韓友霞,李天一,樊柳生,徐 偉,張 玫
(1.北京理工大學(xué)醫(yī)院,北京 100081;2.中國疾病預(yù)防控制中心傳染病預(yù)防控制所,傳染病預(yù)防控制國家重點(diǎn)實(shí)驗(yàn)室,北京 102206;3.感染性疾病診治協(xié)同創(chuàng)新中心,浙江 杭州 310003;4.北京理工大學(xué)生命學(xué)院,北京 100081)
沙丁胺醇(SAL)是一種β2受體激動(dòng)劑,與鹽酸克倫特羅(CLE)類似,能夠激活支氣管平滑肌,在臨床上用于治療支氣管哮喘[1]。由于β2受體激動(dòng)劑可促進(jìn)動(dòng)物快速生長,常被非法添加于畜禽飼料,通過食物鏈進(jìn)入人體后,會(huì)危害人們健康[2],因此,許多國家和地區(qū)立法禁止使用β2受體激動(dòng)劑作為飼料添加劑[3-6]。由于CLE是首個(gè)被廣泛使用的非法飼料添加劑[7],針對(duì)CLE的檢測現(xiàn)已有較完善的方法,使非法添加得到了有效控制[8-10]。目前,與CLE具有相同功能的SAL則成為常用的非法飼料添加劑[11]。因此,開發(fā)準(zhǔn)確、快速的SAL檢測方法是食品安全領(lǐng)域的迫切需求之一。
目前,SAL的檢測方法主要包括:基于抗原與抗體特異性識(shí)別的免疫分析法和儀器分析法[12-14]。免疫分析法包括酶聯(lián)免疫法(ELISA)[15]和膠體金免疫層析法(GICA)[13],其中,ELISA是臨床檢測最常用的方法,可實(shí)現(xiàn)高通量檢測,具有較高的特異性,但假陽性率略高,且需要使用抗體,導(dǎo)致檢測成本較高。儀器分析法包括GC/MS[16]和LC/MS[12],此類方法的靈敏度高、重現(xiàn)性好,然而無法避免樣品前處理和分離過程耗時(shí)較長的缺點(diǎn)。
近年來,常壓敞開式離子化技術(shù)是質(zhì)譜領(lǐng)域的研究熱點(diǎn)之一。該技術(shù)通常無需(或僅需很少)樣品前處理,可避免單獨(dú)的分離環(huán)節(jié),因而實(shí)現(xiàn)了對(duì)樣本的直接快速分析,包括解吸電噴霧電離(DESI)[17]、實(shí)時(shí)直接分析(DART)[18]、紙噴霧電離(PS)[19],以及膜電噴霧電離(MESI)[20]、印跡膜電噴霧電離(MIM-ESI)[21]等,已被廣泛應(yīng)用于不同領(lǐng)域[22-27]。其中,MIM-ESI技術(shù)在MESI基礎(chǔ)上結(jié)合分子印跡策略[12,28-29],已成為具有特異性富集功能的常壓敞開式離子化技術(shù),提高了檢測靈敏度。分子印跡技術(shù)是分析化學(xué)常見的特異性富集目標(biāo)分析物的方法[30],自Linus Pauling[31]提出以來,被很多化學(xué)家不斷地修正完善,最終形成了成熟的分子印跡技術(shù)[32-34]。在本工作中,將分子印跡技術(shù)結(jié)合本課題組開發(fā)的MESI,形成了新型敞開式離子化技術(shù),即印跡膜電噴霧電離(MIM-ESI)。
本研究擬采用MIM-ESI技術(shù)快速定量分析尿液中的SAL,并進(jìn)行方法學(xué)考察。希望為生物復(fù)雜樣本中痕量樣品的快速檢測提供方法參考。
Bruker HCT質(zhì)譜儀:德國Bruker公司產(chǎn)品;SU8010掃描電子顯微鏡:日本日立公司產(chǎn)品;聚偏氟乙烯(PVDF)微濾膜(直徑25 mm,孔徑0.45 μm,親水或疏水):博納艾杰爾科技(中國天津)公司產(chǎn)品;萊克多巴胺(RAC)、沙丁胺醇鹽酸鹽(SAL)、克侖特羅(CL)、偶氮二異丁腈(AIBN)、丙烯酸乙二醇二甲基酯(EGDMA)、甲基丙烯酸(MAA)、丙烯酸(AA)和過二硫酸鉀(KPS): 美國Sigma-Aldirch公司產(chǎn)品;甲醇、氯仿、丙酮、乙腈、乙酸和甲酸:色譜級(jí),美國Fisher公司產(chǎn)品;超純水(電阻率18.2 MΩ·cm):由Millipore超純水儀制備;尿液:由健康志愿者提供。
選擇RAC作為模板分子,由于RAC與SAL具有相似的化學(xué)結(jié)構(gòu),但二者的相對(duì)分子質(zhì)量不同,在質(zhì)譜檢測SAL過程中,可有效消除由于模板分子洗脫不完全導(dǎo)致的SAL定量誤差。
1.2.1疏水PVDF膜的活化與修飾 將疏水PVDF膜浸入3%NaOH水溶液中,于60 ℃處理12 h后,用純水清洗膜表面,將處理過的膜浸入含有10%丙烯酸和1%過硫酸鉀的水溶液中,經(jīng)N2脫氧后,于70 ℃恒溫反應(yīng)5 h。然后,將處理好的PVDF膜分別于純水中浸泡1 h,乙腈中浸泡30 min,之后在0.15 mol/L AIBN乙腈溶液中活化20 min,最后揮干乙腈,并立即浸入分子印跡反應(yīng)液中。
1.2.2RAC印跡材料的制備 根據(jù)文獻(xiàn)報(bào)道[35],加入1 mmol RAC模板分子和6 mmol MAA功能單體,用氯仿-甲醇反應(yīng)溶劑(5∶1,V/V)充分溶解,于室溫下密封預(yù)聚合1 h。然后加入30 mmol EGDMA交聯(lián)劑和2 mmol AIBN引發(fā)劑,待溶解完全后,加入經(jīng)表面修飾和活化后的PVDF膜,超聲除氧10 min,在室溫下反應(yīng)2 h。最后,將PVDF膜轉(zhuǎn)移到N2環(huán)境下于65 ℃恒溫反應(yīng)24 h。反應(yīng)結(jié)束后,用10%乙酸甲醇溶液反復(fù)洗滌以除去模板分子,然后用純水洗滌至中性,再用丙酮洗滌并揮干,將分子印跡膜保存于干燥器,備用。
1.2.3非分子印跡膜(NIM)的合成 除不加入RAC模板分子外,其余步驟與RAC-MIM的合成步驟相同。
采用掃描電鏡測定疏水PVDF膜、RAC-MIM和洗脫完畢后的RAC-MIM的表面形貌變化。
以尿液中添加SAL作為模擬樣本,選取高(1 mg/L)、中(1 μg/L)和低(0.1 μg/L)3個(gè)不同濃度梯度的SAL,以測試結(jié)合選擇性。
1.4.1RAC-MIM與NIM對(duì)比 取2組以上3種濃度樣品,分別加入RAC-MIM和NIM(支撐膜均為疏水PVDF),室溫下振蕩20 min,待測。
1.4.2親水PVDF與疏水PVDF對(duì)比 取2組以上3種濃度樣品,分別加入親水PVDF、疏水PVDF作為支撐膜,制備得到RAC-MIM,室溫下振蕩20 min,待測。
所有印跡膜電噴霧電離質(zhì)譜(MIM-ESI MS)實(shí)驗(yàn)通過Bruker HCT質(zhì)譜儀進(jìn)行。干燥氣體為N2,流速10 L/min,溫度150 ℃,正離子模式檢測,離子源溫度150 ℃,毛細(xì)管電壓-2.5 kV,MS/MS分析窗口為2 u。
MIM-ESI MS分析沙丁胺醇的工作流程示于圖1。將分子印跡膜剪成邊長為7 mm的等邊三角形,浸入含有SAL的樣品中,室溫下?lián)u晃20 min進(jìn)行吸附,然后用金屬夾將吸附了SAL的分子印跡膜固定于進(jìn)樣口前端,將三角形膜的尖端對(duì)準(zhǔn)入口,距離約5 mm。外加2.5 kV直流電壓,滴加8 μL洗脫溶劑(含0.1%甲酸的甲醇溶液)至膜上。在高壓電場及洗脫溶劑作用下,從分析印跡膜上洗脫SAL,并在膜的尖端形成噴霧,進(jìn)入質(zhì)譜。
nano ESI MS實(shí)驗(yàn)條件如下:干燥氣為N2;流速10 L/min;溫度150 ℃;正離子模式檢測;離子源溫度150 ℃;毛細(xì)管電壓-1.2 kV。
RAC-MIM的掃描電鏡結(jié)果示于圖2。可見,相比于空白PVDF膜,RAC-MIM表面有明顯的聚合網(wǎng)狀結(jié)構(gòu),說明在PVDF膜表面生成了分子印跡材料;洗脫RAC后的MIM表面出現(xiàn)較細(xì)的PVDF纖維。
圖2 空白PVDF膜(a),RAC-MIM (b)和洗脫RAC的MIM(c)的掃描電鏡圖Fig.2 Scanning electron microscopy (SEM) photos of the blank PVDF membrane (a),RAC-MIM (b) and MIM after removing RAC (c)
RAC-MIM與NIM的吸附效果對(duì)比示于圖3a,以質(zhì)譜響應(yīng)值為衡量標(biāo)準(zhǔn),RAC-MIM吸附效果高于NIM,并且隨著SAL濃度降低,兩者的差異增大,說明分子印跡膜的特異性富集效果比較明顯。采用親水PVDF膜和疏水PVDF膜作為支撐膜的吸附效率示于圖3b,二者吸附效果相差不大,說明分子印跡材料在特異性富集目標(biāo)分子過程中起決定性作用,而支撐膜的表面性質(zhì)不是關(guān)鍵因素。
分別對(duì)外加電壓、洗脫溶劑、吸附時(shí)間對(duì)富集效果的影響,以及不同模板分子對(duì)SAL定量結(jié)果的影響等條件進(jìn)行優(yōu)化,實(shí)驗(yàn)結(jié)果示于圖4。
圖3 MIM與NIM (a)、親水與疏水PVDF (b)吸附效率對(duì)比結(jié)果Fig.3 Comparison experiments for adsorption efficiency of MIM vs NIM(a) and hydrophilic vs hydrophobic PVDF (b)
圖4 外加電壓(a),洗脫溶劑(b)和吸附時(shí)間(c)的優(yōu)化Fig.4 Optimization of applied voltage (a), elution solvent (b) and adsorption time (c)
外加電壓的優(yōu)化:固定毛細(xì)管電壓為-1 kV,選擇10 μg/L SAL的甲醇溶液為模型樣本,每個(gè)樣本平行檢測5次。考察外加電壓在0~5 kV時(shí),樣本的二級(jí)質(zhì)譜響應(yīng)情況,示于圖4a。結(jié)果表明,最佳的外加電壓為2.5 kV。
洗脫溶劑的優(yōu)化:分別考察以甲醇、乙腈、水、含0.1%甲酸的甲醇溶液為洗脫溶液時(shí)模型樣本的質(zhì)譜響應(yīng)情況,示于圖4b。結(jié)果表明,含0.1%甲酸的甲醇溶液對(duì)模板分子的洗脫能力最佳。
吸附時(shí)間的優(yōu)化:以添加1 μg/L SAL的尿液作為模型樣本,考察吸附時(shí)間對(duì)實(shí)驗(yàn)結(jié)果的影響,結(jié)果示于圖4c。結(jié)果表明,0~20 min內(nèi),質(zhì)譜響應(yīng)值隨著吸附時(shí)間的延長而增加;20 min時(shí),SAL的質(zhì)譜峰強(qiáng)度達(dá)到最大;當(dāng)吸附時(shí)間超過20 min后,隨著吸附時(shí)間的延長,峰強(qiáng)度沒有明顯的變化。故選擇吸附時(shí)間為20 min。
此外,還嘗試采用具有相似結(jié)構(gòu)的不同化合物(如RAC和CL)作為模板分子,考察模板分子差異對(duì)富集效果的影響。實(shí)驗(yàn)結(jié)果表明,采用RAC和CL作為模板分子,對(duì)富集SAL沒有顯著性差異。
圖5 采用MIM-ESI MS與nano ESI MS分析SAL標(biāo)準(zhǔn)溶液的線性定量范圍Fig.5 Linear quantitation ranges of SAL using MIM-ESI MS and nano ESI MS
對(duì)比MIM-ESI MS與nano ESI MS兩種離子化技術(shù),分析SAL標(biāo)準(zhǔn)溶液的標(biāo)準(zhǔn)曲線示于圖5,可知,MIM-ESI和nano ESI的LOQ分別為0.01 μg/L和0.1 μg/L。兩種方法在LOQ濃度條件下的一級(jí)和二級(jí)質(zhì)譜圖示于圖6。通過對(duì)比可以看出,采用MIM-ESI法可以獲得更高的質(zhì)譜響應(yīng)信號(hào)和信噪比,表明分子印跡膜特異性富集了SAL,有效地提升了對(duì)痕量樣本的分析能力。
圖6 MIM-ESI分析SAL的一級(jí)(a)與二級(jí)(b)質(zhì)譜圖, nano ESI分析SAL的一級(jí)(c)與二級(jí)(d)質(zhì)譜圖Fig.6 MS spectra of SAL using MIM-ESI (a) and nano ESI (c),MS/MS spectra of SAL using MIM-ESI (b) and nano ESI (d)
作為常壓敞開式離子化技術(shù),MIM-ESI MS可實(shí)現(xiàn)對(duì)復(fù)雜樣本中待測物質(zhì)的直接定量分析。按照文獻(xiàn)方法[35-36],以向基質(zhì)(尿液)中混入沙丁胺醇的添加實(shí)驗(yàn)作為模擬實(shí)際樣本,采用MIM-ESI MS定量分析尿液中的SAL,結(jié)果示于圖7。結(jié)果表明:線性范圍為0.01~10 000 μg/L; 標(biāo)準(zhǔn)曲線為y=166x+179 597,r2=0.997 6;LOD(S/N=5)和LOQ(S/N=15)分別為5 ng/L和10 ng/L;SAL二級(jí)質(zhì)譜的碎片離子(m/z240>222, 166)可作為定性離子對(duì)。從圖7d可知,在陰性對(duì)照樣本中未檢出SAL。以上結(jié)果表明,MIM-ESI MS方法可實(shí)現(xiàn)快速檢測,與傳統(tǒng)LC/MS[37]相比,靈敏度提高了100倍左右,并且具有更寬的線性范圍和更低的定量限,可有效地分析復(fù)雜樣本中的痕量目標(biāo)物。
本實(shí)驗(yàn)選取了高(1 mg/L)、中(1 μg/L)和低(0.1 μg/L)3種濃度的SAL質(zhì)控樣本,來驗(yàn)證方法的精密度、準(zhǔn)確度和回收率,結(jié)果列于表1。
本研究建立了MIM-ESI MS快速定量分析尿液樣本中沙丁胺醇的方法。通過分子印跡膜對(duì)目標(biāo)分子SAL的特異性富集作用,MIM-ESI MS法不僅可實(shí)現(xiàn)快速檢測,且其定量檢出限較傳統(tǒng)質(zhì)譜方法更低、靈敏度更高、線性范圍更寬,可實(shí)現(xiàn)復(fù)雜樣本中痕量物質(zhì)的分析。
圖7 MIM-ESI MS定量分析尿液中SAL(10 ng/L)的標(biāo)準(zhǔn)曲線(a),一級(jí)(b)和二級(jí)(c)質(zhì)譜圖,以及陰性對(duì)照樣本的二級(jí)質(zhì)譜圖(d)Fig.7 Calibration curve (a), MS spectrum (b) and MS/MS spectrum (c) of SAL, MS/MS spectrum of SAL negative samples (d) by MIM-ESI MS
QC樣品濃度ConcentrationofQCsample/(μg/L)精密度Precision/(RSD/%)準(zhǔn)確度Accuracy/(RE/%)日內(nèi)Intra?day日間Inter?day日內(nèi)Intra?day日間Inter?day回收率Recovery/%0 14 37 1-6 2-11 288 9±2 4102 35 93 54 8104 3±1 110002 96 42 93 792 9±4 3
參考文獻(xiàn):
[2] WU Y, BI Y, BINGGA G, et al. Metabolomic analysis of swine urine treated with β2-agonists by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry[J]. Journal of Chromatography A, 2015, (1 400): 74-81.
[3] CALONI F, MONTANA M, PASQUALUCCI C, et al. Detection of beta 2-agonists in milk replacer[J]. Veterinary Research Communications, 1995, 19(4): 285-293.
[4] SHEU S Y, LEI Y C, TAI Y T, et al. Screening of salbutamol residues in swine meat and animal feed by an enzyme immunoassay in Taiwan[J]. Analytica Chimica Acta, 2009, 654(2): 148-153.
[5] LI T, CAO J, LI Z, et al. Broad screening and identification of β-agonists in feed and animal body fluid and tissues using ultra-high performance liquid chromatography-quadrupole-orbitrap high resolution mass spectrometry combined with spectra library search[J]. Food Chemistry, 2016, (192): 188.
[6] CENTNER T J, ALVEY J C, STELZLENI A M. Beta agonists in livestock feed: status, health concerns, and international trade[J]. Journal of Animal Science, 2014, 92(9): 4 234-4 240.
[7] PERéZ-LLAMAS F, SASTRE J, ZAMORA S. Influence of dietary protein level on growth: effect of clenbuterol[J]. Comparative Biochemistry & Physiology Part A Physiology, 1991, 99(4): 671-675.
[8] WANG W, SU X, OUYANG H, et al. A novel immuno chromatographic assay based on a time-resolved chemiluminescence strategy for the multiplexed detection of ractopamine and clenbuterol[J]. Analytica Chimica Acta, 2016, 917: 79-84.
[9] SUN Y. Rapid and sensitive assay for trantinterol, a novel β-adrenoceptor agonist, in human plasma using liquid chromatography-tandem mass spectrometry[J]. Journal of Pharmaceutical & Biomedical Analysis, 2009, 49(4): 1 056-1 059.
[10] LI X, ZHOU M, TURSON M, et al. Preparation of clenbuterol imprinted monolithic polymer with hydrophilic outer layers by reversible addition-fragmentation chain transfer radical polymerization and its application in the clenbuterol determination from human serum by on-line solid-phase extraction/HPLC analysis[J]. Analyst, 2013, 138(10): 3 066-3 074.
[11] CARTER W J, LYNCH M E. Comparison of the effects of salbutamol and clenbuterol on skeletal muscle mass and carcass composition in senescent rats[J]. Metabolism-clinical& Experimental, 1994, 43(9): 1 119-1 125.
[12] CHAN S H, LEE W, ASMAWI M Z, et al. Chiral liquid chromatography-mass spectrometry(LC-MS/MS) method development for the detection of salbutamol in urine samples[J]. Journal of Chromatography B Analytical Technologies in the Biomedical & Life Sciences, 2016, (1 025): 83-91.
[13] BING L, WANG L, BEI T, et al. Development and comparison of immuno chromatographic strips with three nanomaterial labels: colloidal gold, nanogold-polyaniline-nanogold microspheres (GPGs) and colloidal carbon for visual detection of salbutamol[J]. Biosensors & Bioelectronics, 2016, (85): 337-342.
[14] TANG C, ZHANG K, LIANG X, et al. Application of a NMR-based untargeted quantitative metabonomic approach to screen for illicit salbutamol administration in cattle[J]. Analytical and Bioanalytical Chemistry, 2016, 408(17): 4 777-4 783.
[15] BUI Q A, VU T H, NGO V K, et al. Development of an ELISA to detect clenbuterol in swine products using a new approach for hapten design[J]. Analytical and Bioanalytical Chemistry, 2016, 408(22): 6 045-6 052.
[16] LIU H, GAN N, CHEN Y, et al. Novel method for the rapid and specific extraction of multiple β2-agonist residues in food by tailor-made monolith-MIPs extraction disks and detection by gas chromatography with mass spectrometry[J]. Journal of Separation Science, 2016, 39(18): 3 578-3 585.
[18] CODY R B, LARAMéE J A, DURST H D. Versatile new ion source for the analysis of materials in open air under ambient conditions[J]. Analytical Chemistry, 2005, 77(8): 2 297-2 302.
[19] WANG H, LIU J, COOKS R G, et al. Paper spray for direct analysis of complex mixtures using mass spectrometry[J]. Angewandte Chemie, 2010, 49(5): 877-880.
[20] ZHANG M, LIN F, XU J, et al. Membrane electrospray ionization for direct ultrasensitive biomarker quantitation in biofluids using mass spectrometry[J]. Analytical Chemistry, 2015, 87(6): 3 123-3 128.
[21] LI T Y, FAN L S, WANG Y F, et al. Molecularly imprinted membrane electrospray ionization for direct sample analyses[J]. Analytical Chemistry, 2017, (89): 1 453-1 458.
[22] ZHENG Y, WANG Q, WANG X, et al. Development and application of zirconia coated paper substrate for high sensitivity analysis of therapeutic drugs in dried blood spots[J]. Analytical Chemistry, 2016, 88(14): 7 005-7 013.
[23] ZHAN X, ZHAO Z, YUAN X, et al. Microwave-induced plasma desorption/ionization source for ambient mass spectrometry[J]. Analytical Chemistry, 2013, 85(9): 4 512-4 519.
[24] VENTER A, NEFLIU M, COOKS R G. Ambient desorption ionization mass spectrometry[J]. Trac Trends in Analytical Chemistry, 2008, 27(4): 284-290.
[25] FERREIRA C R, YANNELL K E, JARMUSCH A K, et al. Ambient ionization mass spectrometry for point-of-care diagnostics and other clinical measurements[J]. Clinical Chemistry, 2015, 62(1): 99-110.
[26] MANICKE N E, ABU-RABIE P, SPOONER N, et al. Quantitative analysis of therapeutic drugs in dried blood spot samples by paper spray mass spectrometry: an avenue to therapeutic drug monitoring[J]. Journal of the American Society for Mass Spectrometry, 2011, 22(9): 1 501-1 507.
[27] ZHANG Z, XU W, MANICKE N E, et al. Silica coated paper substrate for paper-spray analysis of therapeutic drugs in dried blood spots[J]. Analytical Chemistry, 2012, 84(2): 931-938.
[28] KULSING C, KNOB R, MACKA M, et al. Molecular imprinted polymeric porous layers in open tubular capillaries for chiral separations[J]. Journal of Chromatography A, 2014, (1 354): 85-91.
[29] ALIZADEH T, SHAMKHALI A N. Chiral resolution of salbutamol in plasma sample by a new chiral ligand-exchange chromatography method after its extraction with nano-sized imprinted polymer[J]. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences, 2016, (1 009/1 010): 96-106.
[31] PAULING L. A theory of the structure and process of formation of antibodies[J]. Journal of the American Chemical Society, 2002, 62(10): 2 643-2 657.
[32] DICKEY F H. The preparation of specific adsorbents[J]. Proceedings of the National Academy of Sciences of the United States of America, 1949, 35(5): 227-229.
[33] WULFF G, SARHAN A. Macromolecular collo-quium[J]. Angewandte Chemie International Edition, 1972, 11(4): 334-342.
[34] VLATAKIS G, ANDERSSON L I, MüLLER R, et al. Drug assay using antibody mimics made by molecular imprinting[J]. Nature International Weekly Journal of Science, 1993, 361(6 413): 645-647.
[35] WANG P, ZHU H, ZHANG W, et al. Synthesis of ractopamine molecularly imprinted membrane and its application in the rapid determination of three β-agonists in porcine urine samples[J]. Journal of Separation Science, 2013, 36(8): 1 455-1 462.
[36] 李丹,孫雷,畢言鋒,等. 超高效液相色譜-串聯(lián)質(zhì)譜法檢測豬尿中20種β-受體激動(dòng)劑殘留[J]. 中國獸藥雜志,2013,47(12):50-56.
LI Dan, SUN Lei, BI Yanfeng, et al. Determination of β-agonists in pig urine by UPLC-MS/MS[J]. Chinese Journal of Veterinary Drug, 2013, 47(12): 50-56(in Chinese).
[37] WANG P, WANG R, LI Y, et al. A novel and sensitive screening method for β-agonists in porcine urine by using atmospheric solid analysis probe source coupled tandem mass spectrometry[J]. Analytical Methods, 2012, 4(12): 4 269-4 277.