亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        剩余類環(huán)上二階對(duì)稱矩陣模的保行列式的加法映射

        2018-05-14 13:58:17生玉秋宋丹許璐珂楊婷賀三亭

        生玉秋 宋丹 許璐珂 楊婷 賀三亭

        摘 要:為了研究剩余類環(huán)上對(duì)稱矩陣模的保行列式的加法映射,首先說(shuō)明這類加法映射其實(shí)都是線性的,然后通過(guò)合同變換,利用數(shù)論知識(shí)和行列式運(yùn)算并借助于整數(shù)的標(biāo)準(zhǔn)素分解進(jìn)行分類討論,以確定主要基底的像,再利用映射的線性性質(zhì)確定所有矩陣的像,并討論了本質(zhì)上屬于同一類映射的映射形式之間的關(guān)系。結(jié)果表明,剩余類環(huán)上二階對(duì)稱矩陣模上保行列式的加法映射都是規(guī)范的。研究方法解決了一般環(huán)上非零元未必有逆的本質(zhì)帶來(lái)的困難,將基礎(chǔ)集擴(kuò)展到剩余類環(huán)上,此結(jié)果可以看作是保行列式問(wèn)題向環(huán)靠近的一小步,改進(jìn)了線性保持問(wèn)題的已有結(jié)果,對(duì)剩余類環(huán)上的其他保持問(wèn)題的研究也具有參考價(jià)值。

        關(guān)鍵詞:線性代數(shù);加法映射;剩余類環(huán);矩陣模;保行列式

        中圖分類號(hào):O151.21?MSC(2010)主題分類:15A86?文獻(xiàn)標(biāo)志碼:A

        文章編號(hào):1008-1542(2018)06-0527-05

        4?結(jié)?語(yǔ)

        本文主要刻畫(huà)了剩余類環(huán)上的二階矩陣模上的保行列式的線性映射的具體形式,將保行列式問(wèn)題的基礎(chǔ)集從域擴(kuò)展到了環(huán),改進(jìn)了已有文獻(xiàn)的結(jié)果。另外,數(shù)論理論的應(yīng)用在保持問(wèn)題中還未有過(guò),它主要用來(lái)克服一般環(huán)中非零元未必有逆帶來(lái)的困擾,也給其他保持問(wèn)題的解決提供了借鑒,但畢竟剩余類環(huán)相對(duì)特殊,未來(lái)還應(yīng)著力在除環(huán)或特殊的整環(huán)以至一般的交換環(huán)上考慮這類問(wèn)題。

        參考文獻(xiàn)/References:

        [1]?FROBENIUS G.ber die Darstellung Der Endlichen Gruppen Durch Lineare Substitutionen [M]. Berlin: Sitzungsber Deutsch Akad Wiss , 1897.

        [2]?EATON M L. On linear transformations which preserve the determinant[J]. Illinois Journal of Mathematics,1969, 13(4): 722-727.

        [3]LAUTEMANN C. Linear transformations on matrices: Rank preservers and determinant preservers[J]. Linear and Multilinear Algebra,1981, 10(4):343-345.

        [4]?DOLINAR G,EMRL P. Determinant preserving maps on matrix algebras[J]. Linear Algebra and Its Applications, 2002, 348(1/2/3): 189-192.

        [5]?TAN V,WANG F. On determinant preserver problems[J]. Linear Algebra and Its Applications, 2003, 369(1):311-317.

        [6]?CAO Chongguang, TANG Xiaomin. Determinant preserving transformations on symmetric matrix spaces[J]. Electronic Journal of Linear Algebra, 2004,11(1):205-211.

        [7]?ZHANG Xian, TANG Xiaomin, CAO Chongguang. Preserver Problems on Spaces of Matrices[M]. Beijing: Science Press, 2007.

        [8]?HUANG Huajun, LIU C N, SZOKOL P, et al. Trace and determinant preserving maps of matrices[J]. Linear Algebra and Its Applications, 2016,507(15): 373-388.

        [9]?GERGO N. Determinant preserving maps: An infinite dimensional version of a theorem of frobenius[J]. Linear and Multilinear Algebra,2017, 65(2):351-360.

        [10]MARCELL G, SOUMYASHANT N. On a class of determinant preserving maps for finite von Neumann algebras[J]. Jouranl of Mathematical Analysis and Applications, 2018, 464(1):317-327.

        [11]GOLBERG M A. The derivative of a determinant[J]. American Mathematical Monthly, 1972,79(10): 1124-1126.

        [12]PIERCE S. A survey of linear preserver problems[J]. Pacific Journal of Mathematics, 1992, 204(2):257-271.

        [13]AUPETIT B. Spectrum-preserving linear mappings between Banach algebras or Jordan-Banach algebras[J]. Journal of the London Mathematical Society, 2000, 62(3): 917-924.

        [14]GUTERMAN A, LI C K, EMRL P. Some general techniques on linear preserver problems[J]. Linear Algebra and Its Applications, 2000, 315(1/3): 61-81.

        [15]LI C K, TSING N K. Linear preserver problems: A brief introduction and some special techniques[J]. Linear Algebra and Its Applications, 1992, 162(2):217-235.

        [16]LI C K, PIERSE S. Linear preserver problems[J]. American Mathematical Monthly , 2001, 108(7):591-605.

        [17]EMRL P. Maps on matrix spaces[J]. Linear Algebra and Its Applications, 2006, 413(2): 364-393.

        [18]DUFFNER M A, CRUZ H F D.Rank nonincreasing linear maps preserving the determinant of tensor product of matrices[J]. Linear Algebra and Its Applications, 2016, 510(1): 186-191.

        [19]DING Yuting, FOSNER A, XU Jinli, et al. Linear maps preserving determinant of tensor products of Hermitian matrices[J]. Journal of Mathematical Analysis and Applications, 2016, 446(2):1139-1153.

        [20]HARDY Y,F(xiàn)OSNER A. Linear maps preserving kronecker quotients[J]. Linear Algebra and Its Applications,2018, 556(2): 200-209.

        [21]JI Youqing, LIU Ting, ZHU Sen. On linear maps preserving complex symmetry[J]. Journal of Mathematical Analysis and Applications, 2018, 468(1):1144-1163.

        [22]COSTARA C. Linear surjective maps preserving at least one element from the local spectrum[J]. Proceedings of the Edinburgh Mathematical Society, 2018, 61(1):169-175.

        [23]ZHANG Jiayu, SHENG Yuqiu. Additive maps preserving determinant on modules of matrices over [J]. International Research Journal of Pure Algebra, 2017, 7(4): 513-521.

        国产成+人欧美+综合在线观看| 一区二区三区日韩毛片| 国产激情视频在线观看大全| 性饥渴的农村熟妇| 国产欧美日韩视频一区二区三区 | 色老汉亚洲av影院天天精品| 日本在线观看一二三区| 免费a级毛片18禁网站app | 国产成人亚洲精品电影| 亚洲熟女少妇精品久久| 97一期涩涩97片久久久久久久| 一本一道av无码中文字幕| 9久9久女女热精品视频免费观看 | 日韩精品一区二区三区人妻在线 | 国产亚洲精品久久久久久| 99久久国产综合精品女乱人伦| av网址在线一区二区| 国产免码va在线观看免费| 国产精品视频一区二区噜噜| 亚洲天堂无码AV一二三四区 | 亚洲av午夜一区二区三| 欧洲女人性开放免费网站| 久久精品国产一区二区蜜芽| av天堂中文亚洲官网| 永久亚洲成a人片777777| 精品一区二区三区无码视频| 蜜桃一区二区三区自拍视频| 国产亚洲精品色婷婷97久久久| 免费人妻无码不卡中文字幕18禁 | 麻豆久久五月国产综合| 蜜桃激情视频一区二区| 亚洲av综合一区二区在线观看| 国产成人精品一区二区视频| 色老汉亚洲av影院天天精品| 国产精品成人亚洲一区| 日本做受高潮好舒服视频| 福利网在线| 成人国产精品三上悠亚久久| 免费无遮挡禁18污污网站| 狼友AV在线| 中文字幕一区乱码在线观看|