睢夢華,鄭琪,吳昊,丁建平,劉勇,李文雍,儲(chǔ)明星,張子軍,凌英會(huì)
?
山羊胎兒肌肉干細(xì)胞的分離培養(yǎng)與成肌誘導(dǎo)分化
睢夢華1,鄭琪1,吳昊1,丁建平1,劉勇3,李文雍3,儲(chǔ)明星2,張子軍1,凌英會(huì)1
(1安徽農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院/安徽地方畜禽遺傳資源保護(hù)與生物育種省級實(shí)驗(yàn)室,合肥 230036;2中國農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所, 北京 100193;3阜陽師范學(xué)院胚胎發(fā)育與生殖調(diào)節(jié)安徽省重點(diǎn)實(shí)驗(yàn)室,安徽阜陽 236037)
【目的】通過體外建立安淮山羊胎兒肌肉干細(xì)胞分離培養(yǎng)及成肌誘導(dǎo)分化的方法,為進(jìn)一步研究調(diào)控山羊肌肉干細(xì)胞增殖與分化的分子機(jī)制提供實(shí)驗(yàn)材料?!痉椒ā勘驹囼?yàn)選取山羊胎兒背最長肌肌肉組織,用眼科剪剪成肉糜后,用0.1%的Ⅰ型膠原酶消化40 min,然后利用0.25%的胰酶消化15 min。分離得到的細(xì)胞用生長培養(yǎng)基(20%FBS+80%DMEM/F12+青鏈霉素)培養(yǎng)于37℃、5% CO2培養(yǎng)箱內(nèi)。培養(yǎng)2h后采用差速貼壁技術(shù)對細(xì)胞進(jìn)行純化,又2h后,重復(fù)純化一次。待細(xì)胞生長至70%左右密度時(shí)可進(jìn)行傳代培養(yǎng)。每次傳代培養(yǎng)均采用差速貼壁30min的方法進(jìn)一步純化肌肉干細(xì)胞,共純化至第6代。利用免疫熒光技術(shù)檢測第6代細(xì)胞中肌肉干細(xì)胞標(biāo)記基因7、1的蛋白表達(dá)情況,從而對分離得到的細(xì)胞進(jìn)行鑒定。當(dāng)肌肉干細(xì)胞生長至70%左右密度時(shí),將生長培養(yǎng)基更換為分化培養(yǎng)基(2%FBS+98%DMEM/F12+青鏈霉素),誘導(dǎo)細(xì)胞向成肌方向分化并觀察細(xì)胞的形態(tài)學(xué)變化。細(xì)胞誘導(dǎo)分化1d后,采用免疫熒光技術(shù)檢測肌肉干細(xì)胞的分化標(biāo)記基因的蛋白表達(dá)情況。另外,分別提取誘導(dǎo)0、1、3、5、7d后的細(xì)胞的總RNA,通過反轉(zhuǎn)錄試劑盒反轉(zhuǎn)成cDNA后,利用qPCR測定1和的相對表達(dá)量?!窘Y(jié)果】 分離得到的細(xì)胞呈貼壁生長,其形態(tài)趨于穩(wěn)定后主要呈長梭形或紡錘形。免疫熒光技術(shù)檢測的第6代細(xì)胞中Pax7和MyoD1蛋白均為陽性表達(dá)。采用分化培養(yǎng)基誘導(dǎo)細(xì)胞分化后,在顯微鏡下可觀察到隨著誘導(dǎo)天數(shù)的增加,細(xì)胞開始分化、相互融合成肌管且具有一定的方向性。免疫熒光檢測結(jié)果表明Myog蛋白呈明顯的陽性表達(dá)。另外,qPCR結(jié)果顯示,標(biāo)志基因和均有表達(dá),且的相對表達(dá)量在分化的第1天相比于0天顯著升高并維持到第3天,第5、7天開始顯著下降但仍顯著高于增殖期。在分化不同天數(shù)的細(xì)胞中的相對表達(dá)量具有類似的趨向?!窘Y(jié)論】分離得到了純度較高的安淮山羊胎兒肌肉干細(xì)胞,且誘導(dǎo)后展現(xiàn)出較好的成肌潛力。研究結(jié)果可為進(jìn)一步開展肌肉干細(xì)胞成肌分化的分子機(jī)制研究提供材料來源。
山羊胎兒;肌肉干細(xì)胞;分離培養(yǎng);鑒定;成肌分化
【研究意義】肌肉干細(xì)胞(muscle stem cells)即衛(wèi)星細(xì)胞(satellite cells, SCs)是脊椎動(dòng)物實(shí)體組織再生中最有前景的研究對象之一。動(dòng)物骨骼肌生長和再生能力取決于肌肉干細(xì)胞增殖與分化能力[1-2]?!厩叭搜芯窟M(jìn)展】肌肉干細(xì)胞位于成熟纖維的基底層之下[3-4],是骨骼肌生長、肥大和再生的重要因素,在肌再生中起著關(guān)鍵作用[5-6]。肌肉干細(xì)胞起初由MAURO于1961年發(fā)現(xiàn),50多年來一直是骨骼肌細(xì)胞生物學(xué)的研究熱點(diǎn)[7]?!颈狙芯壳腥朦c(diǎn)】山羊作為全球性的家畜動(dòng)物,有著重要的經(jīng)濟(jì)效益。目前科研人員已經(jīng)從大鼠、人、豬和牛等不同物種中分離得到了肌肉干細(xì)胞,但在山羊中的研究仍較少[8-11]。研究數(shù)據(jù)表明,肌肉干細(xì)胞的含量和功能在動(dòng)物胎兒發(fā)育至成年過程中呈逐漸下降的趨勢[12],因此,本研究選取4月齡的山羊胎兒背最長肌作為試驗(yàn)材料,以確保能夠獲得足夠數(shù)量且活力較好的肌肉干細(xì)胞?!緮M解決的關(guān)鍵問題】本試驗(yàn)通過體外建立山羊胎兒肌肉干細(xì)胞分離培養(yǎng)、鑒定及成肌誘導(dǎo)分化體系,在體外細(xì)胞水平模擬山羊胎兒肌肉生長發(fā)育過程,并為深入認(rèn)識調(diào)控肌肉發(fā)育的分子機(jī)制提供試驗(yàn)材料。
1.1.1 試驗(yàn)動(dòng)物 所用的3只山羊胎兒來自國家肉羊產(chǎn)業(yè)技術(shù)體系合肥綜合試驗(yàn)站:合肥博大牧業(yè)科技開發(fā)有限公司羊場。動(dòng)物配種與飼養(yǎng)于2016年9月至2017年1月進(jìn)行。采用4月齡的山羊胎兒背最長肌肌肉組織進(jìn)行肌肉干細(xì)胞的分離試驗(yàn)。試驗(yàn)于2017年1—5月在安徽地方畜禽遺傳資源保護(hù)與生物育種省級實(shí)驗(yàn)室完成。
1.1.2 主要試劑 DMEM/F12培養(yǎng)基(美國Hyclone公司);胎牛血清和0.25% Try-EDTA (美國Gibco公司);膠原酶Ⅰ和DAPI(美國Sigma公司);青鏈霉素混合液、4%多聚甲醛及BSA(中國Biosharp公司);TristonX-100和明膠(國藥集團(tuán)化學(xué)試劑公司);anti-pax7、anti-MyoD(美國Santa cruz)。anti-MyoG(美國Abcam公司);總RNA提取試劑盒(美國Omega公司)、反轉(zhuǎn)錄及PCR試劑(南京Vazyme公司)。
1.2.1 山羊胎兒肌肉干細(xì)胞的分離 取背最長肌肌肉組織,在無菌條件下將肌肉置于培養(yǎng)皿中,用含青鏈霉素的PBS洗4遍,60s/次。盡量去除筋膜、脂肪等組織后,用眼科剪剪成肉糜,靜置10min,去除表面漂浮組織。用0.1% Ⅰ型膠原酶,培養(yǎng)箱內(nèi)放置40min,10min搖一次。離心后加入0.25% Try,37℃消化15min,再加入3倍體積的生長培養(yǎng)基(20% FBS+80%DMEM/F12)終止。懸液分別過200目、400目篩網(wǎng)后離心,沉淀用含青鏈霉素混合液的生長培養(yǎng)基重懸,接種于培養(yǎng)皿內(nèi),37℃、5%CO2培養(yǎng)箱內(nèi)培養(yǎng)。2h后將上清加到新的皿中,2h后再重復(fù)一次。
1.2.2 山羊胎兒肌肉干細(xì)胞的傳代培養(yǎng)及純化 待細(xì)胞生長至70%左右密度時(shí)進(jìn)行傳代。PBS洗1遍,0.25%Try消化4min后終止、離心,按比例傳到明膠鋪過的培養(yǎng)皿中,半小時(shí)后將懸液移至新的處理過的皿中培養(yǎng)。每次傳代均采用差速貼壁30min的方法純化肌肉干細(xì)胞,共傳至第6代。
1.2.3 山羊胎兒肌肉干細(xì)胞的免疫熒光鑒定 利用細(xì)胞免疫熒光技術(shù)對肌肉干細(xì)胞標(biāo)記蛋白Pax7和MyoD1進(jìn)行鑒定。具體操作步驟為:6代細(xì)胞培養(yǎng)1d后,4%多聚甲醛固定15min,DPBS洗4遍;0.5% Tritonx-100通透15min,DPBS洗4次,1%BSA室溫封閉1h;加入一抗(1﹕200),4℃條件下孵育過夜,DPBS洗6次;加入二抗(1﹕200),37℃1h后用DPBS洗6次;DAPI染核15min,DPBS洗6遍,利用熒光顯微鏡拍照。
1.2.4 山羊胎兒肌肉干細(xì)胞的誘導(dǎo)分化 細(xì)胞生長至70%左右密度時(shí),棄培養(yǎng)基,換為分化培養(yǎng)基(2%FBS+98%DMEM/F12+青鏈霉素)。誘導(dǎo)0、l、3、5、7d后分別提RNA,并利用倒置顯微鏡觀察細(xì)胞的形態(tài)學(xué)變化。另外,選取誘導(dǎo)分化1d后的細(xì)胞,利用免疫熒光染色技術(shù)檢測Myog蛋白的表達(dá)情況,具體步驟同1.2.3。
1.2.5 qPCR檢測和的表達(dá)量 利用Omega 總RNA提取試劑盒提取RNA后反轉(zhuǎn)為cDNA,作為內(nèi)參基因進(jìn)行qPCR,引物序列見表1。qPCR標(biāo)準(zhǔn)程序?yàn)椋?5℃預(yù)變性10min;95℃變性15s,60℃退火1min,循環(huán)40次,然后繪制曲線。以0d為對照,計(jì)算各天數(shù)的相對表達(dá)量。使用2-△△Ct的方法計(jì)算目的基因在不同cDNA模板中的相對表達(dá)量,數(shù)據(jù)以“平均值±標(biāo)準(zhǔn)誤”來表示。使用SPSS軟件的單因素方差分析進(jìn)行差異顯著性分析,不同字母的數(shù)值差異顯著(<0.05)。
表1 熒光定量檢測引物設(shè)計(jì)
分離得到的原始細(xì)胞體積小,呈貼壁生長(圖1-A)。隨著細(xì)胞的傳代和純化,細(xì)胞體積開始變大且形態(tài)趨于穩(wěn)定,主要呈長梭形或者紡錘形、折光性強(qiáng),生長速度逐漸變慢。連續(xù)培養(yǎng)6d左右后,顯微鏡下可觀察到細(xì)胞開始連成一片且按某一方向平行排列,成典型的肌肉干細(xì)胞形態(tài)(圖1-B)。
免疫熒光染色技術(shù)檢測結(jié)果顯示,分離得到的肌肉干細(xì)胞中Pax7和MyoD1蛋白均有綠色熒光出現(xiàn)(圖2-A-2,圖2-B-2),與經(jīng)DAPI染色后呈藍(lán)色的細(xì)胞核(圖2-A-1,圖2-B-1)重合并散布在整個(gè)細(xì)胞中,但在核中的表達(dá)更為強(qiáng)烈(圖2-A-3,圖2-B-3)。Pax7在細(xì)胞內(nèi)免疫熒光強(qiáng)度較強(qiáng),而MyoD1免疫熒光強(qiáng)度較弱,說明在剛分離出的細(xì)胞中Pax7表達(dá)量可能高于MyoD1。上述結(jié)果確認(rèn)本研究所用的膠原酶、胰酶兩步消化法聯(lián)合差速貼壁成功獲得了山羊胎兒肌肉干細(xì)胞,且純度達(dá)到90%以上。
通過減少血清含量來誘導(dǎo)肌肉干細(xì)胞的體外成肌分化。在細(xì)胞約70%密度時(shí)換為分化培養(yǎng)基,利用倒置顯微鏡觀察誘導(dǎo)0、1、3、5、7d細(xì)胞的形態(tài)學(xué)變化。結(jié)果顯示,誘導(dǎo)天數(shù)增加的同時(shí),細(xì)胞開始分化、相互融合成肌管且具有方向性(圖3)。在對肌肉干細(xì)胞誘導(dǎo)1 d后,采取免疫熒光技術(shù)檢測Myog的表達(dá)情況。結(jié)果發(fā)現(xiàn),Myog呈明顯的陽性表達(dá)(圖4)。以上結(jié)果表明本研究得到的肌肉干細(xì)胞有較好的成肌分化潛能。
誘導(dǎo)分化0、1、3、5、7天的qPCR結(jié)果顯示,標(biāo)志基因和均有表達(dá),且的相對表達(dá)量(圖5-A)在分化的第1天相比于0天顯著升高并維持到第3天,第5、7天相比于第3天開始顯著下降但仍顯著高于增殖期;在分化不同天數(shù)中的相對表達(dá)量也具有類似的趨向(圖5-B)。
A:分離培養(yǎng)1天后的肌肉干細(xì)胞;B:分離培養(yǎng)6天的肌肉干細(xì)胞
A:山羊胎兒肌肉干細(xì)胞的Pax7 免疫熒光;B:山羊胎兒肌肉干細(xì)胞的MyoD1免疫熒光。1:DAPI染核;2:目標(biāo)蛋白熒光;3:1和2重合;4:光學(xué)顯微鏡圖像
自肌肉干細(xì)胞發(fā)現(xiàn)以來,海內(nèi)外學(xué)者紛紛對其進(jìn)行了研究,目前肌肉干細(xì)胞對骨骼肌再生和肥大的貢獻(xiàn)已經(jīng)被公認(rèn)。肌肉干細(xì)胞具有成肌分化的潛能[13-15],其不僅能夠維持自身群體數(shù)量,還提供了許多肌源細(xì)胞,它們通過增殖分化產(chǎn)生新的肌纖維或修復(fù)現(xiàn)有肌纖維的受損部分[16-18]。但在成年的正常肌肉中,肌肉干細(xì)胞的數(shù)目很少且存在于肌膜與基底膜中間。因此,成功分離培養(yǎng)獲取數(shù)量較多且活力較好的肌肉干細(xì)胞是肌肉再生與疾病等相關(guān)研究的前提。
A-E分別為誘導(dǎo)0、1、3、5、7d的山羊胎兒肌肉干細(xì)胞
A:DAPI染核;B:目的蛋白熒光;C:A和B重合;D:光學(xué)顯微鏡圖像
A:MyoD1 mRNA的相對表達(dá)量;B:Myog mRNA的相對表達(dá)量
研究表明,肌肉干細(xì)胞的數(shù)量和功能隨年齡的增長而下降[12,19]。動(dòng)物體胚胎及其幼齡時(shí)肌肉干細(xì)胞含量較高,剛出生的比例約為總核的32%。年齡的增長使肌肉干細(xì)胞所占比例不斷下降,在成熟期穩(wěn)定在1%—4%左右。此外,年齡的增長還影響肌肉干細(xì)胞的功能,比如自我更新、活化及增殖能力[12]。要分離出高質(zhì)量的哺乳動(dòng)物肌肉干細(xì)胞,分離的手段及實(shí)驗(yàn)動(dòng)物的年齡均是該試驗(yàn)的關(guān)鍵。所以本試驗(yàn)選取4月齡的山羊胎兒背最長肌作為試驗(yàn)材料,以確保分離肌肉干細(xì)胞的數(shù)量及其分離后具有較強(qiáng)的活力。分離肌肉干細(xì)胞最常用的有鏈酶蛋白酶消化法[20]、膠原酶和胰酶聯(lián)用的兩步酶消化法[21]、組織塊法[22]和單根肌纖維法[23]。因?yàn)榧∪飧杉?xì)胞處于基膜與肌纖維之間,要想將其釋放,必須首先將基膜分解[24],普通的單種酶消化法和組織塊法不能使其完全的釋放出來。而采用膠原酶和胰蛋白酶聯(lián)用的兩步酶消化法則可以充分的分離出細(xì)胞并具有較好的活力,能夠穩(wěn)定傳代。但采用此方法需要把握好消化時(shí)間,過長會(huì)損壞細(xì)胞,過短則不能使細(xì)胞充分分離出來。單根肌纖維法是一種先從肌束中分離出單根的肌纖維,從而獲取附著于肌纖維膜上的肌肉干細(xì)胞的方法。此方法獲取的肌肉干細(xì)胞接近于是一種活體研究的辦法,但該方法同時(shí)存在分離肌肉干細(xì)胞所需的時(shí)間較長、得到的細(xì)胞數(shù)少等缺點(diǎn),而使其應(yīng)用受到限制。由于肌肉干細(xì)胞貼壁慢,可以憑據(jù)差速貼壁技術(shù)純化。該方法經(jīng)濟(jì)易行且能達(dá)到較好的純化效果,而缺點(diǎn)是需要對細(xì)胞進(jìn)行多次的傳代,耗時(shí)較長。純化還可以選用流式儀分選法、Percoll離心法等[25-26]。這些方法能夠提供更純的細(xì)胞,但存在設(shè)備昂貴、過程繁瑣等問題。此外,因考慮到肌肉干細(xì)胞較難貼壁,本試驗(yàn)還采用了明膠促進(jìn)其貼壁[27],結(jié)果比較理想。
目前,李俊濤等[28]利用鏈酶蛋白酶法結(jié)合percoll梯度離心法由3日齡的南江黃羊的背最長肌中分離培養(yǎng)了較高純度的肌肉干細(xì)胞。YAMANOUCHI 等[23]采用單根肌纖維法從1歲成年山羊的肋間肌中獲取了肌肉干細(xì)胞。吳海青等[29]采用兩步酶消化法從阿爾巴斯絨山羊90日齡胎羊的腿肌中分離肌肉干細(xì)胞,并在細(xì)胞接種12 h后進(jìn)行一次差速貼壁對細(xì)胞進(jìn)行了純化。與李俊濤及YAMANOUCHI等人的研究相比,本研究在試驗(yàn)動(dòng)物的選擇上選擇了年齡較小的4月齡安淮山羊胎羊,分離方法則選擇了膠原酶與胰酶聯(lián)用的兩步酶消化法,以確保能分離得到大量活力較強(qiáng)的肌肉干細(xì)胞。本研究選取的試驗(yàn)動(dòng)物的年齡以及分離方法雖然與吳海青等人的研究較為相似,但本研究采用多次差速貼壁的方法,純化細(xì)胞直至第六代,以盡可能的排除雜細(xì)胞,確保獲得較高純度的肌肉干細(xì)胞。
肌肉干細(xì)胞成肌過程中有多種標(biāo)志基因[30-31]。7在妊娠晚期和出生后肌肉生長中起主導(dǎo)作用[32],并且在靜止和激活的肌肉干細(xì)胞中表達(dá),被認(rèn)為是一種通用標(biāo)記[33-34]。1是肌肉干細(xì)胞激活和分化過程中的重要標(biāo)志[30,35]。經(jīng)免疫熒光檢測Pax7和MyoD1均呈陽性,證明本試驗(yàn)獲得了較高純度的肌肉干細(xì)胞。建立肌肉干細(xì)胞誘導(dǎo)分化體系可以體外模擬肌肉生長發(fā)育過程。研究發(fā)現(xiàn)在低血清培養(yǎng)條件(1%—5%胎牛血清)下,肌肉干細(xì)胞開始分化[36-37]。所以本研究采用2%血清的培養(yǎng)基誘導(dǎo)細(xì)胞,通過顯微鏡觀察細(xì)胞的形態(tài)變化、免疫熒光檢測肌肉干細(xì)胞分化標(biāo)志基因[31]以及qPCR檢測和表達(dá)情況,從而對誘導(dǎo)結(jié)果進(jìn)行鑒定。試驗(yàn)誘導(dǎo)后的肌肉干細(xì)胞能夠形成肌管并表達(dá)和,說明減少血清是肌肉干細(xì)胞誘導(dǎo)分化的有效方法之一。
肌肉干細(xì)胞的自我更新和分化過程由一系列基因所組成的調(diào)控網(wǎng)絡(luò)所控制,從而能準(zhǔn)確的發(fā)揮其功能。因此,體外培養(yǎng)肌肉干細(xì)胞能夠?yàn)殛U明肌肉干細(xì)胞增殖分化的分子機(jī)制提供實(shí)驗(yàn)材料,進(jìn)而應(yīng)用于肌組織工程,為臨床治療肌肉退行性疾病奠定基礎(chǔ)[38 ]。
本研究成功分離和鑒定了山羊胎兒肌肉干細(xì)胞,且獲得的肌肉干細(xì)胞在體外誘導(dǎo)條件下具有較好的成肌分化能力,為后續(xù)開展山羊胎兒肌肉干細(xì)胞功能和分子機(jī)制的研究提供試驗(yàn)材料。
[1] STANTZOU A, SCHIRWIS E, SWIST S, ALONSO M S, POLYDOROU I, ZARROUKI F, MOUISEL E, BELEY C, JULIEN A, LE G F, GARCIA L, COLNOT C, BIRCHMEIER C, BRAUN T, SCHUELKE M, RELAIX F, AMTHOR H. BMP signaling regulates satellite cell dependent postnatalmuscle growth., 2017, 114(15): 2737.
[2] KOKABU S, NAKATOMI C, MATSUBARA T, ONO Y, ADSION W N, LOWERY J W, URATA M, HUDNALL A M, HITOMI S, NAKATOMI M, SATO T, OSAWA K, YODA T, ROSEN V, JIMI E. The transcriptional co-repressor TLE3 regulates myogenic differentiation by repressing the activity of the MyoD transcription factor., 2017, 292: jbc.M116.774570.
[3] RUDNICKI M A, LE G F, MCKINNELL I, KUANG S. The molecular regulation of muscle stem cell function., 2008, 73:323-331.
[4] ZHANG W W, SUN X F, TONG H L, WANG Y H, LI S F, YAN Y Q, LI G P. Effect of differentiation on microRNA expression in bovine skeletal muscle satellite cells by deep sequencing., 2016, 21(1):8.
[5] SUN C, DE M V, MOHAMED A, ORTUSTE QUIROGA H P, ARCIA M A, TREMBLAY A M, VON K A, COLLIE D E, VARGESSON N, MATALLANAS D, WACKERHAGE H, ZAMMIT P S. Common and distinctive functions of the hippo effectors taz and yap in skeletal muscle stem cell function., 2017, 35(8):1958.
[6] DAI Y, ZHANG W R, WANG Y M, LIU X F, LI X, DING X B, GUO H. MicroRNA-128 regulates the proliferation and differentiation of bovine skeletal muscle satellite cells by repressing Sp1., 2016, 414(1-2):37.
[7] MENDIASC L. Fibroblasts take the center stage in human skeletal muscle regeneration., 2017, 595(15):5005.
[8] ZHANG W R, ZHANG H N, WANG Y M, DAI Y, LIU X F, LI X, DING X B, GUO H. MiR-143 regulates proliferation and differentiation of bovine skeletal muscle satellite cells by targeting IGFBP5., 2017, 53(3): 265.
[9] GOKULAKRISHNAN G, CHANG X, FLEISCHNANN R, FIOROTTO M L. Precocious glucocorticoid exposure reduces skeletal muscle satellite cells in the fetal rat., 2017, 232(3):561-572.
[10] TIM S, NWDERVEEN J P, MCKAY B R, SOPHIE J, LEX B V, GIANNI P. Satellite cells in human skeletal muscle plasticity., 2015, 6: 283.
[11] LI B J, LI P H, HUANG R H, SUN W X, WANG H, LI Q F, CHEN J, WU W J, LIU H L. Isolation, culture and identification of porcine skeletal muscle satellite cells., 2015, 28(8):1171-1177.
[12] SOUSA V P, García-Prat L, SERRANO A L, PERDIGUERO E, MUNOZ-CANOVES P. Muscle stem cell aging: regulation and rejuvenation., 2015, 26:287-296.
[13] WANG Y M, DING X B, DAI Y, LIU X F, GUO H, ZHANG Y. Identification and bioinformatics analysis of miRNAs involved in bovine skeletal muscle satellite cell myogenic differentiation., 2015, 404(1-2):113.
[14] BRAGA M, SIMMONS Z, NORRIS K C, FERRINI M G, ARTAZA J N. Vitamin D induces myogenic differentiation in skeletal muscle derived stem cells., 2017, 6(3):139-150.
[15] PINI V, MORGAN J E, MUNTONI F, O'NEILL H C. Genome editing and muscle stem cells as a therapeutic tool for muscular dystrophies., 2017: 1-12.
[16] PARTRIDGE T A, GROUNDS M, SLOSPER J C. Evidence of fusion between host and donor myoblasts in skeletal muscle grafts., 1978, 273(5660):306-308.
[17] DUMONT N A, BENTZINGER C F, SINCENNES M, RUDNICKI M A. Satellite cells and skeletal muscle regeneration., 2015, 5(3):1027.
[18] PERSSON P B. Skeletal muscle satellite cells as myogenic progenitors for muscle homeostasis, growth, regeneration and repair., 2015, 213(3):537-538.
[19] SOUSA V P, GARCIA P L, SERRANO A L, PERDIGUERO E, MUNOZ C P. Muscle stem cell aging: regulation and rejuvenation., 2015, 26:287-296.
[20] MONTOYA-FLORES D, MORA O, TAMARIZ E, GONZALEZ- DAVALOS L, GONZALEZ-GALLARDO A, ANTARAMIAN A, SHIMADA A, VARELA-ECHAVARRIA A, ROMANO-MUNOZ J L. Ghrelin stimulates myogenic differentiation in a mouse muscle satellite cellline and in primary cultures of bovine myoblasts., 2012, 96(4):725-738.
[21] 李方華, 侯玲玲, 馬月輝, 龐全海, 關(guān)偉軍. 北京油雞骨骼肌衛(wèi)星細(xì)胞的分離、培養(yǎng)、鑒定及成肌誘導(dǎo)分化的研究. 中國農(nóng)業(yè)科學(xué), 2010, 43(22):4725-4731.
LI F H, HOU L L, MA Y H, PANG Q H, GUAN W J. Study on isolation, culture, identification and differentiation of skeletal muscle satellite cells in Beijing oil chicken., 2010, 43 (22): 4725-4731. (in Chinese)
[22] SHEFER G, YABLONKAREUVENI Z. Isolation and culture of skeletal muscle myofibers as a means to analyze satellite cells., 2005, 946(290):281-304.
[23] YAMANOUCHI K, HOSOYAMA T, MURAKAMI Y, NAKANO S, NISHIHARA M. Satellite cell differentiation in goat skeletal muscle single fiber culture., 2009, 55(3):252-255.
[24] SEALE P, RUDNICKI M A. A new look at the origin, function, and "stem-cell" status of muscle satellite cells., 2000, 218(2):115-124.
[25] 何波, 鄭嶸, 熊遠(yuǎn)著,胡春艷. 新生豬骨骼肌衛(wèi)星細(xì)胞的培養(yǎng)鑒定及生物學(xué)特性. 畜牧獸醫(yī)學(xué)報(bào), 2006, 37(6):555-559.
HE B, ZHENG R, XIONG Y Z, HU C Y. Culture and identification of skeletal muscle satellite cells of newborn pigs and their biological characteristics., 2006, 37 (6): 555-559(in Chinese)
[26] MAESNER C C, ALMADA A E, WAGERS A J. Established cell surface markers efficiently isolate highly overlapping populations of skeletal muscle satellite cells by fluorescence-activated cell sorting.2016, 6(1):35.
[27] 陳巖, 王琨, 朱大海. 雞骨骼肌衛(wèi)星細(xì)胞的分離培養(yǎng)、鑒定及生物學(xué)特性研究. 遺傳, 2006, 28(3):257-260.
CHEN Y, WANG K, ZHU D H. Isolation, culture and identification of chicken skeletal muscle satellite cells and their biological characteristics., 2006, 28(3):257-260. (in Chinese)
[28] 李俊濤,趙薇,李丹丹,馮靜,巴貴,宋天增,張紅平. miR-101a靶向EZH2促進(jìn)山羊骨骼肌衛(wèi)星細(xì)胞的分化. 遺傳, 2017, 39(9): 828-836.
LI J T, ZHAO W, LI D D, FENG J, BA G, SONG T Z, ZHANG H P. EZH2 targets miR-101a in goat skeletal muscle satellite cells differentiation.2017, 39(9): 828-836. (in Chinese)
[29] 吳海青. mTOR信號通路對山羊骨骼肌衛(wèi)星細(xì)胞增殖及分化的影響[D]. 呼和浩特: 內(nèi)蒙古大學(xué),2015.
WU H Q. The effects of mammalian target of rapamycin signaling pathway on proliferation and differentiation of goat skeletal muscle satellite cells [D]. Huhhot: Mongolian university, 2015. (in Chinese)
[30] YIN H, PRICE F, RUDNICKI M A. Satellite cells and the muscle stem cell niche.2013, 93(1):23.
[31] XU X, JI S, LI W, YI B, LI H X, ZHANG H F, MA W P. LncRNA H19 promotes the differentiation of bovine skeletal muscle satellite cells by suppressing Sirt1/FoxO1.2017, 22(1):10.
[32] GRIGER J, SCHNEIDER R, LAHMANN I, SCHOWEL V, KELLER C, SPULER S, NAZARE M, BIRCHMEIER C. Loss of Ptpn11 (Shp2) drives satellite cells into quiescence.2017, 6.
[33] LAUMONIER T, BERMONT F, HOFFEYER P, KINDLER V, MENETREY J. Human myogenic reserve cells are quiescent stem cells that contribute to muscle regeneration after intramuscular transplantation in immunodeficient mice.2017, 14;7(1):3462.
[34] LILJA K C, ZHANG N, MAGLI A, GUNDUZ V, BOWMAN C J, ARPKE R W, DARABI R, KYBA M, PERLINGEIRO R, DYNLACHT B D. Pax7 remodels the chromatin landscape in skeletal muscle stem cells.2017, 12(4):e0176190.
[35] STAVROULA T, DELLAG P A, RUSSELL A P. Skeletal muscle satellite cells, mitochondria, and microRNAs: their involvement in the pathogenesis of ALS.2016, 7: 403.
[36] 劉月光, 史新娥, 沈清武,袁媛,楊秋梅,高曉娟,陳宗正,楊公社. 利用單根肌纖維法分離和培養(yǎng)豬骨骼肌衛(wèi)星細(xì)胞及其成肌誘導(dǎo)分化. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào), 2011, 19(5):856-863.
LIU Y G, SHI X E, SHEN Q W, YUAN Y, YANG Q M, GAO X J, YANG Z Z,YANG G S. Isolation and culture of porcine skeletal muscle satellite cells and their myogenic differentiation by single muscle fiber method.2011, 19(5):856-863. (in Chinese)
[37] WU H, REN Y, LI S, WANG W, YUAN J, GUO X, LIU D, CANG M . In vitro culture and induced differentiation of sheep skeletal muscle satellite cells.2012, 36(6):579-587.
[38] MOTOHASHI N, ASAKURA A. Muscle satellite cell heterogeneity and self-renewal.2014, 2(1):1.
Isolation, Culture and Myogenic Differentiation of Muscle Stem Cells in Goat Fetal
SUI MengHua1, ZHENG Qi1, WU Hao1, DING JianPing1, LIU Yong3, LI WenYong3, CHU MingXing2, ZHANG ZiJun1, LING YingHui1
(1College of Animal Science and Technology, Anhui Agricultural University / Provincial Laboratory of Genetic Resources Protection and Biological Breeding, Anhui Province, Hefei 230036;2Institute of animal science, Chinese Academy of Agricultural Sciences, Beijing 100193;3Key Laboratory of Embryonic Development and Reproductive Regulation of Fuyang Teachers College Room, Fuyang 236037, Anhui)
【Objective】To establish the method for isolation, culture, identification and myogenic differentiation of fetal muscle stem cells from Anhuai goat in vitro, and to provide experimental materials for further research on the molecular mechanism of goat muscle stem cell proliferation and differentiation. 【Method】In this study, the goat fetal longissimus muscle tissue was selected and cut into meat emulsion with ophthalmology, digested with 0.1% type I collagenase for 40 min and then digested with 0.25% trypsin for 15 min. The isolated cells were cultured in growth medium (20% FBS + 80% DMEM / F12 + Penicillin) in a 37℃, 5% CO2incubator. After culturing for 2h, the cells were purified by differential adherent technique. After 2h, the cells were purified again. The cells were subcultured when they reached 70% density. 30min adherent method was used for further purification with each subculture of muscle stem cells until the sixth passages. Muscle stem cell marker genesandwere detected with the purified cells for identification. When muscle stem cells grew to a density of about 70%, the growth medium was displaced with differentiation medium (2% FBS + 98% DMEM / F12 + Penicillin)for myoblasts induction and the morphology of the cells was monitored . One day after the induction of the cells, the marker protein of muscle stem cellswas detected. In addition, total RNAs of cells induced at 0, 1, 3, 5, and 7 days were separately extracted and their relative expression amounts ofandgenes were measured by qPCR. 【Result】 Isolated cells showed adherent growth, and their morphology tended to be long spindle after stabilization. Pax7 and MyoD1 expression were detected in the 6th passage cells by immunofluorescence. After induction by differentiated medium, the cells started to differentiate and fuse with each other into myotubes with a certain directionality as the induction prolonged. Myog protein was detected by immunofluorescence assay. Differentiation marker genesandwere detected by qPCR. Expression ofcould be detectedin the first day of induction and maintained until the 3rd day, and its level began to decline from the 5th day but still significantly higher than the proliferative phase. A similar dynamic was observed with the relative expression level ofin the differentiating cells.【Conclusion】In this experiment, the fetal muscle stem cells of Anhuai goat was obtained with high purity, which showed good myogenic potential after induction. The results provide material for further research on the mechanisms of myogenic differentiation of muscle stem cells.
goat fetus; muscle stem cells; isolation culture; identification; myogenic differentiation
(責(zé)任編輯 林鑒非)
10.3864/j.issn.0578-1752.2018.08.016
2017-07-31;
2018-02-02
安徽省自然科學(xué)基金(1708085MC61)、安徽省高校自然科學(xué)重點(diǎn)研究項(xiàng)目(KJ2017A334)
睢夢華,E-mail:330428583@qq.com。
凌英會(huì),E-mail:caaslyh@163.com