白瑪曲宗,韋恒葉,江增光,邱振
1.東華理工大學核資源與環(huán)境教育部重點實驗室大氣環(huán)境實驗室,南昌 330013 2.東華理工大學地球科學學院,南昌 330013 3.中國石油勘探開發(fā)研究院,北京 100083
二疊末期生物大滅絕事件是顯生宙最大的生物危機事件[1],化石記錄表明大約80%至96%種一級別的海洋無脊椎動物以及大約70%種一級別的陸地脊椎動物在二疊—三疊系界線附近消失[2-3]。研究認為該次生物滅絕主要與西伯利亞大火成巖省的噴發(fā)[4-7]、海洋缺氧甚至硫化[8-12]、全球變暖[13-15]以及海洋酸化[16-18]有關。 然而,這些全球環(huán)境擾動或劇變的性質及時間與生物滅絕的詳細過程及方式的關系尚未清楚,二疊末生物大滅絕的最終成因未知[19]。
二疊—三疊紀碳同位素組成變化研究已經較為詳細而全面。碳同位素比值在二疊—三疊系界線附近全球范圍內均發(fā)生了負向偏移[20-21],總體上可分為兩期負偏[22]。第一期發(fā)生在二疊紀末期H.changxingensis牙形石帶,距離二疊—三疊紀界線約110 ky[21];界線年齡取252.17 Ma[23],第二期發(fā)生在三疊世早期I.isarcica牙形石帶(煤山剖面的34層),距離二疊—三疊紀界線約675 ky[24]。第一期碳同位素負偏又可以細分為兩個階段[25-27],第一階段的碳同位素負偏最大值發(fā)生在C.yini-C.zhangi牙形石帶,第二階段碳同位素負偏最大值發(fā)生在C.meishanensis牙形石帶。這些期次的碳同位素負偏均被認為與西伯利亞大火成巖省噴發(fā)有關[20,27-28]。然而,引起碳同位素比值負偏的輕碳來源問題還存在爭議[19],長期的碳同位素擾動及西伯利亞大火成巖省的噴發(fā)與短期快速的二疊末期生物大滅絕之間的相互關系尚未清楚。需要在二疊—三疊界線沉積速率較大的剖面開展更多的研究[19]。
江西省修水縣東嶺剖面的長興組厚度約為煤山剖面長興組厚度的4倍[29],是沉積速率較大的區(qū)域。與煤山剖面一樣,其地點靠近華夏古陸的物源區(qū)。二疊—三疊紀過渡時期,巢湖和煤山地區(qū)的沉積物供應發(fā)生了較大的變化,這從側面上反映了環(huán)境的惡化[30],從而誘發(fā)了生物危機。這些沉積物的供應與碳同位素變化的關系可以從新的角度探討碳同位素負偏中輕碳的來源問題以及碳循環(huán)擾動、沉積物變化及生物滅絕三者之間的關系。因此,本次研究在江西東嶺剖面二疊—三疊系界線地層中開展碳酸鹽巖碳同位素組成以及全巖主量、微量元素分析,研究碳同位素比值的變化以及沉積物元素組成的變化來探討碳循環(huán)、沉積物供應的變化與生物滅絕的關系。
江西東嶺剖面位于江西省修水縣四都鎮(zhèn)東嶺村(圖1a),坐標為29°9′48″N, 114°36′2″E,交通便利,與四都鎮(zhèn)連通鄉(xiāng)村公路,距離南昌市大約150 km左右。構造上,該剖面位于一個向斜的核部,由翼部向中心由老至新出露中志留統(tǒng)夏家橋組、上志留統(tǒng)西坑組、中二疊統(tǒng)棲霞組、茅口組、上二疊統(tǒng)龍?zhí)督M、長興組以及下三疊統(tǒng)大冶組(圖1b)。其中長興組為石林喀斯特地貌,是研究長興階及二疊—三疊界線的理想地區(qū)之一。
圖1 江西省修水縣四都鎮(zhèn)東嶺剖面地理位置圖(a)以及地質圖(b)P2q.中二疊統(tǒng)棲霞組;P2m.中二疊統(tǒng)茅口組;P3c.上二疊統(tǒng)長興組;T1d.下三疊統(tǒng)大冶組Fig.1 The geography location (a) and geologic map (b) of the Dongling section at Sidu, Xiushui city, Jiangxi province
研究剖面位于華南陸塊,該陸塊在二疊—三疊紀之交位于特提斯洋東部、北半球赤道附近(圖2)。華南陸塊在二疊末時期在東部和西部分別發(fā)育華夏臺地以及揚子臺地。其中揚子臺地北部從西至東分別發(fā)育峽口—利川灣[23]以及揚子臺地北部邊緣盆地[31]。長興期在臺地邊緣發(fā)育生物礁,這些礁主要分布在川東北、湖南慈利地區(qū)以及江西東嶺地區(qū)[31]。江西東嶺剖面長興期的生物礁主要是藻—海綿骨架灰?guī)r[32]。江西沿溝地區(qū)為在長興期為非礁的淺水碳酸鹽巖相[33-34]。浙江煤山剖面在長興期為斜坡環(huán)境而在早三疊世為盆地環(huán)境[35]。
東嶺剖面自下而上出露上二疊統(tǒng)長興組和下三疊統(tǒng)大冶組(圖3)。長興組主要為灰白色塊狀生物碎屑石灰?guī)r,而大冶組底部主要為薄層狀灰泥石灰?guī)r(圖3)。在長興組頂部發(fā)育一套雜色微生物巖,含豐富的球狀微生物、介形蟲、小腹足和小雙殼類化石(圖4)[36-37]。在大冶組底部27層首次出現H.parvus牙形石,標志著二疊—三疊系界線[38]。大冶組中—薄層狀石灰?guī)r中含化石很少,主要是小介形蟲、薄殼的雙殼類、管狀和舌狀的小腕足類[36]。
所測剖面上,由于地層界線有一段地層被覆蓋,所以無法獲取連續(xù)的剖面,即25-26缺失了一段地層。而吳亞生等[37]在離本次剖面北部約10 m遠處,通過人工開挖,獲得了一個連續(xù)出露的PTB剖面(圖3)。在本次研究剖面長興組頂部為微生物巖,相比Wuetal.[39]所研究的剖面缺失了微生物巖的上部(圖4)。即本次剖面的24b層與Wuetal.[39]剖面的第二層相對應,出現H.parvus牙形石27層與Wuetal.[39]的第5層相對應。 本次研究剖面缺失地層與Wuetal.[39]剖面中2-3層相對應,為一段生物碎屑顆粒巖、灰泥巖及微生物巖。
東嶺剖面采集了67個塊狀樣品,巖石切割拋光后,利用牙鉆鉆取石灰?guī)r灰泥部分,將粉末樣品用瑪瑙研缽進一步磨碎加工后利用稱樣紙包裹好用于無機碳同位素比值測試分析。將塊狀樣品破碎成小塊后利用瑪瑙研缽粉碎至200目以下,用于元素含量測試分析。
圖2 揚子臺地北部晚二疊世古地理圖(修改自馮增昭等[31])Fig.2 The late Permian palaeogeography in the northern Yangtze Platform (modified from Feng et al.[31])
圖3 江西修水縣東嶺剖面二疊—三疊系界線地層Fig.3 The Permian-Triassic boundary stratigraphy at Dongling, Xiushui city, Jiangxi province
圖4 江西修水縣東嶺剖面碳、氧同位素地層及其與Wu et al.[39]剖面對比圖(H. parvus據朱相水等[39])Fig.4 The C and O isotopic stratigraphy in the Dongling section, Xiushui, Jiangxi province and the correlation with the nearby section studied by Wu et al.[39] (Conodont H. parvus data is from Zhu et al.[39])
粉末樣品的無機碳同位素比值測試分析在東華理工大學核資源與環(huán)境教育部重點實驗室進行。測試方法為磷酸法,以純He氣作為載氣,將40 mg左右(量的多少取決于碳酸鹽含量)粉末樣品放入恒溫槽中與0.03 毫升98%的磷酸在72 ℃反應平衡1小時。生成的CO2氣體經提純后在德國Finnigan公司生產的氣體同位素比值質譜儀MAT253中進行碳、氧同位素比值測定。碳同位素與氧同位素比值的測試分析精度均優(yōu)于0.2‰(2σ)。δ13C和δ18O數據均為VPDB標準。
粉末樣品的元素含量測試分析主要利用X射線熒光光譜(XRF)儀在東華理工大學核資源與環(huán)境重點實驗室完成。稱取4 g粉末樣品,利用壓片法,不加任何黏結劑,以硼酸墊底直接壓制成薄片。將薄片放入型號為Axios-mAX的XRF儀器中進行測試分析。主量元素的分析精度優(yōu)于5%,微量元素的分析精度優(yōu)于8%。
碳酸鹽巖碳同位素比值δ13Ccarb分布在-1.42‰~4.7‰,平均值為2.6‰(表1)。垂向上,東嶺剖面δ13Ccarb值在長興組中至下部基本穩(wěn)定在4‰左右,至長興組上部24a層的上半部分開始突然出現負偏,至二疊—三疊系界線達到最大負偏(圖4)。其負偏過程呈現出階梯式,可分為兩個階梯,第一個階梯式負偏出現在24a層的中部,負偏幅度達2‰左右,負偏過程中巖性沒有發(fā)生變化,均為灰白色厚層至塊狀生物碎屑石灰?guī)r;第二個階梯式負偏出現在24b層的底部,也就是開始出現微生物巖時發(fā)生快速的負偏,負偏幅度達2.5‰左右,同時伴隨著巖性的突變。 碳酸鹽巖氧同位素比值δ18Ocarb分布在-13.2‰~-7.3‰,平均值為-10.2‰(表1)。垂向上,東嶺剖面長興組灰白色厚層至塊狀生物碎屑石灰?guī)rδ18Ocarb大部分分布在-12‰~-9.5‰,同位素比值較負(圖4),而上二疊統(tǒng)長興組頂部微生物巖和下三疊統(tǒng)大冶組底部中至薄層狀灰泥石灰?guī)rδ18Ocarb大部分分布在-8.7‰~-7‰,其同位素比值相對長興組生物碎屑石灰?guī)r較重。
Al2O3含量分布在2.80%~6.51%,平均值為3.25%;Ti含量分布在1 623 ~2 132 μg/g,平均值為1 733 μg/g;Fe2O3含量分布在0.97%~1.60%,平均值為1.07%(表1)。CaO含量分布在71.51%~95.22%,平均值為90.68%。Al2O3/TiO2比值分布在16~31,平均值為19。 Mn/Sr比值主要分布在0.19~1.87,平均值為0.66。垂向上,Al、Ti和Fe曲線變化一致(圖5),在長興組灰白色生物碎屑灰?guī)r段絕大部分呈現為一條穩(wěn)定的直線(除了在3 ~5 m處,以及16 m處出現小的波動以外)。然而,在長興組巖性突變處24b層底部,也就是開始出現雜色微生物巖處,Al、Ti和Fe值開始突然升高,然后下降,至微生物巖頂部下降至最低值,至中—薄層灰泥石灰?guī)r二疊—三疊界線處出現一次幅度較小的突然升高,然后突然下降。總之,Al、Ti和Fe 在二疊—三疊界線附近值突然增大,并呈現快速的波動。
表1 江西省修水縣東嶺剖面主量元素、微量元素、Mn/Sr比值與碳酸鹽巖碳、氧同位素比值數據Table 1 Major element, minor element and carbonate carbon and oxygen isotopic ratio data
碳酸鹽巖全巖無機碳同位素比值容易受到成巖作用的影響,從而改變了其原始海水溶解無機碳的碳同位素比值信號。在利用碳同位素比值進行古氣候古環(huán)境分析之前需要評估成巖作用的影響。由于成巖流體中含大量的氧原子,在進行水—巖反應時往往會伴隨著較大的氧同位素分餾[40-41],碳酸鹽巖全巖氧同位素極容易受到成巖作用的改造從而改變了其原始海水的氧同位素比值。受成巖作用影響較大的海相碳酸鹽巖其碳同位素與氧同位素往往表現為較大的相關性[40]。因此,可以利用碳同位素比值與氧同位素比值作交匯圖來判斷成巖作用對碳同位素的改造程度[42]。東嶺剖面碳酸鹽巖碳同位素與氧同位素交匯圖(圖6)表明,碳同位素比值與氧同位素比值總體上為負相關而非正相關,說明總體上該剖面碳同位素比值與氧同位素比值沒有相關性,碳同位素比值受到成巖作用影響較小。由于碳—氧同位素比值交匯圖數據明顯分為兩組(圖6),一組為24b層以下的長興組淺水生物碎屑石灰?guī)r,另一組為24b層及其以上的長興組及大冶組地層。將這兩組分別制作碳—氧同位素比值交匯圖(圖7,8)。長興組灰白色生物碎屑石灰?guī)r碳氧同位素比值數據點分布較為離散(圖7),兩者的相關系數(R2)僅為0. 16,相關性很弱。雖然氧同位素比值較負(-8‰~-13‰),但碳同位素比值較重(1‰~4.6‰),落在正常海水無機碳同位素比值范圍之內,反映原始海水的信號[43]。而24b層及其以上的長興組頂部微生物巖和大冶組中—薄層灰泥石灰?guī)r碳—氧同位素比值相關系數(R2)僅為0.18,相關性很弱(圖8),碳同位素組成受成巖及后期蝕變作用的影響程度較低,反映原始海水碳同位素信號。
圖5 江西省修水縣東嶺剖面Al、Ti和Fe元素含量變化曲線圖Fig.5 The Al, Ti and Fe profiles at Dongling, Xiushui, Jiangxi province
圖6 江西省修水縣東嶺剖面碳—氧同位素比值交匯圖陰影部分代表24b層以下地層Fig.6 Crossplot between C and O isotopic ratios at Dongling, Xiushui, Jiangxi province
圖7 江西省修水縣東嶺剖面24b層以下地層碳—氧同位素比值交匯圖Fig.7 Crossplot between C and O isotopic ratios at below 24 bed in Dongling, Xiushui, Jiangxi province
圖8 江西省修水縣東嶺剖面24b層及以上地層碳—氧同位素比值交匯圖Fig.8 Crossplot between C and O isotopic ratios at 24 bed above in Dongling, Xiushui, Jiangxi province
此外,Mn和Sr元素也可以用來識別成巖作用對全巖樣品的改造[44-46]。在碳酸鹽巖的沉積后期的溶解以及重結晶作用過程中富集Mn[44,47-48]。Sr一般保存在原始海水形成的碳酸鹽相中[49-50],而在溶解和重結晶過程中容易流失[48,51]。因此,當Mn/Sr比值較低,如小于2~3時,成巖作用影響很小[52-54]。東嶺剖面Mn/Sr比值分布在0.2~1.9之間,說明成巖作用影響小,碳同位素和元素等地球化學指標能反映原始沉積的信息。
如前文所述,成巖作用對研究剖面碳同位素影響較小,碳同位素組成的變化往往可以用來對全球或區(qū)域性不同環(huán)境下的地層進行對比[55]。二疊—三疊系界線地層的碳同位素比值一般存在碳同位素負偏[20],這種同位素比值的變化往往可以作為全球地層對比的標志層[56-57]。將江西東嶺剖面與其西部湖南慈利剖面、其東部江西沿溝剖面及浙江煤山剖面的碳同位素組成變化曲線進行對比(圖9)。結果顯示,東嶺剖面第一階梯碳同位素負偏可以與慈利剖面第一階梯碳同位素負偏對比,其碳同位素曲線的突然負偏與江西沿溝剖面及浙江煤山剖面碳同位素曲線負偏的開始一致,對應C.yini帶的下部。東嶺剖面的第二階梯碳同位素負偏可以與慈利剖面第二階梯碳同位素負偏對比,其突然負偏與煤山剖面主滅絕層最大負偏以及沿溝剖面碳同位素的突然負偏一致,對應著C.meishanensis牙形石帶底部,也即主要滅絕層位的底部。因此,東嶺剖面碳酸鹽巖階梯式碳同位素負偏發(fā)生在二疊—三疊界線之前的C.yini至C.zhangi牙形石帶以及C.meishanensis牙形石帶底部。
東嶺剖面長興組上部發(fā)生了階梯式碳同位素負偏,第一次負偏由4‰突然負偏至2‰,負偏幅度達2‰,對應于C.yini牙形石帶下部;第二次負偏由2‰突然負偏至-0.5‰左右,負偏幅度達2.5‰,對應于C.meishanensis牙形石帶底部。這些發(fā)生于主滅絕事件之前的碳同位素負偏說明當時存在大量12C的輸入。而火山噴出的二氧化碳、生物或熱成因甲烷為富12C的碳庫來源,這些物質的輸入均有可能影響東嶺剖面碳同位素負偏[20]。
東嶺剖面從長興組微生物巖開始至大冶組石灰?guī)r,其Al、Ti和Fe含量明顯比其下部含量要高,且呈現出快速波動變化特征(圖5)。表明陸源碎屑物質供應從微生物巖底部開始明顯增加。具有相同物源的巖石其Al與Ti、Al與Fe往往呈現相關性高的直線關系[59-60],然而東嶺剖面Al與Ti(圖10a)、Al與Fe(圖10b)交匯圖中數據點均出現了分叉,兩者之間并不是一條直線,而是兩條相關性強的回歸直線。微生物巖及其以上地層與微生物巖以下地層中Al和Ti、Al和Fe表現出兩種截然不同的行為特征, 表明長興組頂部微生物巖至下三疊統(tǒng)大冶組地層與長興組微生物巖以下地層具有不同的物源[60]。也即,以24b層底部為界,上下地層具有不同的物源。微生物巖以下地層中Al2O3/TiO2比值分布在16~19,說明巖石中硅酸鹽組分物源來自鐵鎂質火成巖[61];微生物巖及其以上地層中Al2O3/TiO2比值分布在21~31,說明巖石中硅酸鹽組分物源來自長英質火成巖[61]。這些表明在二疊—三疊系界線附近陸源碎屑物源由原來的基性火成巖轉變?yōu)閸u弧性質的酸性火成巖[62]。
圖9 江西修水縣東嶺剖面與其他剖面碳同位素地層對比慈利剖面據Luo et al.[26] ,沿溝剖面據Song et al.[58] ,煤山剖面據Yin et al.[23]和Cao et al. [25]。不同剖面比例尺不同Fig.9 The stratigraphic correlation of carbon isotope between the Dongling Section and other sections
圖10 江西東嶺剖面Al與Ti(a)及Al與Fe(b)交匯圖Fig.10 The crossplots between Al and Ti (a) and between Al and Fe (b) at Dongling, Jiangxi province
此外,華南二疊—三疊系界線附近廣泛發(fā)育的火山灰被認為是英安至流紋質火成巖來源[63]。華夏板塊周圍碎屑鋯石年齡(250~258 Ma)研究表明華夏板塊西南部在晚二疊世曾發(fā)生過造山運動[64]。這些研究說明,華夏板塊在二疊紀晚期發(fā)生的造山運動及火山噴發(fā)形成英安至流紋質的火成巖,這些火成巖可能是東嶺剖面從微生物巖開始出現長英質來源的陸源碎屑組分的成因,而且時間上與西伯利亞大火成巖省噴發(fā)期一致。
陸源碎屑物源轉變?yōu)樗嵝曰鸪蓭r之后或之前形成的地層中普遍含有二疊—三疊系界線附近的火山灰層(圖9)。煤山剖面在長興組上部見火山灰層[21],在東嶺剖面的大冶組下部也發(fā)現了多個火山灰層[33]。 這些火山灰可能來自華南周圍島弧火山噴發(fā)[62,65]。這些島弧火山及西伯利亞大火成巖省噴發(fā)與碳同位素負偏均發(fā)生在二疊—三疊紀界線附近。東嶺剖面階梯式碳同位素負偏的開始(也即第一階段階梯式碳同位素負偏)出現在灰白色生物碎屑石灰?guī)r之中,可以與煤山剖面23層與24層界線附近開始的碳同位素負偏對比,是一個全球性的碳同位素負偏,也是二疊末期多期碳同位素負偏事件的開始[20]。該次負偏過程中巖性沒有變化,始終為生物碎屑碳酸鹽巖,且Al、Ti和Fe含量沒有發(fā)生變化(圖5),說明碳同位素組成的變化與巖性無關,很可能是全球環(huán)境變化(如全球碳循環(huán))的成因。二階梯式碳同位素負偏的層位與華南火山灰層位基本一致,均是出現在二疊—三疊系界線之前約150 ky范圍之內[21],推測其負偏可能是華南島弧火山及西伯利亞大火成巖省噴發(fā)的成因[27,66]。
火山噴出的CO2其碳同位素比值為-5‰[67],僅僅由西伯利亞大火成巖省的火山作用難以形成高達4.5‰的碳同位素負偏[68-70]。因此,二疊—三疊系界線附近碳同位素負偏除了火山作用對12C的貢獻以外,還有其他富12C的碳庫來源。東嶺剖面碳同位素曲線在二疊末期突然快速的下降從而形成階梯式;煤山剖面碳同位素曲線在最大負偏處同樣是表現為突然快速的負偏(圖9)。這些表明,二疊紀末期碳同位素負偏過程中存在某一時期快速的負偏,全球碳循環(huán)快速擾動,這些特征與甲烷輸入大氣造成的碳同位素組成變化特征相似[71-72]。西伯利亞大火成巖省巖體侵入富有機質的沉積巖中,接觸熱變質會導致有機質(如煤、烴類)釋放出大量的二氧化碳和甲烷,這些富12C的熱成因碳庫的輸入會引起碳同位素比值快速負偏[73]。此外,二疊末氣候變暖時誘發(fā)海底甲烷冰不穩(wěn)定而釋放出大量富12C的甲烷也是二疊—三疊界線碳同位素快速負偏的原因之一[74-75],盡管有研究認為晚二疊世晚期逐漸釋放出不穩(wěn)定的甲烷致使到二疊末期已經沒有足夠的甲烷冰造成如此之大幅度的碳同位素負偏[76]。
二疊—三疊紀界線生物滅絕方式呈現為兩幕,第一幕的生物滅絕高峰出現于煤山剖面的25層底,第二幕的生物滅絕高峰出現于煤山剖面29層底[58]。而東嶺剖面二疊末期出現兩個階段的階梯式碳同位素負偏,第一階段階梯式碳同位素負偏的開始對應著第一幕生物滅絕的開始,第二階段階梯式負偏的開始對應著第二幕生物滅絕的開始。前文所述,碳同位素負偏主要與華南島弧火山及西伯利亞大火成巖省的噴發(fā)、熱成因甲烷與生物甲烷冰的釋放有關。西伯利亞大火成巖省大規(guī)?;鹕絿姵龌蛘T發(fā)出的溫室氣體(例如二氧化碳和甲烷)導致全球氣候變暖[13-14],海洋表層溫度過高致使海洋生物生理不適應而大量死亡[14]。海水溫度過高導致氧氣在海水的溶解度下降以及海洋循環(huán)的遲緩形成海洋缺氧[8]。大規(guī)?;鹕絿姲l(fā)引起大氣二氧化碳濃度升高,海水的二氧化碳濃度隨之升高,再加上火山噴發(fā)的硫酸鹽氣溶膠、酸雨的降落形成海洋酸化導致部分高鈣生物不適應而死亡[77]。大規(guī)?;鹕絿姲l(fā)形成的酸雨破壞陸地生態(tài)系統(tǒng),造成水土保持能力下降,導致大量的富Al、Ti和Fe沉積物輸入海洋造成渾濁水體[30],再加上海洋酸化及缺氧的物理化學條件的變化,從而引發(fā)了大規(guī)模的生物滅絕。
江西東嶺剖面在長興組及大冶組界線附近物源由原來的基性火成巖轉變?yōu)閸u弧性質的酸性火成巖。后者可能與我國華南周圍島弧火山噴發(fā)有關。該剖面二疊—三疊系界線之下碳酸鹽巖碳同位素曲線表現為二階梯式碳同位素負偏。碳同位素負偏過程伴隨著Al、Ti和Fe元素的突然大量輸入以及物源的突然變化,并與火山灰分布層位基本一致。碳同位素二階梯式負偏很可能是由華南島弧火山及西伯利亞大火成巖省噴發(fā)及其引發(fā)的大量甲烷釋放造成的。大規(guī)?;鹕阶饔靡l(fā)的全球變化、海洋缺氧、海洋酸化以及陸地大量沉積物的輸入導致環(huán)境惡化,引發(fā)了二疊末期生物大規(guī)模滅絕。
參考文獻(References)
[1]Erwin D H, Bowring S A, Jin Y G. End-Permian mass extinctions: a review[J]. Geological Society of America Special Paper, 2002, 365: 363-384.
[2]McKinney M L. Extinction selectivity among lower taxa: gradational patterns and rarefaction error in extinction estimates[J]. Paleobiology, 1995, 21(3): 300-313.
[3]Benton M J, Twitchett R J. How to kill (almost) all life: the end-Permian extinction event[J]. Trends in Ecology & Evolution, 2003, 18(7): 358-365.
[4]Campbell I H, Czamanske G K, Fedorenko V A, et al. Synchronism of the Siberian traps and the Permian-Triassic boundary[J]. Science, 1992, 258(5089): 1760-1763.
[5]Renne P R, Black M T, Zhang Z C, et al. Synchrony and causal relations between Permian-Triassic boundary crises and Siberian flood volcanism[J]. Science, 1995, 269(5229): 1413-1416.
[6]Reichow M K, Pringle M S, Al’Mukhamedov A I, et al. The timing and extent of the eruption of the Siberian Traps large igneous province: implications for the end-Permian environmental crisis[J]. Earth and Planetary Science Letters, 2009, 277(1/2): 9-20.
[7]Sobolev S V, Sobolev A V, Kuzmin D V, et al. Linking mantle plumes, large igneous provinces and environmental catastrophes[J]. Nature, 2011, 477(7364): 312-316.
[8]Wignall P B, Twitchett R J. Oceanic anoxia and the end Permian mass extinction[J]. Science, 1996, 272(5265): 1155-1158.
[9]Isozaki Y. Permo-Triassic boundary superanoxia and stratified superocean: records from lost deep sea[J]. Science, 1997, 276(5310): 235-238.
[10]Grice K, Cao C Q, Love G D, et al. Photic zone euxinia during the Permian-Triassic superanoxic event[J]. Science, 2005, 307(5710): 706-709.
[11]Kump L R, Pavlov A, Arthur M A. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia[J]. Geology, 2005, 33(5): 397-400.
[12]Wei H Y, Algeo T J, Yu H, et al. Episodic euxinia in the Changhsingian (late Permian) of South China: evidence from framboidal pyrite and geochemical data[J]. Sedimentary Geology, 2015, 319: 78-97.
[13]Joachimski M M, Lai X, Shen S, et al. Climate warming in the latest Permian and the Permian-Triassic mass extinction[J]. Geology, 2012, 40(3): 195-198.
[14]Sun Y D, Joachimski M M, Wignall P B, et al. Lethally hot temperatures during the Early Triassic greenhouse[J]. Science, 2012, 338(6105): 366-370.
[15]Romano C, Goudemand N, Vennemann T W V, et al. Climatic and biotic upheavals following the end-Permian mass extinction[J]. Nature Geoscience, 2013, 6(1): 57-60.
[16]Payne J L, Turchyn A V, Paytan A, et al. Calcium isotope constraints on the end-Permian mass extinction[J]. Proceedings of the National Academy of Science of the United States of America, 2010, 107(19): 8543-8548.
[17]Hinojosa J L, Brown S T, Chen J, et al. Evidence for end-Permian ocean acidification from calcium isotopes in biogenic apatite[J]. Geology, 2012, 40(8): 743-746.
[18]Kershaw S, Crasquin S, Li Y, et al. Ocean acidification and the end-Permian mass extinction: to what extent does evidence support hypothesis?[J]. Geosciences, 2012, 2(4): 221-234.
[19]Shen S Z, Bowring S A. The end-Permian mass extinction: a still unexplained catastrophe[J]. National Science Review, 2014, 1(4): 492-495.
[20]Korte C, Kozur H W. Carbon-isotope stratigraphy across the Permian-Triassic boundary: a review[J]. Journal of Asian Earth Sciences, 2010, 39(4): 215-235.
[21]Shen S Z, Crowley J L, Wang Y, et al. Calibrating the end-Permian mass extinction[J]. Science, 2011, 334(6061): 1367-1372.
[22]Xie S C, Pancost R D, Huang J H, et al. Changes in the global carbon cycle occurred as two episodes during the Permian-Triassic crisis[J]. Geology, 2007, 35(12): 1083-1086.
[23]Yin H F, Xie S C, Luo G M, et al. Two episodes of environmental change at the Permian-Triassic boundary of the GSSP section Meishan[J]. Earth-Science Reviews, 2012, 115(3): 163-172.
[24]Burgess S D, Bowring S, Shen S Z. High-precision timeline for Earth’s most severe extinction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(9): 3316-3321.
[25]Cao C Q, Wang W, Yin Y G. Carbon isotope excursions across the Permian-Triassic boundary in the Meishan section, Zhejiang Province, China[J]. Chinese Science Bulletin, 2002, 47(13): 1125-1129.
[26]Luo G M, Kump L R, Wang Y B, et al. Isotopic evidence for an anomalously low oceanic sulfate concentration following end-Permian mass extinction[J]. Earth and Planetary Science Letters, 2010, 300(1/2): 101-111.
[27]Luo G M, Wang Y B, Yang H, et al. Stepwise and large-magnitude negative shift in δ13Ccarbpreceded the main marine mass extinction of the Permian-Triassic crisis interval[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299(1/2): 70-82.
[28]Payne J L, Kump L R. Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations[J]. Earth and Planetary Science Letters, 2007, 256(1/2): 264-277.
[29]朱相水,林聯盛,呂樺. 推薦一條GSSP的輔助剖面[J]. 江西師范大學學報(自然科學版),1996,20(3):264-268. [Zhu Xiangshui, Lin Liansheng, Lü Hua. Recommendation on a reference section of GSSP[J]. Journal of Jiangxi Normal University (Natural Sciences Edition), 1996, 20(3): 264-268.]
[30]Algeo T J, Twitchett R J. Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences[J]. Geology, 2010, 38(11): 1023-1026.
[31]馮增昭,楊玉卿,金振奎,等. 中國南方二疊紀巖相古地理[M]. 東營:石油大學出版社,1997:1-62. [Feng Zengzhao, Yang Yuqing, Jin Zhenkui, et al. Lithofacies paleogeography of the Permian of South China[M]. Dongying: Petroleum University Press, 1997: 1-62.]
[32]朱相水. 論贛西北東嶺地區(qū)生物礁的形成時代[J]. 江西師范大學學報:自然科學版,1999,23(3):252-258. [Zhu Xiangshui. On a taking shape era of the reefs in Dongling area of northwest Jiangxi[J]. Journal of Jiangxi Normal University: Natural Sciences Edition, 1999, 23(3): 252-258.]
[33]朱相水,王成源,呂樺,等. 江西二疊—三疊系界線[J]. 微體古生物學報,1994,11(4):439-452. [Zhu Xiangshui, Wang Chengyuan, Lü Hua, et al. Permian-Triassic boundaries in Jiangxi, China[J]. Acta Micropalaeontologica Sinica, 1994, 11(4): 439-452.]
[34]田力,童金南,孫冬英,等. 江西樂平沿溝二疊紀—三疊紀過渡期沉積微相演變及其對滅絕事件的響應[J]. 中國科學:地球科學,2014,44(10):2247-2261. [Tian Li, Tong Jinnan, Sun Dongying, et al. The microfacies and sedimentary responses to the mass extinction during the Permian-Triassic transition at Yangou section, Jiangxi province, South China[J]. Science China: Earth Sciences, 2014, 57: 2195-2207.]
[35]鄭全鋒. 浙江省長興縣煤山剖面二疊系—三疊系界線層序的沉積微相特征及層序地層劃分[J]. 地層學雜志,2006,30(4):373-383. [Zheng Quanfeng. Sedimentary microfacies and sequence stratigraphy of the P-T boundary beds of the Meishan section, Changxing county, Zhejiang[J]. Journal of Stratigraphy, 2006, 30(4): 373-383.]
[36]姜紅霞,吳亞生. 江西修水二疊系—三疊系界線地層樹枝狀微生物巖狀巖石成因初解[J]. 地質論評,2007,53(3):323-329. [Jiang Hongxia, Wu Yasheng. Origin of microbialite-like dendroid rocks in the Permian-Triassic boundary section in Xiushui, Jiangxi province[J]. Geological Review, 2006, 53(3): 323-329.]
[37]吳亞生,姜紅霞,Yang Wan,等. 二疊紀—三疊紀之交缺氧環(huán)境的微生物和微生物巖[J]. 中國科學 D輯:地球科學,2007,37(5):618-628. [Wu Yasheng, Jiang Hongxia, Yang Wan, et al. Microbialite of anoxic condition from Permian-Triassic transition in Guizhou, China [J]. Science China Series D: Earth Science, 2007, 50(7): 1040-1051.]
[38]朱相水,林聯盛,蔣梅鑫.Hindeodusparvus及其“首次出現”[J]. 江西師范大學學報(自然科學版),1997,21(3):269-274. [Zhu Xiangshui, Lin Liansheng, Jiang Meixin.Hindeodusparvusand its “First Occurrence”[J]. Journal of Jiangxi Normal University (Natural Sciences Edition), 1997, 21(3): 269-274.]
[39]Wu Y S, Yuan X H, Jiang H X, et al. Coevality of the sea-level fall and main mass extinction in the Permian-Triassic transition in Xiushui, Jiangxi Province, southern China[J]. Journal of Palaeogeography, 2014, 3(3): 309-322.
[40]Brand U, Veizer J. Chemical diagenesis of a multicomponent carbonate system -2: stable isotopes[J]. Journal of Sedimentary Petrology, 1981, 51(3): 987-997.
[41]Marshall J D. Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation[J]. Geological Magazine, 1992, 129(2): 143-160.
[42]Heydari E, Wade W J, Hassanzadeh J. Diagenetic origin of carbon and oxygen isotope compositions of Permian-Triassic boundary strata[J]. Sedimentary Geology, 2001, 143(3/4): 191-197.
[43]Schobben M, Ullmann C V, Leda L, et al. Discerning primary versus diagenetic signals in carbonate carbon and oxygen isotope records: an example from the Permian-Triassic boundary of Iran[J]. Chemical Geology, 2016, 422: 94-107.
[44]Denison R E, Koepnick R B, Fletcher A, et al. Criteria for the retention of original seawater87Sr/86Sr in ancient shelf limestones[J]. Chemical Geology, 1994, 112(1/2): 131-143.
[45]Brand U, Jiang G Q, Azmy K, et al. Diagenetic evaluation of a Pennsylvanian carbonate succession (Bird Spring Formation, Arrow Canyon, Nevada, U.S.A.) -1: brachiopod and whole rock comparison[J]. Chemical Geology, 2012, 308-309: 26-39.
[46]Brand U, Posenato R, Came R, et al. The end-Permian mass extinction: a rapid volcanic CO2and CH4-climatic catastrophe[J]. Chemical Geology, 2012, 322-323: 121-144.
[47]Pingitore N E, Jr. The behavior of Zn2+and Mn2+during carbonate diagenesis: theory and applications[J]. Journal of Sedimentary Petrology, 1978, 48(3): 799-814.
[48]Brand U, Veizer J. Chemical diagenesis of a multicomponent carbonate system -1: trace elements[J]. Journal of Sedimentary Petrology, 1980, 50(4): 1219-1236.
[49]Korte C, Hesselbo S P. Shallow marine carbon and oxygen isotope and elemental records indicate icehouse-greenhouse cycles during the Early Jurassic[J]. Paleoceanography, 2011, 26(4): PA4219.
[50]Ullmann C V, Hesselbo S P, Korte C. Tectonic forcing of Early to Middle Jurassic seawater Sr/Ca[J]. Geology, 2013, 41(12): 1211-1214.
[51]Veizer J, Demovic R, Turan J. Possible use of strontium in sedimentary carbonate rocks as a paleoenvironmental indicator[J]. Sedimentary Geology, 1971, 5(1): 5-22.
[52]Derry L A, Kaufman A J, Jacobsen S B. Sedimentary cycling and environmental change in the Late Proterozoic: evidence from stable and radiogenic isotopes[J]. Geochimica et Cosmochimica Acta, 1992, 56(3): 1317-1329.
[53]Kaufman A J, Knoll A H, Awramik S M. Biostratigraphic and chemostratigraphic correlation of Neoproterozoic sedimentary successions: Upper Tindir Group, northwestern Canada, as a test case[J]. Geology, 1992, 20: 181-185.
[54]Kaufman A J, Jacobsen S B, Knoll A H. The vendian record of Sr and C isotopic variations in seawater: implications for tectonics and paleoclimate[J]. Earth and Planetary Science Letters, 1993, 120(3/4): 409-430.
[55]Weissert H, Joachimski M, Sarnthein M. Chemostratigraphy[J]. Newsletters on Stratigraphy, 2008, 42(3): 145-179.
[56]Kraus S H, Siegert S, Mette W, et al. Stratigraphic significance of carbon isotope variations in the shallow-marine Seis/Siusi Permian-Triassic boundary section (Southern Alps, Italy)[J]. Fossil Record, 2009, 12(2): 197-205.
[57]Hermann E, Hochuli P A, Bucher H, et al. A close-up view of the Permian-Triassic boundary based on expanded organic carbon isotope records from Norway (Tr?ndelag and Finnmark Platform)[J]. Global and Planetary Changes, 2010, 74(3/4): 156-167.
[58]Song H J, Wignall P B, Tong J N, et al. Two pulses of extinction during the Permian-Triassic crisis[J]. Nature Geoscience, 2013, 6(1): 52-56.
[59]McLennan S M, Hemming S, McDaniel D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics[J]. Geological Society of America Special Paper, 1993, 284: 21-40.
[60]Huang J, Chu X, Lyons T W, et al. A new look at saponite formation and its implications for early animal records in the Ediacaran of South China[J]. Geobiology, 2013, 11(1): 3-14.
[61]Hayashi K I, Fujisawa H, Holland H D, et al. Geochemistry of ~ 1.9 Ga sedimentary rocks from northeastern Labrador, Canada[J]. Geochimica et Cosmochimica Acta, 1997, 61(19): 4115-4137.
[62]Yang J H, Cawood P A, Du Y S, et al. Large Igneous Province and magmatic arc sourced Permian-Triassic volcanogenic sediments in China[J]. Sedimentary Geology, 2012, 261-262: 120-131.
[63]Gao Q L, Zhang N, Xia W C, et al. Origin of volcanic ash beds across the Permian-Triassic boundary, Daxiakou, South China: Petrology and U-Pb age, trace elements and Hf-isotope composition of zircon[J]. Chemical Geology, 2013, 360-361: 41-53.
[64]梁新權,周云,蔣英,等. 二疊紀東吳運動的沉積響應差異:來自揚子和華夏板塊吳家坪組或龍?zhí)督M碎屑鋯石LA-ICPMS U-Pb年齡研究[J]. 巖石學報,2013,29(10):3592-3606. [Liang Xinquan, Zhou Yun, Jiang Ying, et al. Difference of sedimentary response to Dongwu Movement: study on LA-ICPMS U-Pb ages of detrital zircons from upper Permian Wujiaping or Longtan Formation from the Yangtze and Cathaysia blocks[J]. Acta Petrologica Sinica, 2013, 29(10): 3592-3606.]
[65]Xie S S, Pancost R D, Wang Y B, et al. Cyanobacterial blooms tied to volcanism during the 5 m.y. Permo-Triassic biotic crisis. Geology, 2010, 38(5): 447-450.
[66]Korte C, Pande P, Kalia P, et al. Massive volcanism at the Permian-Triassic boundary and its impact on the isotopic composition of the ocean and atmosphere[J]. Journal of Asian Earth Sciences, 2010, 37(4): 293-311.
[67]McLean D M. Mantle degassing unification of the Trans-K-T geobiological record[J]. Evolutionary Biology, 1985, 19: 287-313.
[68]Kump L R, Arthur M A. Interpreting carbon-isotope excursions: carbonates and organic matter[J]. Chemical Geology, 1999, 161(1/2/3): 181-198.
[69]Wignall P B. Large igneous provinces and mass extinctions[J]. Earth-Science Reviews, 2001, 53(1/2): 1-33.
[70]Berner R A. Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling[J]. Proceedings of the National Academy Sciences of the United States of America, 2002, 99(7): 4172-4177.
[71]Hesselbo S P, Gr?cke D R, Jenkyns H C, et al. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event[J]. Nature, 2000, 406(6794): 392-395.
[72]Kamo S L, Czamanske G K, Amelin Y, et al. Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma[J]. Earth and Planetary Science Letters, 2003, 21(1/2)4: 75-91.
[73]Svensen H, Planke S, Polozov A G, et al. Siberian gas venting and the end-Permian environmental crisis[J]. Earth and Planetary Science Letters, 2009, 277(3/4): 490-500.
[74]Krull E S, Retallack G J. δ13C depth profiles from paleosols across the Permian-Triassic boundary: evidence for methane release[J]. Geological Society of America Bulletin, 2000, 112(9): 1459-1472.
[75]Twitchett R J, Looy C V, Morante R, et al. Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian biotic crisis[J]. Geology, 2001, 29(4): 351-354.
[76]Majorowicz J, Grasby S E, Safanda J, et al. Gas hydrate contribution to Late Permian global warming[J]. Earth and Planetary Science Letters, 2014, 393: 243-253.
[77]Clarkson M O, Kasemann S A, Wood R A, et al. Ocean acidification and the Permo-Triassic mass extinction[J]. Science, 2015, 348(6231): 229-232.