J].Plant Cell and Environment,2018.Doi:10.1111/pce.13151.

        [38] GUPTA K J,HEBELSTRUP K H,MUR L A J,et al.Plant hemoglobins:Important players at the crossroads between oxygen and nitric oxide[J].FEBS Letters,2011,585(24): 3843-3849.

        [39] MEUWLY M,DAS A K.Kinetics and structural interpretation of competitive ligand binding for NO dioxygenation in truncated hemoglobin N[J].Angewandte Chemie,2018,57(33):3509-3513.

        [40] BUSTAMANTE J P,RADUSKY L,BOECHI L,et al.Evolutionary and functional relationships in the truncated hemoglobin family[J].PLoS Computational Biology,2016,12(1):e1004701.

        [41] ASCENZI P,PESCE A.Peroxynitrite scavenging byCampylobacterjejunitruncated hemoglobin P[J].Journal of Biological Inorganic Chemistry,2017,22(8): 1141-1150.

        [42] JOKIPII-LUKKARI S,KASTANIOTIS A J,PARKASH V,et al.Dual targeted poplar ferredoxin NADP+oxidoreductase interacts with hemoglobin 1[J].Plant Science,2016,247: 138-149.

        [43] CHAMIZOAMPUDIA A,SANZLUQUE E,LLAMAS A,et al.Nitrate reductase regulates plant nitric oxide homeostasis[J].Trends in Plant Science,2017,22(2): 163-174.

        [44] SANZ-LUQUE E,OCANA-CALAHORRO F,DE MONTAIGU A,et al.THB1,a truncated hemoglobin,modulates nitric oxide levels and nitrate reductase activity[J].The Plant Journal,2015,81(3):467-479.

        [45] HUWALD D,SCHRAPERS P,KOSITZKI R,et al.Characterization of unusual truncated hemoglobins ofChlamydomonasreinhardtiisuggests specialized functions[J].Planta,2015,242(1): 167-185.

        [46] JOHNSON E A,RICE S L,PREIMESBERGER M R,et al.Characterization of THB1,aChlamydomonasreinhardtiitruncated hemoglobin:Linkage to nitrogen metabolism and identification of lysine as the distal heme ligand[J].Biochemistry,2014,53(28): 4573-4589.

        [47] CORPAS F J,BARROSO J B.Nitric oxide from a "green" perspective[J].Nitric Oxide Biology and Chemistry,2015,45: 15-19.

        [48] HEMSCHEMEIER A,D NER M,CASERO D,et al.Hypoxic survival requires a 2-on-2 hemoglobin in a process involving nitric oxide[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(26): 10854-10859.

        [49] KIM D Y,HONG M J,LEE Y J,et al.Wheat truncated hemoglobin interacts with photosystem I PSK-I subunit and photosystem II subunit PsbS1[J].Biologia Plantarum,2012,57(2): 281-290.

        [50] HILL R D,HUANG S,STASOLLA C.Hemoglobins,programmed cell death and somatic embryogenesis[J].Plant Science,2013,211(3): 35-41.

        [51] WILLIAMS B,VERCHOT J,DICKMAN M B.When supply does not meet demand-ER stress and plant programmed cell death[J].Frontiers in Plant Science,2014,5(5): 211-219.

        [52] MIRA M M,WALLY O S D,ELHITI M,et al.Jasmonic acid is a downstream component in the modulation of somatic embryogenesis byArabidopsisClass 2 phytoglobin[J].Journal of Experimental Botany,2016,67(8): 2231-2246.

        [53] HUANG X,STETTMAIER K,MICHEL C,et al.Nitric oxide is induced by wounding and influences jasmonic acid signaling inArabidopsisthaliana[J].Planta,2004,218(6): 938-946.

        [54] YOUSSEF M S,MIRA M M,RENAULT S,et al.Phytoglobin expression influences soil flooding response of corn plants[J].Annals of Botany,2016,118(5): 919-931.

        [55] MIRA M M,HUANG S,KAPOOR K,et al.Expression ofArabidopsisclass 1 phytoglobin(AtPgb1) delays death and degradation of the root apical meristem during severe PEG-induced water deficit[J].Journal of Experimental Botany,2017,68(20): 5653-5668.

        [56] YAMAUCHI T,RAJHI I,NAKAZONO M.Lysigenous aerenchyma formation in maize root is confined to cortical cells by regulation of genes related to generation and scavenging of reactive oxygen species[J].Plant Signaling and Behavior,2011,6(5): 759-761.

        [57] ZUPPINI A,NAVAZIO L,MARIANI P.Endoplasmic reticulum stress-induced programmed cell death in soybean cells[J].Journal of Cell Science,2004,117(Pt12):2591-2598.

        [58] WATANABE N,LAM E.Bax inhibitor-1 modulates endoplasmic reticulum stress-mediated programmed cell death inArabidopsis[J].Journal of Biological Chemistry,2008,283(6): 3200-3210.

        [59] PETERSSON S V,JOHANSSON A I,KOWALZYK M,et al.An auxin gradient and maximum in theArabidopsisroot apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis[J].Plant Cell,2009,21(6): 1659-1668.

        [60] VIETEN A,VANNESTE S,WISNIEWSKA J,et al.Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression[J].Development,2005,132(20): 4521-4531.

        [61] FRIML J,BENKOV E,BLILOU I,et al.AtPIN4 mediates sink-driven auxin gradients and root patterning inArabidopsis[J].Cell,2002,108(5): 661-673.

        [62] PI L,AICHINGER E,VAN DER GRAAFF E,et al.Organizer-derivedWOX5 signal maintains root columella stem cells through chromatin-mediated repression ofCDF4 expression[J].Developmental Cell,2015,33(5): 576-588.

        [63] DING Z J,FRIML J.Auxin regulates distal stem cell differentiation inArabidopsisroots[J].Proceedings of the National Academy of Sciences of the United States of America,2010,107(26): 12046-12051.

        [64] JI H T,LIU L,LI K X,et al.PEG-mediated osmotic stress induces premature differentiation of the root apical meristem and outgrowth of lateral roots in wheat[J].Journal of Experimental Botany,2014,65(17): 4863-4872.

        [65] DUAN Y,ZHANG W,LI B,et al.An endoplasmic reticulum response pathway mediates programmed cell death of root tip induced by water stress inArabidopsis[J].New Phytologist,2010,186(3):681-695.

        [66] SABATINI S,BEIS D,WOLKENFELT H,et al.An auxin-dependent distal organizer of pattern and polarity in theArabidopsisroot[J].Cell,1999,99(5): 463-472.

        [67] SCHERES B.Stem-cell niches:Nursery rhymes across kingdoms[J].Nature Reviews Molecular Cell Biology,2007,8(5): 345-354.

        [68] PETRICKA J J,WINTER C M,BENFEY P N.Control ofArabidopsisroot development[J].Annual Review of Plant Biology,2012,63: 563-590.

        [69] MIRA M M,EL-KHATEEB E A,SAYEDAHMED H I,et al.Are avoidance and acclimation responses during hypoxic stress modulated by distinct cell-specific mechanisms?[J].Plant Signaling and Behavior,2017,12(1): e1273304.

        [70] BOGUSZ D,APPLEBY C A,OUML,et al.Functioning haemoglobin genes in non-nodulating plants[J].Nature,1988,331(6152): 178-180.

        猜你喜歡
        根瘤固氮擬南芥
        擬南芥:活得粗糙,才讓我有了上太空的資格
        土壤中的天然化肥廠
        不同時(shí)間輸液法輸液對(duì)櫻桃根癌病的防控效果研究
        不同處理方法對(duì)櫻桃根瘤病的防控效果
        果樹苗木根瘤病發(fā)生規(guī)律及其防控技術(shù)
        河北果樹(2020年1期)2020-02-09 12:31:36
        基于15N 示蹤法的雙根大豆系統(tǒng)氮素吸收和分配特性研究
        尿黑酸對(duì)擬南芥酪氨酸降解缺陷突變體sscd1的影響
        兩種LED光源作為擬南芥生長(zhǎng)光源的應(yīng)用探究
        擬南芥干旱敏感突變體篩選及其干旱脅迫響應(yīng)機(jī)制探究
        杉木與固氮樹種混交對(duì)土壤有機(jī)質(zhì)及氮含量的影響
        精品五月天| 99伊人久久精品亚洲午夜| 日韩亚洲在线观看视频| 中文字幕影片免费人妻少妇| 青春草在线视频观看| 日本真人做人试看60分钟| 亚洲男同帅gay片在线观看| 午夜在线观看有码无码| 人妖系列在线免费观看| 精品一级一片内射播放| 精品久久久久久无码专区| 黑人巨大精品欧美一区二区| 亚洲最大日夜无码中文字幕| 国产在线h视频| 伊人久久综合狼伊人久久| 人妻少妇精品中文字幕专区| 狠狠色噜噜狠狠狠777米奇小说| 久久久久亚洲av无码尤物| 在线亚洲AV成人无码一区小说| 国产精品高清免费在线| 国产精品人人做人人爽人人添| 国产全肉乱妇杂乱视频| 中文字幕久无码免费久久| 久久无人码人妻一区二区三区| 免费观看91色国产熟女| 久久人人爽人人爽人人av| 成人在线免费视频亚洲| 人妻少妇偷人精品一区二区三区| 97se亚洲国产综合在线| 亚洲不卡av不卡一区二区| 亚洲欧洲一区二区三区波多野| 亚洲丝袜美腿精品视频| 国产成人精品2021| 亚洲精品国产av成拍色拍| 天天插天天干天天操| 国产精品一区二区三区在线观看 | 最新国产福利在线观看精品| 夜爽8888视频在线观看| 果冻国产一区二区三区| 中文字幕一区二区精品视频| 国产高跟黑色丝袜在线|