陸保松,馬曉雁,李青松,駱靖宇,沈奇奇,廖 杰,廖文超,陳國元,李國新
?
NaClO、UV及UV/NaClO消毒過程中TCC的去除特性及遺傳毒性
陸保松1,2,馬曉雁1,李青松2*,駱靖宇3,沈奇奇4,廖 杰2,廖文超2,陳國元2,李國新2
(1.浙江工業(yè)大學(xué)建筑工程學(xué)院,浙江 杭州 310014;2.廈門理工學(xué)院水資源環(huán)境研究所,福建 廈門 361005;3.蘇州科技大學(xué)環(huán)境科學(xué)與工程學(xué)院,江蘇 蘇州 215009;4.浙江海洋大學(xué),國家海洋設(shè)施養(yǎng)殖工程技術(shù)與研究中心,浙江 舟山 316000)
采用NaClO、UV和UV/NaClO復(fù)合消毒等方式研究了三氯卡班(TCC)在消毒過程中的去除特性,考察了3種消毒方式中TCC溶液的遺傳毒性變化,鑒定了TCC的降解產(chǎn)物并探討了其降解機(jī)制,以UV/NaClO復(fù)合消毒為研究對(duì)象,考察了NaClO投加量、TCC初始濃度、溶液pH值和腐殖酸(HA)等因素對(duì)TCC去除的影響.結(jié)果表明,3種消毒技術(shù)對(duì)TCC的去除效果依次為UV/NaClO、UV、NaClO.消毒處理不同程度增加了TCC溶液的遺傳毒性.LC-MS鑒定出了8種TCC的降解產(chǎn)物,降解途徑主要為脫氯、加氯以及·OH/O·氧化.UV/NaClO復(fù)合消毒對(duì)TCC的去除率在97%以上;TCC的去除與其初始濃度呈負(fù)相關(guān);TCC的去除率隨pH值的增大先升高后降低;低濃度的腐殖酸(HA)對(duì)TCC的去除有促進(jìn)作用,高濃度則相反.
三氯卡班;消毒;去除;產(chǎn)物;遺傳毒性
三氯卡班(TCC)作為一種廣譜抗菌劑,自1957年以來便被廣泛應(yīng)用于洗發(fā)水、肥皂和牙膏等日用品中[1-3].近年來它已成為水體中檢出率較高的有機(jī)污染物之一[4-6].研究表明,TCC可以干擾哺乳動(dòng)物的繁殖,引起人類高鐵血紅蛋白血癥[7-10].由于其潛在的健康風(fēng)險(xiǎn),目前TCC已成為人們關(guān)注的污染物之一[11].
凈水工藝中消毒對(duì)于供水水質(zhì)安全起著至關(guān)重要的作用[12]. UV、NaClO和UV/NaClO復(fù)合消毒在保障飲用水生物安全的同時(shí)對(duì)水體中的微量有機(jī)污染物有一定的去除[13-15],研究表明氯消毒過程往往伴隨有毒有害副產(chǎn)物的生成[16-17].目前,TCC在UV、NaClO和UV/NaClO復(fù)合消毒中的去除尚未見報(bào)道,因此研究消毒過程中TCC的去除特性具有重要意義.
實(shí)驗(yàn)研究了TCC在UV、NaClO和UV/NaClO復(fù)合消毒等方式中的去除特性,對(duì)比了消毒后溶液的遺傳毒性變化,鑒別了TCC降解產(chǎn)物并推測(cè)了降解途徑,以UV/NaClO復(fù)合消毒技術(shù)為研究對(duì)象,探討了NaClO投加量、TCC初始濃度、溶液pH值和腐殖酸(HA)等因素對(duì)TCC去除的影響,有助于為消毒工藝在實(shí)際水治理工程設(shè)計(jì)中的應(yīng)用提供基礎(chǔ)實(shí)驗(yàn)數(shù)據(jù).
三氯卡班(TCC)(德國Dr.Ehrenstorfer公司,純度>99.5%);腐殖酸(HA)(Tech,美國Sigma- Aldrich);NaS2O3·5H2O、HCl、NaOH 均為分析純;甲醇、乙腈(HPLC 級(jí),德國Merck);三氯甲烷(AR); 4-硝基喹啉-1-氧化物(4-nitroquinoline- 1-oxide,4-NQO);十二烷基磺酸鈉(Sodium laurylsulfonate,SDS,395.0%);鄰硝基苯β-D-半乳吡喃糖苷(o-nitrophenol-β-D-galactopyranoside, ONPG,東京化成);二甲基亞砜(Dimethyl sulfoxide,DMSO,ACS級(jí),美國Alfa Aesar);2-巰基乙醇(AR,399.0%);Tryptone(OXIOD);次氯酸鈉(CP,活性氯35.2%),ExTab試劑(ExStik,上海三信儀表廠);丙酮(LC,399.5%);96孔酶標(biāo)板(美國,Thermo Fisher Scientific);實(shí)驗(yàn)室用水均為Mili-Q 超純水(£18.2MΩ ).
LC-20A 高效液相色譜儀(Shimadzu,日本),自動(dòng)進(jìn)樣(SIL-20A),檢測(cè)器(SPDM20-A);液質(zhì)聯(lián)用制備系統(tǒng)(配有2767樣品管理器, 515色譜泵,2489紫外可見檢測(cè)器,3100質(zhì)譜檢測(cè)器(Waters,美國);pH計(jì)(Eutevch,美國);CL200防水型筆式余氯計(jì)(ExStik,上海三信儀表廠);H-J6A 型磁力恒溫?cái)嚢杵?江蘇金壇崢嶸儀器);HLB SPE柱(500mg,6mL,CNW);紫外線光源(主波長254nm,楊紫特種紫外線光源,低壓汞燈,20W);紫外線強(qiáng)度計(jì)(TN-2365A,臺(tái)灣泰納);酶標(biāo)儀(美國,Spectra Max);恒溫振蕩器(德國,IKA).
1.2.1 燒杯實(shí)驗(yàn) 反應(yīng)裝置見圖1,燒杯中紫外燈功率為20W,波長為254nm,杯壁a處裹有錫箔紙以隔絕外界光照,a處的光強(qiáng)為125μW/cm2.紫外燈管外為石英玻璃套管.實(shí)驗(yàn)開啟前加入一定量的TCC標(biāo)準(zhǔn)溶液(除TCC初始濃度影響因素和富集外,濃度均為350μg/L),啟動(dòng)磁力攪拌器.紫外燈在實(shí)驗(yàn)反應(yīng)前預(yù)熱30min左右讓光強(qiáng)達(dá)到125μW/cm2,NaClO投加量為1mg/L,設(shè)定時(shí)間內(nèi)取樣,水樣經(jīng)硫代硫酸鈉淬滅后過0.45μm的玻璃纖維濾膜后進(jìn)樣分析.
圖1 實(shí)驗(yàn)裝置示意
1.2.2 水樣富集 用HLB柱固相萃取1L TCC反應(yīng)溶液(SOS/umu和液質(zhì)實(shí)驗(yàn)中的初始濃度分別為5mg/L和1mg/L,乙腈助溶),小柱依次經(jīng)等體積(SOS/umu實(shí)驗(yàn)6mL,液質(zhì)實(shí)驗(yàn)3mL)的甲醇與水活化后上樣,采用丙酮(SOS/umu實(shí)驗(yàn)8mL,液質(zhì)實(shí)驗(yàn)4mL)洗脫后經(jīng)氮?dú)獯蹈?然后經(jīng)DMSO(SOS/umu實(shí)驗(yàn)200μL)和甲醇(液質(zhì)實(shí)驗(yàn)500μL)定容后分別進(jìn)行SOS/umu測(cè)試和液質(zhì)分析.
1.2.3 SOS/umu實(shí)驗(yàn) 選擇鼠傷寒沙門氏菌TA1535/1002為實(shí)驗(yàn)菌種,該菌種由1002質(zhì)粒導(dǎo)入TA1535菌株而成.實(shí)驗(yàn)方法基本建立在Reifferscheid等[18]建立的微孔板方法基礎(chǔ)上,具體步驟見參考文獻(xiàn).β-半乳糖甘酶誘導(dǎo)活性(β-Galactosidase Activity)計(jì)算如下:
β-Galactosidase Activity(Units/OD600)=
1000×(Abs415-1.75×Abs570)/(××Abs595) (1)
式中:為加入ONPG后的反應(yīng)時(shí)間,本文中為20min;為反應(yīng)菌液在顯色過程中的稀釋倍率,本文中為0.09;Abs595、Abs415、Abs570均為吸光度值.
本文中的β-Galactosidase Activity(unit/ OD600)值為原始計(jì)算值減去陰性空白,實(shí)驗(yàn)中各樣品設(shè)3個(gè)平行樣,實(shí)驗(yàn)數(shù)據(jù)的重復(fù)測(cè)定次數(shù)均為2次,取平均值.
實(shí)驗(yàn)中采用HPLC和LC-MS對(duì)TCC及其降解產(chǎn)物進(jìn)行檢測(cè)分析.
HPLC色譜:色譜柱為Inertsil?ODS SP (250mm′4.6mm,5μm);流動(dòng)相為乙腈:水=65:35 (:),流動(dòng)相流速為1.0mL/min;檢測(cè)波長為265nm;進(jìn)樣體積為10μL;S/N>3.
質(zhì)譜條件:電噴霧離子源,負(fù)離子全掃描模式,脫溶劑溫度350℃,離子源溫度120℃,脫溶劑氣流量500L/h,錐孔氣流量50L/h,毛細(xì)管電壓3000v,進(jìn)樣量20μL.
2.1 UV、NaClO和UV/NaClO復(fù)合消毒中 TCC的去除考察了UV、NaClO和UV/NaClO消毒中TCC的去除效果,結(jié)果見圖2.
由圖2可知, NaClO接觸60min后TCC的去除率僅為10.20%,UV對(duì)TCC的去除率增加為80.17%;相同時(shí)間內(nèi)UV/NaClO復(fù)合消毒對(duì)TCC的去除率可達(dá)到97.73%.
UV對(duì)TCC的去除主要是UV輻照產(chǎn)生的羥基自由基·OH參與反應(yīng)[19-20].NaClO對(duì)TCC的去除主要是靠NaClO的氧化作用和其分解出的O·的強(qiáng)氧化性[21-22]. NaClO在UV輻照下會(huì)促使溶液中的HClO/ClO-發(fā)生光分解反應(yīng),生成·OH、Cl·、Cl2·-、ClO·等強(qiáng)氧化自由基,主要反應(yīng)式如下[23]:
HClO + hv→·OH+ Cl·(2)
·OH + HClO→ClO·+ H2O (3)
Cl2O2+ H2O→ClO2-+ OCl-+ 2H+(5)
Cl2O2+ H2O→Cl-+ O2+ OCl-+ 2H+(6)
Cl2O2→Cl2+ O2(7)
OCl-+ hv→O·-+ Cl·(8)
OCl-+ hv→Cl-+ O(3P) (10)
O(3P) + OCl→Cl-+ O2(12)
·OH+ OCl →ClO·+ OH-(13)
圖2 UV、NaClO和UV/NaClO中TCC的去除
復(fù)合消毒溶液中的Cl·、Cl2·-和·OH等有較高的氧化還原電位[24-26],可通過單電子氧化、抽H或C—C不飽和鍵加成等反應(yīng)有效去除芳香族、酚類和苯胺等有機(jī)化合物[26-28].
對(duì)TCC的產(chǎn)物進(jìn)行鑒定識(shí)別,結(jié)果如表1所示.
在經(jīng)UV、NaClO、UV/NaClO消毒的溶液中分別鑒定出了Formamide,N-(4,5- dichlorophen-yl)-、Formamide,N-(4-hydrox- yphenyl)-等8種產(chǎn)物,據(jù)此,推測(cè)的可能反應(yīng)路徑見圖3.
表1 TCC主要產(chǎn)物的質(zhì)譜信息
如圖3所示,推測(cè)TCC的降解途徑主要有:(Ⅰ)·OH/O·氧化C—N鍵形成Formamide, N-(4,5-dichlorophen-yl)-,該產(chǎn)物脫落一個(gè)氯同時(shí)另一個(gè)氯被氧化生成Formamide,N-(4- hydrox-yphenyl)-,前者可能通過UV消毒產(chǎn)生,后者可能分別通過UV和NaClO消毒產(chǎn)生;(Ⅱ)TCC脫氯分別形成Urea,N,-N'-bis(4- chlorophenyl)、Urea,N-(4-chlorophe-nyl)-N'- phenyl-和1,3-Diphenylurea, UV、NaClO和UV/NaClO消毒均可能生成前兩種產(chǎn)物,最后一種產(chǎn)物可能通過NaClO消毒生成;(Ⅲ)TCC加氯生成Urea,N, N'-bis(3,4-dichlorophenyl), UV/ NaClO和NaClO可生成該產(chǎn)物;(Ⅳ)·OH氧化TCC左側(cè)C—N鍵形成4,5-Dichlorophenol,該產(chǎn)物在Cl·,·OH的繼續(xù)作用下形成1,4-Benzenediol, 2,5-dichloro-,兩種物質(zhì)可能均由UV消毒生成.另有研究表明TCC分解的中間產(chǎn)物可能會(huì)苯環(huán)開環(huán)生成CO2、H2O等[29-32].
圖3 TCC降解的可能途徑
A:產(chǎn)物可能由UV消毒產(chǎn)生, B:產(chǎn)物可能由NaClO消毒產(chǎn)生, C:產(chǎn)物可能由UV/NaClO消毒產(chǎn)生
TCC溶液經(jīng)UV、NaClO和UV/NaClO消毒處理后遺傳毒性誘導(dǎo)效果如圖4所示.
圖4 消毒方式對(duì)遺傳毒性誘導(dǎo)活性的影響
從圖4中可看出,20、40和60min時(shí)NaClO消毒溶液的誘導(dǎo)酶含量分別為398、221和374;UV消毒溶液的誘導(dǎo)酶含量先是由463上升到500再降低為484;UV/NaClO復(fù)合消毒溶液的誘導(dǎo)酶含量呈逐步下降趨勢(shì),從158降低為131,然后繼續(xù)降低為125.反應(yīng)過程中消毒溶液的誘導(dǎo)酶含量均大于原溶液,實(shí)驗(yàn)表明消毒增加了溶液的遺傳毒性,且:UV>NaClO>UV/ NaClO>原溶液.
不同消毒處理時(shí)TCC溶液遺傳毒性變化的原因可能是: NaClO消毒時(shí)生成的中間產(chǎn)物增加了溶液的遺傳毒性,隨中間產(chǎn)物的繼續(xù)降解,遺傳毒性相應(yīng)降低, 60min時(shí)溶液中可能生成了新的產(chǎn)物導(dǎo)致其遺傳毒性增大;UV消毒可能會(huì)引起TCC光解生成有毒產(chǎn)物進(jìn)而引起遺傳毒性上升,60min時(shí)遺傳毒性出現(xiàn)減弱可能是部分有毒的中間產(chǎn)物被紫外光進(jìn)一步降解所致;UV/ NaClO溶液的遺傳毒性逐步降低,這可能是因?yàn)閺?fù)合工藝產(chǎn)生的Cl·、Cl2·-等[23]氧化自由基降解了部分有毒的中間產(chǎn)物生成遺傳毒性更小的小分子有機(jī)物,從而遺傳毒性逐漸降低.Jin等[33]用SOS/umu測(cè)定含氨基比林飲用水經(jīng)氯消毒前后的遺傳毒性變化呈相似的變化趨勢(shì).
在3種消毒方式中,UV/NaClO復(fù)合消毒可以有效去除TCC,且相比UV和NaClO消毒遺傳毒性較低,因此選用UV/NaClO復(fù)合消毒研究了TCC去除的影響因素.
2.4.1 NaClO對(duì)TCC去除的影響 投加不同量的NaCIO,考察NaCIO投加量對(duì)TCC去除的影響.結(jié)果見圖5.
圖5 NaCIO投加量對(duì)TCC去除的影響
如圖5所示,NaClO投加量為1、2、3、4和5mg/L時(shí),60min的TCC去除率分別為97.73%、98.30%、98.87%、100%和98.02%.可以看出TCC的去除隨NaClO投加量的增大先上升后降低,但變化不顯著.
反應(yīng)溶液中Cl·、Cl2·-等活性自由基含量隨NaClO濃度的增加而升高[23],因此TCC的去除隨NaClO濃度(1、2、3、4mg/L)的增加而增大.相同UV輻照條件下,NaClO 溶液接收的光子數(shù)量一定[24],當(dāng)NaClO投加量大于4mg/L時(shí),根據(jù)式(12)和(13)溶液中的HClO與強(qiáng)氧化性活性物質(zhì)的副反應(yīng)可能逐漸加強(qiáng),導(dǎo)致·OH和ClO·活性自由基含量下降從而降低了TCC的去除.
2.4.2 腐殖酸對(duì)TCC去除的影響 腐殖酸( HA)是天然水體中有機(jī)物的主要組成之一[34-35],因此實(shí)驗(yàn)中投加不同量的HA,考察HA對(duì)TCC去除的影響,結(jié)果見圖6.
由圖6可知,當(dāng)HA在反應(yīng)液中的濃度分別為1、3、5、7和9mg/L時(shí),60min的TCC去除率分別為100%、98.56%、92.51%、89.91%和86.74%.TCC的去除隨HA投加量的增加持續(xù)下降且低濃度的HA對(duì)TCC的去除產(chǎn)生促進(jìn)作用.去除持續(xù)下降的結(jié)果和Westerhopp等[36]的研究相同,因?yàn)镠A分子中含有酚羥基、胺基、羧基等活性基團(tuán),會(huì)消耗溶液中的活性自由基,所以對(duì)TCC的去除產(chǎn)生抑制作用,而且HA會(huì)增加溶液的色度從而抑制了UV的輻照效果[37].實(shí)驗(yàn)中低濃度的HA對(duì)去除有促進(jìn)作用的原因可能是因?yàn)樽贤廨椪障翲A會(huì)增加·OH的產(chǎn)生[38],產(chǎn)生·OH的量大于自身活性基團(tuán)消耗·OH的量時(shí)將促進(jìn)去除的進(jìn)行.
圖6 HA對(duì)TCC去除的影響
2.4.3 pH值對(duì)TCC去除的影響 用鹽酸和氫氧化鈉調(diào)節(jié)溶液的pH值,考察pH值對(duì)TCC去除的影響,結(jié)果見圖7.
從圖7中可以看出,溶液的pH值為3、5、7、9和11時(shí),60min時(shí)TCC的去除率分別為91.71%、94.86%、97.71%、100%和98.86%.pH值在3~9范圍內(nèi),TCC的去除率逐漸升高;pH值在9~11階段,TCC的去除率有所降低,pH值對(duì)TCC去除的影響不大.
TCC是一種堿性物質(zhì)(pKa=12.7)[39],酸性條件下的質(zhì)子化作用降低了TCC分子上氨基基團(tuán)的活性[40].同時(shí),根據(jù)Wang等[41]用紫外/氯降解卡馬西平的研究,氯溶液中紫外光的吸收率隨pH值(5.5~9.5)的上升逐漸增大導(dǎo)致溶液中氧化自由基含量增多.所以TCC的去除率隨pH值(3~9)的增加逐漸升高.然而,pH值升到9以后溶液中的OH-會(huì)相應(yīng)增多,根據(jù)方程(11)可以得出溶液中的·OH會(huì)對(duì)應(yīng)減少,導(dǎo)致TCC的去除會(huì)有所降低.
圖7 pH值對(duì)TCC去除的影響
2.4.4 初始濃度對(duì)TCC去除的影響 改變?nèi)芤旱某跏紳舛?考察TCC初始濃度對(duì)其去除的影響,結(jié)果見圖8.
圖8 初始濃度對(duì)TCC去除的影響
由圖8可知,60min時(shí)TCC濃度在143、250、353、457與582mg/L時(shí)的去除率分別為100%、100%、97.73%、97.62%和96.31%.TCC的去除隨初始濃度的增大而降低,較高濃度的TCC需要較長時(shí)間才能達(dá)到相同的去除效果.
這可能是因?yàn)閁V輻照時(shí)間和NaCIO投加量不變時(shí),單位TCC與氧化物質(zhì)反應(yīng)的幾率隨TCC初始濃度的增加而降低,從而TCC濃度越高去除率越低,這與李玉瑛等[42]研究UV/ClO2去除三氯生的規(guī)律相似.另一個(gè)原因可能是較高濃度的TCC會(huì)生成較多的中間產(chǎn)物,這些中間產(chǎn)物會(huì)消耗一定量的氧化自由基,進(jìn)而降低了TCC的去除.
3.1 TCC在NaClO、UV和UV/NaClO 3種消毒方式中均可被不同程度地去除,60min時(shí)TCC的去除率分別為10.20%、80.17%和97.73%.
3.2 不同方式消毒后溶液的遺傳毒性有所增加.TCC溶液經(jīng)3種消毒處理后的遺傳毒性大小為:UV>NaClO>UV/NaClO>原溶液.
3.3 TCC的主要降解途徑為:(Ⅰ) TCC的C-N鍵被氧化形成Formamide,N-(4,5-dic- hlorophenyl)-,產(chǎn)物脫落一個(gè)氯的同時(shí)另一個(gè)氯被氧化生成Formamide,N-(4-hydroxyphenyl)-; (Ⅱ)TCC脫氯分別形成Urea,N,-N'-bis(4- chlorophenyl)、Urea,N-(4-chlorophenyl)-N'- phenyl-和1,3-Diphenylurea;(Ⅲ)TCC加氯生成Urea,N,N'-bis(3,4-dichlorophenyl);(Ⅳ)TCC左側(cè)C-N鍵被氧化形成4,5-Dichlorophenol,產(chǎn)物繼續(xù)在Cl·和·OH作用下形成1,4-Benzenediol,2, 5-dichloro-.
3.4 UV/NaClO消毒中NaClO的投加量和溶液的pH值對(duì)TCC的去除率影響不大,TCC的去除率隨NaClO投加量的增加和pH值的上升先升高后下降.增加HA的投加量TCC的去除率持續(xù)下降但低濃度的HA對(duì)TCC的去除有促進(jìn)作用.
[1] TCC Consortium. High production volume (HPV) chemical challenge program data availability and screening level assessment for triclocarban, CAS#: 101-20-2,2002;Report [R]. No.201-14186A; http://www.epa. gov/chemrtk/tricloca/c14186cv. pdf;pp 1-38.
[2] Ying G G, Yu X Y, Kookana R S.Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with enviromental fate modelling [J].Environ Pollut 2007,150:300-305.
[3] Ahn, K C, Kasagami T, Tsai H J, et al. Animmuno assay to evaluate human/environmental exposure to the antimicrobial triclocarban [J]. Environmental. Science. Technology, 2012.46(1): 374–381.
[4] Sapkota A, Heidler J, Halden R U. Detection of tricloarban and two co-contaminating chlorocarbanilides in US aquatic environments using isotope dilution liquid chromatography tandemmass spectrometry [J]. Environmental Research, 2007, 103(1):21-29.
[5] Wu Chenxi, Spongberg A L, Witter J D. Determination of the persistence of pharmaceuticalsin biosolidsusing liquid chromatography tandem mass spectrometry [J]. Chemosphere, 2008, 73(4):511-518.
[6] Cha J, Cupples A M. Detection of the antimicrobials triclocarban and triclosan in agricultural soils following and application of municipal biosolids [J]. Water Research, 2009,43(9):2522-2530.
[7] Nolen G A, Dierckman T A. Reproduction and teratogenic studies of a 2:1mixture of 3,4,4¢-trichlorocarban ilide and 3-trif- luoromethyl-4, 4¢-dichlorocarbanilidein rats and rabbits [J]. Toxicol. Appl.Pharmacol, 1979,51(3):417-25.
[8] Duleba A J, Ahmed M I, Sun M, et al. Effects of triclocarban on intact immature male rat: augmentation of and rogenaction [J]. Reprod. Science. 2011,18(2):119–127.
[9] Higgins C P, Paesani Z J, Chalew T E, et al. Persistence of triclocarban and triclosan insoil after land application of biosolids and bioaccumulation in[J]. Environ. Toxicol. Chemical, 2011,30(3):556–563.
[10] Chung E, Genco M C, Megrelis L, et al. Effects of bisphenol A and triclocarban on brain specific expression of aromataseinearly zebra fishembryos [C]// Proc. Natl. Acad. Science. U.S.A. 2011, 108(43):17732–17737.
[11] Hinther A, Bromba C M, Wulff J E, et al. Effects of triclocarban, triclosan, and methyl triclosan on thyroid hormone action and stress in frog and mammalian culture systems [J]. Environmental Science & Technology, 2011,45(12):5395-5402.
[12] 胡洪營,吳乾元,黃晶晶,等.再生水水質(zhì)安全評(píng)價(jià)與保障原理[M]. 北京:科學(xué)出版社, 2011.
[13] Mckinny C, Ma Y J, Novak J T, et al. Disinfection of microconstituent antibiotic resisitance genes by UV light andsluge digestion [J]. Water Research, 2009,20(11):577-589.
[14] Gibs J, Stackelberg P E, Furlong E T, et al. Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds [J]. Science of the Total Environment, 2007,377(2):255-272.
[15] Shah A D, Dotson A D, Linden K G, et al. Impact of UV disinfection combined with chlorination/chloramination on the formation of halonitromethanes and haloacetonitriles in drinking water [J]. Environmental Science & Technology, 2011,45(8): 3657-3664.
[16] Plewa M J, Dwagner E. Chemical and Biological Characterization of Newly Discovered lodoacid Drinking Water Disinfection By products [J]. Environmental. Science.Technology, 2004,38(18):4713-4722.
[17] CCC (Chlorine Chemistry Council). White paper: a review of disinfection practices and issues [R]. 1997:6-14.
[18] Reifferscheid G, Heil J, Oda Y, et al. Amicroplate version of the SOS/UMU test for rapid detection of genotoxins and genotoxic potentials of environmental samples [J]. Mutation Res., 1991, 253:215~222.
[19] MartínezZapata M, Aristizábal C, Peuela G. Photodegradation of the endocrine disrupting chemicals 4nnonylphenol and triclosan by simulated solar UV irradiation in aqueous solutions with Fe (Ⅲ) and in the absence/presence of humic acids [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2013,251:41-49.
[20] Vallejo M, San Román M F, Ortiz I, et al. Overview of the PCDD/Fs degradation potential and formation risk in the application of advanced oxidation processes (A OPs) to wastewater treatment [J]. Chemosphere, 2014,118:44-56.
[21] 曲顯恩.含氯消毒劑的性能與應(yīng)用[J]. 中國氯堿, 2005,1: 19-23.
[22] 劉少友,黃雪莉.用原子矩陣法對(duì)工業(yè)級(jí)次氯酸鈉水溶液宏觀動(dòng)力學(xué)研究[J]. 新疆大學(xué)學(xué)報(bào)(自然科學(xué)版), 2004,21(1):109- 112.
[23] Fang J, Fu Y, Shang C. The roles of reactive species in micropollutant degradation in the UV/free chlorine system. Environmental Science & Technology, 2014,48(3):1859-1868.
[24] 韓志濤,楊少龍,鄭德康,等.紫外輻照強(qiáng)化NaClO溶液濕法脫硝的實(shí)驗(yàn)研究[J]. 科學(xué)技術(shù)與工程, 2016,28(16):135-138.
[25] Hirakawa T, Nosaka Y. Properties of O2$- and OH$ formed in TiO2aqueous suspensions by photocatalytic reaction and the influence of H2O2and some ions [J]. Langmuir, 2002,18(8): 3247e3254.
[26] Beitz T, Bechmann W, Mitzner R. Investigations of reactions of selected azaarenes with radicals in water. 2.Chlorine and bromine radicals. J. Phys. Chem. A, 1998,102(34):6766?6771.
[27] Neta P; Huie R E, Ross A B. Rate constants for reactions of inorganic radicals in aqueous solution [J]. J. Phys. Chem. Ref. Data, 1988,17(3),1027?1284.
[28] Buxton G V, Greenstock C L, Helman W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (×OH/×O?) in aqueoussolution. J. Phys. Chem. Ref. Data 1988,17(2):513?886.
[29] 熊重鐸,程 強(qiáng),施 薇,等.微波無極紫外光催化降解茜素綠的性能研究及產(chǎn)物分析 [J]. 環(huán)境工程學(xué)報(bào), 2014,8(12):5185- 5190.
[30] 徐 蕾.基于硫酸根自由基反應(yīng)的2,4,6-三氯苯酚氧化降解的研究[D]. 上海:東華大學(xué), 2012.
[31] Geeta S, Rao B, Mohan H, et al. Radiation inducedoxidation of substituted benzaldehydes: A pulse radiolysis study [J]. Journal of Physical Organic Chemistry, 2004,17(17):194-198.
[32] Singh T, Gejji S, Rao B, et al. Radiation chemical oxidation of aniline derivatives [J]. Journal of the Chemical Society Perkin Transactions, 2001,7(7):1205-1211.
[33] Jin Ai-jie, Li Feng. Changes of the toxic potential of drinking water containing aminopyrine before and after chlorine disinfection as determined by the algal toxicity assay and the SOS/umu assay [J]. International Biodeterioration & Biodegradation, 2016,113:269-275.
[34] Swietlik J, Dbrowska A, Raczyk-Stanisawiak U, et al. Reactivity of natural organic matter fractions with chlorinedioxide and ozone [J]. Water Res, 2004,38(3):547-558.
[35] Palmer F L, Eggins B R, Coleman H M. The effect of operational parameters on the photocatalytic degradation of humi cacid [J]. J Photochem PhotobiolA: Chemistry, 2002,148:137-143.
[36] Westerhoppp, Mezyk S P, Cooperw J, et al. Electron pulse radiolysis determination of hydroxyl radical rate constants withSuwannee river fulvic acid and other dissolved organic matter isolates. Enviornment Science & Technology, 2007,41(13): 4640-4646.
[37] Xu B, Gao N Y, Xue X F, et al. Photochemical degradation of diethyl phthalate with UV/H2O2[J]. Journal of Hazardous Materials, 2007,B139:132-139.
[38] Martínez-Zapata M, Aristizábal C, Peuela G. Photodegradation of the end ocrine disrupting chemicals 4nnonylphenol and triclosan by simulated solar UV irradiation in aqueous solutions with Fe (Ⅲ) and in the absence/presence of humic acids [J]. Journal of Photochemistryand Photobiology A: Chemistry, 2013,251:41-49.
[39] Mc Donnell G, Russell A D. Antiseptics and disinfectants:activity, action and resistance [J]. Clin Microbiol Rev 1999,12(1):147-179.
[40] Loftsson T, Ossurardottir I B, Thorsteinsson T, DuanM, MassonM. 2005. Cyclodextrin solubilization of theantibacterial agents triclosanand triclocarban: Effect of ionization and polymers. J. Inclusion Phenom Macrocyclic Chem, 52:109-117.
[41] Wang Wen-Long, Wu Qian-Yuan, Li Zhiming, et al. Light emitting diodes as an emerging UV source for UV/chlorineoxidation: Carbamazepinede gradationand toxicity changes [J]. Chemical Engineering Journal, 2017,310:148-156.
[42] 李玉瑛,何文龍,李青松,等.UV協(xié)同ClO2去除三氯生及其降解產(chǎn)物的研究[J]. 環(huán)境科學(xué), 2015,36(2):517-522.
Study on the removal characteristics and genotoxicity of trichlorocarban during disinfections by NaClO, UV and UV/NaClO.
LU Bao-song1,2,MA Xiao-yan1,LI Qing-song2*, LUO Jing-yu3,SHEN Qi-qi4, LIAO Jie2, LIAO Wen-chao2, CHEN Guo-yuan2, LI Guo-xin2
(1.College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China;2.Water Resource and Environment Institute, Xiamen University of Technology, Xiamen 361005, China;3.School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China;4.National Engineering Reseach Center For Marine Aqaculture, Zhejiang Ocean University, Zhoushan 316000, China )., 2008,38(5):1752~1759
The removal characteristics of trichlorocarban (TCC) during disinfections were studied by NaClO, UV and UV/NaClO combined disinfection. The genetic toxicity of TCC solution in three disinfection technologies was also investigated. Furthermore, the degradation products were identified and the degradation mechanism of TCC was discussed. The effects of several factors such as NaClO dosage, TCC initial concentration, pH value and humic acid (HA) on TCC removal were studied during UV/NaClO combined disinfection. The results showed that the removal efficiency of TCC was in the order: UV/NaClO, UV, NaClO, and the genetic toxicity of TCC solution was increased by disinfection treatment to varying degrees. Eight kinds of TCC degradation products were identified by LC-MS. The main degradation pathways were dechlorination, chlorination, and ·OH/O·oxidating. The removal rate of TCC by UV/NaClO combined disinfection was more than 97%; The removal of TCC was negatively correlated with its initial concentration; The removal rate of TCC increased firstly and then decreased with the increase of pH;Low concentration of humic acid (HA) contributed to the removal of TCC, whereas high.
triclocarban;disinfection;removal;products;genetic toxicity
X52
A
1000-6923(2018)05-1752-08
2017-09-29
國家自然科學(xué)基金資助項(xiàng)目(51378446,51678527,51408518);福建省科技計(jì)劃引導(dǎo)性項(xiàng)目(2017Y0079);福建省高校新世紀(jì)優(yōu)秀人才支持計(jì)劃項(xiàng)目(JA14227);福建省自然科學(xué)基金資助項(xiàng)目(2017J01491);福建省中青年教師教育科研項(xiàng)目(JAT170412);廈門市科技局項(xiàng)目(3502Z20131157,3502Z20150051)
* 責(zé)任作者, 副研究員, leetsingsong@sina.com
陸保松(1989-),男,安徽亳州人,浙江工業(yè)大學(xué)碩士研究生,主要研究方向?yàn)樗幚砝碚撆c技術(shù).