王振華,馬習賀,李文昊,鄭旭榮,張金珠
?
基于改進4-方程摩擦模型的輸水管道水錘壓力計算
王振華1,2※,馬習賀1,2,李文昊1,2,鄭旭榮1,張金珠1
(1. 石河子大學水利建筑工程學院,石河子 832000; 2. 現(xiàn)代節(jié)水灌溉兵團重點試驗室,石河子 832000)
摩擦耦合是流體與管壁之間相對運動產(chǎn)生粘性摩擦力而形成的邊界接觸耦合。在流體高頻運動的范圍內(nèi),摩擦耦合的特性變得相對更加復雜,將直接影響管道系統(tǒng)的水錘演化。為了研究在實際管道中水錘的變化情況,本文基于Zielke模型對流固耦合作用(fluid-structure interaction,F(xiàn)SI)4-方程模型(four-equation model,4EM)建立的4-方程摩擦模型(four-equation friction model,4EFM)結(jié)合廣義不可逆熱力學理論(extended irreversible thermodynamics,EIT)進行改進,建立改進4-方程摩擦模型。通過MATLAB軟件利用波速調(diào)整(wave-speed adjustment,WSA)插值方法的特征線法(method of characteristics,MOC),對新疆生產(chǎn)建設兵團第十三師自壓輸水管道中的關閥水錘壓力進行數(shù)值計算,結(jié)果表明改進4-方程摩擦模型的計算結(jié)果相比4-方程摩擦模型以及其他計算模型與實測值具有更好的一致性,WSA相比其他線性插值方法可以減小插值誤差。該改進模型可以應用在計算機中進行長距離重力流輸水過程的水錘壓力計算。
水錘;摩擦;耦合;特征線法;數(shù)值計算
管道輸水是農(nóng)田灌溉中高效節(jié)約、清潔環(huán)保的灌溉輸水方式。但在管道系統(tǒng)充放水過程中,閥門的啟閉或水泵機組啟停等因素會誘發(fā)輸流管道系統(tǒng)產(chǎn)生水錘。水錘是一種流體的非恒定流動,液體運動中所有空間點處的運動要素(流速、壓強、加速度、切應力、密度等)都隨著空間位置和時間的變化而改變。水錘問題是輸流管道中常發(fā)生并且較難控制的問題,嚴重的水錘會導致管道部件的破裂以及爆管等事故。為保證管道系統(tǒng)的安全運行,眾多專家學者結(jié)合實際工程對水錘的防護做了大量研究,比如防護設備的選用,閥門啟閉方式以及啟閉歷時控制等措施[1-4]。但在防護措施實施之前需要對管道水錘的大小以及防護位置進行推算,目前大多數(shù)針對水錘計算的數(shù)值模型是基于恒定流摩阻項的一維水錘方程,忽略了管壁的切應力和對流項,對水錘壓力波衰減過程和波形畸變難以做出準確的計算。
Zielke模型是1968年由Zielke針對層流問題提出的非穩(wěn)態(tài)摩擦模型[5]。該模型考慮了與摩擦損失成正比的瞬時管壁剪切應力,將非恒定摩阻項同加權(quán)函數(shù)和歷史加速度聯(lián)系起來[6]。Adamkowsky和Lewandowsky驗證了Zielke模型和其他一些非穩(wěn)態(tài)摩擦模型,但沒有考慮固定閥門的連接耦合問題[7]。4-方程模型(four-equation model, 4EM)是一組形式簡單的線性偏微分方程組,描述了流固耦合作用(fluid-structure interaction, FSI)管道的軸向振動問題[8]。Lee[9]提出了描述輸流管道非線性流固耦合運動的4-方程模型,建立了描述管道和液體的控制方程,但所得的偏微分方程不完全耦合,流固互動機制的描述不完整,并且忽略了輸送高脈動頻率流體時壓力波對動力響應的影響。張立翔等[10-11]通過Hamilton變分原理和變形體內(nèi)流體運動的微分方程建立管道-流體系統(tǒng),得到了一個能反映管道內(nèi)部流流固耦合、彎曲運動等因素對水錘特性影響的改進4-方程模型。楊超等[12-14]以經(jīng)典4-方程為基礎,依據(jù)Timoshenko梁理論,從對充液直管耦合振動的建模入手,得到了非恒定流充液管道的考慮摩擦耦合和泊松耦合的非線性的軸向振動4-方程模型。陳婷[15]等基于FSI處理得到用于計算耦合水錘的改進基本連續(xù)性方程,與簡化后的流體動量方程、管道運動方程及物理方程構(gòu)成了改進的軸向4-方程模型,將連續(xù)性方程中的水錘波速與流速的關系定義為能夠反映耦合水錘特性的管道與流體在縱橫兩個方向均耦合的耦合波速,解決了4-方程模型在應用特征線法求解時,基本方程的建立和特征線定義不一致的情況。但Zielke模型和4-方程模型均難以提供水錘問題的精確求解方案,Ghodhbani A等[16]結(jié)合Zielke模型和4-方程模型在考慮摩擦耦合和連接耦合下提出了可以模擬簡單管道中水錘變化的4-方程摩擦模型(four-equation friction model,4EFM),但該模型未對管壁剪切應力做出定義,未在工程實際中進行驗證。本文結(jié)合Axworth等[17]從廣義不可逆熱力學理論(extended irreversible thermodynamics,EIT)推導出的一維非恒定管流的管壁切應力替換4-方程摩擦模型原有的管壁切應力計算方程,建立改進4-方程摩擦模型。該改進4-方程摩擦模型可以準確的反映非恒定摩阻項對于水錘波的影響。通過對新疆生產(chǎn)建設兵團第十三師自壓輸水管道進行末端關閥試驗,對比分析了Zielke模型、4-方程模型、4-方程摩擦模型以及改進4-方程摩擦模型對管道水錘模擬的準確性以及波速調(diào)整(wave-speed adjustment,WSA)插值方法對水錘壓力模擬精度的影響。
卷積關系展開式為:
加權(quán)函數(shù)定義為:
在充液滿流管道系統(tǒng)中,所含的液體具有均勻性、各向同性和牛頓力學特性[20],用Timoshenko理論和胡克定律對流體管道系統(tǒng)進行建模[21-23],改進4EFM如下:
流體動量方程:
流體連續(xù)方程:
管道動力方程:
管道物理方程:
改進4EFM為雙曲型偏微分方程,將式(5)~(8)耦合方程寫成矩陣形式如下:
利用特征線法(method of characteristics,MOC)得到其特征方程為:
求解出相應的特征值:
利用MOC進行瞬態(tài)數(shù)值計算[24-25],其計算網(wǎng)格見圖1,其中A1、A2、A3、A4為4條特征線,線上點為計算結(jié)點,p點為4條特征線交點。
為了進一步分析和驗證改進4-方程摩擦模型對管道運動特性的影響,通過MOC推導以下相容性方程:
由于管道系統(tǒng)存在多種波,在使用特征線法計算時,需要通過插值方法來獲取沒有特征線通過的計算網(wǎng)格節(jié)點上的參數(shù)值,從而會產(chǎn)生插值誤差。目前常用的有空間線性插值(space-line interpolation,SLI),時間線性插值(time-line interpolation,TLI)和波速調(diào)整(wave-speed adjustment,WSA)插值方法,Tijsseling[26]認為在計算水錘壓力時WSA比線性插值更準確。為了便于在Matlab軟件中計算,本文根據(jù)文獻[27]提出以下矩陣公式:
初始條件根據(jù)穩(wěn)定流計算,在瞬態(tài)流產(chǎn)生之前,假設輸流管道系統(tǒng)處于平衡狀態(tài),根據(jù)式(5)~(8)推導的方程為:
構(gòu)建如圖2所示的水箱-管道-閥門簡單管道系統(tǒng),管道兩端有水箱和閥門2個固定端。
圖2 水箱-管道-閥門簡單管道系統(tǒng)
水箱壓力恒定
固端約束
閥門處流體和管道同時運動
管道系統(tǒng)動態(tài)過程
從圖3可以看出各模型的水錘壓力模擬計算值與實測值的初始壓力均有上升趨勢,水錘初始壓力快速上升的原因與管道邊界的變化方式有關[29]。Zielke模型計算出的初始壓力升高值和實測值的第1個周期第1個壓力上升值具有一致性(2=0.89),并且數(shù)據(jù)相近,相比4EM(2=0.79)、4EFM(2=0.83)和改進4EFM(2=0.85)可以較好的模擬出水錘壓力的初期變化。但由于管道水錘壓力波速的實測值與計算值之間的差異,Zielke模型和4EM在預測水錘變化趨勢上與實測值具有較大誤差,2模型分別在2 s和2.5 s時出現(xiàn)水錘壓力衰減變化,相比實測值衰減提前1 s和0.5 s,從此出現(xiàn)了相位偏移,且隨著時間的增大相位偏移量增大。Zielke模型在第4個周期之后出現(xiàn)與實測值相反的水錘壓力波衰減變化情況,并且衰減速度加快,4EM計算的最大和最小水錘壓力都與實測值相差較大,水錘壓力振蕩幅度大。4EFM(2=0.87)和改進4EFM(2=0.91)相比Zielke模型(2=0.79)和4EM(2=0.76)可以更加精確的模擬水錘發(fā)生瞬間的最大水錘壓力升壓值和降壓值,并且能準確的描述第1個周期之后水錘壓力波的畸變和衰減過程,同時改進4EFM相比4EFM的數(shù)值計算結(jié)果與實測值更具有良好的一致性,并且模擬相位偏移量不會隨時間增加而逐漸增大,由此可以說明改進4EFM具有更佳的水錘壓力計算效果。
圖3 不同模型之間數(shù)值結(jié)果與實測值對比圖
圖4 不同插值方法對改進4EFM水錘壓力計算的對比圖
從圖4計算得出,WSA、SLI和TLI的2值依次為0.83、0.79、0.76,WSA方法相比SLI和TLI對改進4EFM計算水錘壓力的精度有所提升。在7.5 s時SLI和TLI插值計算的水錘壓力值出現(xiàn)衰減,產(chǎn)生了相位偏移,并且相位偏移量隨時間的延長而增大,TLI相比SLI所得到的水錘壓力值具有更大的相位偏移以及數(shù)值振蕩幅度。SLI所得水錘壓力值振蕩幅度較小,但其衰減速度快,水錘壓力升高值遠低于實測值。WSA插值計算的水錘壓力和實測值具有較小的阻尼誤差,出現(xiàn)相位偏移時間滯后,數(shù)值振蕩較小,提高了改進4EFM計算水錘壓力的穩(wěn)定性和收斂性。
各計算模型與實測值以及使用不同插值方法的改進4EFM對水錘壓力計算的定量分析如表1、表2所示。
表1 不同模型計算的水錘壓力峰值相對誤差分析
注:表1中1~8分別代表水錘壓力波動第1~8個周期,水錘壓力波動周期為前一個壓力峰值到后一個壓力峰值所經(jīng)歷的時間。下同。 Note:In Table 1~8 represents water hammer pressure fluctuation first to eighth cycle, respectively. The fluctuation period of water hammer pressure is the time of peak value of the previous pressure peak to the next pressure peak. The same bellow.
表2 改進4EFM在不同插值方法下水錘壓力峰值相對誤差分析
由表1可知:Zielke模型和4EM對于管道閥門處水錘壓力峰值的捕捉效果不理想,Zielke模型在第1個周期相對誤差高達15.63%,水錘壓力峰值誤差隨著時間增加具有整體下降趨勢,最低誤差在第7個周期為1.39%。4EM在第1個周期相對誤差達到8.04%,且誤差隨著時間增加而增大。4EFM和改進4EFM的閥門處水錘壓力峰值捕捉誤差都相對較小,4EFM在第3個周期水錘壓力峰值誤差較大,最高達到7.07%,誤差多數(shù)大于3%,改進4EFM的最大誤差出現(xiàn)在第1個周期為5.13%,并隨著時間的增加誤差振幅較小并無增大趨勢,多數(shù)誤差控制在1.5%以內(nèi),數(shù)值計算趨于穩(wěn)定。
從表2可知:改進4EFM利用SLI方法計算的水錘壓力峰值相對誤差較大,多數(shù)在5%以上,并且具有繼續(xù)增大的趨勢,最高可達23.24%。TLI方法計算所得的水錘壓力峰值在水錘壓力波動前3周期相對誤差較低,均小于3%,最低誤差為0.24%,但從第4周期以后水錘壓力峰值相對誤差增大,并且基本高于WSA方法所計算的水錘壓力峰值,WSA方法計算得的水錘壓力峰值相對誤差在第1周期以后都相對較小,因此WSA可以提高改進4EFM的水錘壓力計算精度。
在水錘壓力波傳播過程中,近壁區(qū)在水錘壓力波傳到的同時先產(chǎn)生反向流動,而核心區(qū)由于流體慣性仍保持正向流動,由此在近壁區(qū)產(chǎn)生很大的瞬時流速梯度,進而產(chǎn)生較大的附加切應力和能量耗散,從而使水錘壓力波的衰減速度加快[30]。Zielke模型和4EM中無法通過提高對摩阻項積分計算精度的方式妥善解決,4EFM考慮了附加摩阻項的影響,模擬精度將更加精確,而改進4EFM能夠充分體現(xiàn)附加切應力的變化,因此能更加真實地反映管道中的水錘壓力瞬變過程。
本文建立了改進4-方程摩擦模型(4EFM),通過MATLAB軟件,使用波速調(diào)整(WSA)插值方法的特征線法(MOC)計算在關閥情況下簡單管道中水錘的變化,并與實測值、Zielke模型、4EM和4EFM進行比較。結(jié)果表明:
1)在摩擦耦合以及連接耦合發(fā)生的情況下,Zielke模型和4EM都不適合計算管道水錘的變化,并且均具有嚴重的數(shù)值振蕩和誤差,2個模型相比實測值提前出現(xiàn)壓力衰減變化,并出現(xiàn)相位偏移。改進4EFM和4EFM可以準確描述1個周期之后壓力波的畸變和衰減過程,且模擬相位偏移量不會隨時間增加而逐漸增大,契合度高。
2)改進4EFM相比4EFM在模擬效果上具有較大改善,各周期水錘壓力峰值相對誤差基本上小于1.5%,優(yōu)于4EFM。在實際工程中,除客觀試驗條件影響外,改進4EFM計算的水錘壓力值與試驗數(shù)據(jù)具有較高的吻合度以及水錘波形、時間的契合度,能準確的捕捉長距離輸水管道水錘壓力的初期變化,水錘波衰減以及相位偏移等特征,可以進行長距離輸水關閥水錘的模擬計算。
WSA方法相比SLI和TLI方法可以提高改進4EFM的水錘壓力計算精度,提高水錘壓力的預測能力。目前該改進4EFM在粘彈性管、多相流等環(huán)境下的水錘計算效果仍需要進一步的驗證。
[1] 汪建平,杜燕子. 長距離有壓輸水工程水錘防護方案研究[J]. 供水技術(shù),2015,9(6):43-48.Wang Jianping, Du Yanzi .Water hammer control of long distance pressure water transmission pipeline[J].Water Technology, 2015, 9(6): 43-48. (in Chinese with English abstract)
[2] 虞之日,何麗俊,陳思良. 長距離管道有壓自流輸水工程末端閥門的選擇[J]. 閥門,2012(2):26-29.Yu Zhiri, He Lijun, Chen Siliang. Investigation on selection type of the outlet valve for long pipeline with gravity flow[J]. Valve, 2012(2): 26-29. (in Chinese with English abstract)
[3] 楊曉蕾,沈來新,俞鋒,等. 重力流輸水管道關閥水錘模擬研究[J]. 水利水電技術(shù),2017,48(5):95-96.Yang Xiaolei, Shen Laixin, Yu Feng, et al. Simulative study on water hammer from closing of valve of gravity flow water conveyance pipeline[J]. Water Resources and Hydropower Engineering, 2017, 48(5): 95-96. (in Chinese with English abstract)
[4] 羅浩,張健,蔣夢露,等. 長距離高落差重力流供水工程的關閥水錘[J]. 南水北調(diào)與水利科技,2016(1):131-135.Luo Hao, Zhang Jian, Jiang Menglu, et al. Water hammer in the long-distance and high-drop water supply project of gravity flow[J]. South-to-North Water Transfers and Water Science & Technology, 2016(1):131-135. (in Chinese with English abstract)
[5] Zielke W. Frequency-dependent friction in transient pipe flow[J] .Journal of Basic Engineering, ASME , 1968, 90(1):109-115.
[6] 岑康,李長俊,廖柯熹,等. 液體管道瞬變流摩阻的計算方法[J]. 西南石油大學學報(自然科學版),2005,27(3):76-80. Cen Kang, Li Changjun, Liao Kexi, et al.Calculating methods of friction losses with transient flow in pipe [J].Journal of Southwest Petroleum University (Science &Technology Edition), 2005, 27(3): 76-80. (in Chinese with English abstract)
[7] Adamkowski A, Lewandowski M. Experimental Examination of Unsteady Friction Models for Transient Pipe Flow Simulation[J]. Journal of Fluids Engineering, 2006, 128(6): 1351-1363.
[8] 楊柯,李桂青. 充液管道流固耦合4-方程模型的一個解析解[J]. 水動力學研究與進展,1999(4):493-503.Yang Ke, Li Guiqing. An Analytical Solution for Equations of Fluid-Structure Interaction in Liquid-filled Pipes[J].Journal of Hydrodynamics, 1999(4): 493-503. (in Chinese with English abstract)
[9] Lee U, Pak C H, Hong S C. The dynamics of a piping system with internal unsteady flow [J]. Journal of Sound and Vibration, 1995, 180: 297-311.
[10] 張立翔,楊柯,黃文虎. FSI效應對管道水擊運動特性的影響分析[J]. 水電能源科學,2001,19(4):43-47.Zhang Lixiang, Yang Ke, Huang Wenhu. Analysis of FSI effects on water hammer characteristics in piping flows[J]. International Journal Hydroelectric Energy, 2001, 19(4): 43-47. (in Chinese with English abstract)
[11] 張立翔,黃文虎. 輸流管道非線性流固耦合振動的數(shù)學建模[J]. 水動力學研究與進展A輯,2000,15(1):116-128. Zhang Lixiang, Huang Wenhu. Nonlinear Dynamical Modeling of Fluid-Structure Interaction of Fluid- Conveying Pipes[J]. Journal of Hydrodynamics (A), 2000, 15(1): 116-128. (in Chinese with English abstract)
[12] 楊超. 非恒定流充液管系統(tǒng)耦合振動特性及振動抑制[D]. 華中科技大學,2007. Yang Chao. Vibration Characteristics of Unsteady-fluid- filled Pipe System and Vibration[D]. Huazhong University of Science and Technology, 2007. (in Chinese with English abstract)
[13] 楊超,易孟林,李寶仁. 非穩(wěn)定流輸送管道的耦合振動[J]. 中國機械工程,2008,19(4):406-410. Yang Chao, Yi Menglin, Li Baoren. Coupled vibration of piping system conveying unsteady flow[J]. Chinese mechanical engineering, 2008, 19(4): 406-410. (in Chinese with English abstract)
[14] 楊超,范士娟. 輸液管道流固耦合振動的數(shù)值分析[J]. 振動與沖擊,2009,28(6):13-25. Yang Chao, Fan Shijuan .Numerical analysis of fluid-structure coupled vibration of fluid-conveying pipe[J]. Journal of Vibration and Shock, 2009, 28(6): 13-25. (in Chinese with English abstract)
[15] 陳婷,蘇志敏,朱建兵,等. 基于FSI 的4-方程模型的改進分析[J]. 應用力學學報,2016,33(4):565-569.Chen Ting, Su Zhimin, Zhu Jianbing, et al.Analysis and improvement of 4-equation based on FSI[J].Chinese Journal of Applied Mechanics, 2016, 33(4): 565-569. (in Chinese with English abstract)
[16] Ghodhbani A, Ta?eb E H. A four-equation friction model for water hammer calculation in quasi-rigid pipelines[J]. International Journal of Pressure Vessels & Piping, 2017, 151: 54-63.
[17] Axworthy D H, Ghidaoui M S, Mcinnis D A. Extended thermodynamics derivation of energy dissipation in unsteady pipe flow[J]. Journal of Hydraulic Engineering, 2000, 126(126): 276-287.
[18] Bergant A, Tijsseling A S, Vítkovsky J P, et al. Parameters affecting water-hammer wave attenuation, shape and timing—Part 1: Mathematical tools Paramètres affectant l'atténuation, la forme et le retard du coup de bélier—Partie 1: Modèles mathématiques[J]. Journal of Hydraulic Research, 2008, 46(3): 373-381.
[19] 李進平,李修樹. 管道非恒定流摩阻損失研究[J]. 水利水電快報,2000(6):7-11.Li Jinping, Li Xiushu. Research on the non-constant flow friction loss of pipeline[J]. Express Water Resources & Hydropower Information, 2000(6): 7-11. (in Chinese with English abstract)
[20] Keramat A, Tijsseling A S, Hou Q, et al. Fluid–structure interaction with pipe-wall viscoelasticity during water hammer[J]. Journal of Fluids & Structures, 2012, 28(1): 434-455.
[21] Riasi A, Nourbakhsh A, Raisee M. Energy dissipation in unsteady turbulent pipe flows caused by water hammer[J]. Computers & Fluids, 2013, 73(6): 124-133.
[22] Triki A. Water-hammer control in pressurized-pipe flow using an in-line polymeric short-section[J]. Acta Mechanica, 2016, 227(3): 777-793.
[23] Keramat A, Kolahi A G, Ahmadi A. Water hammer modelling of viscoelastic pipes with a time-dependent Poisson's ratio[J]. Journal of Fluids & Structures, 2013, 43: 164-178.
[24] Lavooij C S W, Tusseling A S. Fluid-structure interaction in liquid-filled piping systems[J]. Journal of Fluids & Structures, 1991, 5(5): 573-595.
[25] Ghidaoui M S, Zhao M, Mcinnis D A, et al. A review of water hammer theory and practice[J]. Applied Mechanics Reviews, 2005, 58(1): 49-76.
[26] Tijsseling A S. Fluid-structure interaction in case of water hammer with cavitation [J]. Thesis Technische Univ, 1993.
[27] Tijsseling A S. Exact solution of linear hyperbolic four- equation system in axial liquid-pipe vibration[J]. Journal of Fluids & Structures, 2004, 18(2): 179-196.
[28] Ghodhbani A, Hadj-Ta?eb E. Numerical Coupled Modeling of Water Hammer in Quasi-rigid Thin Pipes[M]// Design and Modeling of Mechanical Systems. Springer Berlin Heidelberg, 2013.
[29] Tijsseling A S. Fluid-Structure Interaction in liquid-filled pipe systems: a Review[J]. Journal of Fluids & Structures, 1996, 10(2): 109-146.
[30] 范曉丹,劉韓生. 非恒定摩阻的TVD格式數(shù)值模擬水擊衰減研究[J]. 水力發(fā)電學報,2017,36(3):55-62. Fan Xiaodan, Liu Hansheng. Numerical simulations of water hammer attenuation due to unsteady friction using a TVD scheme[J]. Journal of Hydroelectric Engineering, 2016, 36(3): 55-62. (in Chinese with English abstract)
Calculation of water hammer pressure of flow pipeline based on modified four-equation friction model
Wang Zhenhua1,2※, Ma Xihe1,2, Li Wenhao1,2, Zheng Xurong1, Zhang Jinzhu1
(1.832000,2.832000,)
Water hammer problem is a problem that often occurs in the pipeline and is difficult to control. Friction coupling is a boundary contact coupling formed by the relative motion between the fluid and the wall of the tube to produce viscous friction. In the range of high frequency motion of the fluid, the characteristics of the friction coupling become more complex, which will directly affect the water hammer evolution of the pipeline system. At present, most numerical models of water hammer calculation are based on the constant flow friction equation of one-dimensional water hammer, ignoring the wall shear stress and convection item, and the attenuation and waveform distortion processes of water hammer pressure wave are difficult to make an accurate calculation. There are few studies on the friction coupling and connection coupling and convection term as to the pipe fluid water hammer calculation. Unsteady friction models are only validated with uncoupled formulation. Additionally, coupled models such as four-equation model (4EM), provide more accurate prediction of water hammer since fluid-structure interaction (FSI) is taken into account, but they are limited to steady-state friction formulation. In this paper, the four-equation friction model (4EFM) based on Zielke model and FSI 4EM is modified according to the one-dimensional unsteady flow shear stress on tube wall, which was derived from the extended irreversible thermodynamics (EIT) by Axworth and others, and the modified 4EFM can accurately reflect the influence of the unsteady friction term on the water hammer wave. In the self-pressure pipeline water delivery project on Hongxing Farm of Thirteenth Division, Xinjiang Production and Construction Corps, the closed valve water hammer test was performed, this model was applied to quasi rigid pipeline with axial movement valve, and the numerical calculation of closed valve water hammer in the pipeline was carried out by using the method of characteristics (MOC) with the MATLAB software. Then the accuracy of Zielke model, 4EM, 4EFM and modified 4EFM in the simulation of water hammer of the pipeline was compared and analyzed. The results show that under the friction coupling and junction coupling condition, Zielke model and 4EM are not suitable for calculating the change of pipeline water hammer, and numerical oscillation and the error are serious, in the third s two model pressure decay process, compared with measured data of early 0.5 s, phase deviation. The modified 4EFM and 4EFM can accurately describe the distortion and attenuation process of pressure wave after a cycle, the simulation deviation will not increase with time, the phase deviation is small, and the fit degree is high. The modified 4EFM has better consistency with the measured value through the comparison. The 4EFM and other calculation models have better consistency. The peak error of water hammer pressure in each cycle for the modified 4EFM is basically less than 1.5%, which is better than 4EFM with the pressure peak error of more than 3%. In practical engineering, in addition to the impact of objective conditions, water hammer pressure calculated by the modified 4EFM has high fitting degree with the tested data, as well as water hammer wave form and time, and this method can accurately capture the characteristics of the early change of pressure in long distance pipeline, the water hammer wave attenuation and the phase shift, so the modified model can be applied in water hammer calculation during long distance water transfer process of gravity flow with the computer. And the reduction of the time step of the operation can improve the simulation precision of the modified 4EFM. At present, the effect of the modified 4EFM on the calculation of water hammer in the environment of viscoelastic tube and multiphase flow still needs further verification.
water hammer; friction; coupling; method of characteristics; numerical simulation
10.11975/j.issn.1002-6819.2018.07.015
O353.1
A
1002-6819(2018)-07-0114-07
王振華,馬習賀,李文昊,鄭旭榮,張金珠. 基于改進4-方程摩擦模型的輸水管道水錘壓力計算[J]. 農(nóng)業(yè)工程學報,2018,34(7):114-120. doi:10.11975/j.issn.1002-6819.2018.07.015 http://www.tcsae.org
Wang Zhenhua, Ma Xihe, Li Wenhao, Zheng Xurong, Zhang Jinzhu. Calculation of water hammer pressure of flow pipeline based on modified four-equation friction model [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(7): 114-120. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.07.015 http://www.tcsae.org
2017-12-05
2018-03-04
國家重點研發(fā)計劃“自流灌區(qū)用水調(diào)控技術(shù)集成與應用示范”(2017YFC0403205)
王振華,男,河南扶溝人,教授,博士,博士生導師,主要從事干旱區(qū)節(jié)水灌溉理論與技術(shù)研究。Email:wzh2002027@163.com
中國農(nóng)業(yè)工程學會會員:王振華(E041200608S)