亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于2,5-噻吩二羧酸的稀土配合物的合成和表征

        2018-04-10 09:29:01鄭云云黃銳敏蘇德森傅建煒
        無機化學(xué)學(xué)報 2018年4期
        關(guān)鍵詞:二羧酸噻吩劉靜

        鄭云云 黃銳敏 韋 航 黃 彪 蘇德森 傅建煒*,

        0 Introduction

        As one of synthetic approaches,hydro(solv)thermal reaction has played an important role in the construction of inorganic-organic hybrid materials[1-3].Based on this approach,chemists have successfully assembled a large number of topological diversity materials that are difficultly obtained from the general synthetic routine[4-7].Owing to the coordination of organic ligand to metal ion under the hydro(solv)thermal condition resulting in the organic ligand decomposition[8-12]or formation of a new organic compound[13-16],it is difficult for us to design and assemble the inorganic-organic hybrid materials based on the structural information of the organic ligand under the hydro(solv)thermal condition.Hence,investigating the external physical or chemical stimuli influencing on the reformation and decomposition of organic ligand under the hydro(solv)thermal condition is of a key importance for our rational design and assembly of inorganic-organic hybrid materials.

        2,5-thiophenedicarboxylic acid (here and after namely H2TDC),when coordinated with metal ion,often exhibit diverse coordination modes,such as monodentate,bidentate,tridentate and tetradentate modes.This coordination feature makes it become a versatile building block in the construction of coordination polymers[17-34].Like many sulfur-containing organic ligands,such as,4,4′-dithiodipyridine[35-41]and(4-pyridylthio)acetic acid[42],however,the relatively weak CS in the H2TDC often break down under the hydro(solv)thermal condition,resulting in a low degree of structure predictability when compared to aromatic polycarboxylate ligands,such as,1,4-benzendicarboxylic acid[43-45]and 1,3,5-trimesic acid[46-49].In the present paper,three polymers,namely, {[La(OH)(SO4)]}n(1),{[La2(TDC)2(SUC)]}n(2)and{[Gd2(TDC)2(ox)(H2O)4]·2H2O}n(3),(H2TDC=2,5-thiophenedicarboxylic acid,SUC=succinate,ox=oxalate)have been successfully synthesized through hydrothermal reaction of H2TDC and Ln(NO3)3(Ln=La,Gd).The single crystal structures of 2 and 3 have been investigated.

        1 Experimental

        All reagents used were commercially available and were used as received.The hydrothermal syntheses were carried out in polytetrafluoroethylene lined stainless steel containers under autogeneous pressure.The infrared spectra were recorded on a Nicolet AVATAR FT-IR360 Spectrophotometer with pressed KBr pellets.

        1.1 Synthesis of{[La(OH)(SO 4)]}n(1)and{[La2(TDC)2(SUC)]}n(2)

        2,5-thiophenedicarboxylic acid(0.172 g,1.0 mmol),La(NO3)3·6H2O(0.433 g,1.0 mmol)were mixed in 10.0 mL water with stirring at room temperature.After the pH value of the solution was adjusted to about 4.0 by 1.0 mol·L-1NaOH,the solution was transferred and sealed in a 25 mLTeflon-lined stainlesssteel container.The container was heated to 180℃and held at that temperature for 70 hours,then cooled to 30℃at a rate of 5℃·h-1.Then colorless plate crystals of 1(which was reported by Lu et al.[50])and colorless needle crystals of 2 were manually picked out in 20%yield respectively.Anal.Calcd.(Found)for H2O10S2La2(1)(%):H,0.40(0.52);S,12.73(12.60).IR Spectra for 1(KBr,cm-1):3 407(s),2 975(s),2 926(m),2 891(m),1 628(m),1 543(m),1 455(w),1 384(m),1 272(w),1 090(s),1 049(s),881(m),771(w),645(w),593(w),469(w).Anal.Calcd.(Found)for C16H8O12S2La2(2)(%):C,26.18(26.49);H,1.10(1.02);S,8.74(8.65).IR Spectra for 2(KBr,cm-1):3 489(s),3 432(s),2 926(w),2 852(w),1 609(s),1 550(s),1 525(s),1 462(w),1 385(s),1 152(s),1 078(s),995(w),777(w),727(w),679(w),602(w),532(w),473(w).

        1.2 Synthesis of{[Gd 2(TDC)2(ox)(H 2O)4]·2H 2O}n(3)

        Complex 3 was prepared in the similar way as described for 1 and 2,except that Gd(NO3)3·6H2O was used toreplace La(NO3)3·6H2O.Colorlessblock crystals of 3 were collected by filtration in 15%yield.Anal.Calcd.(Found)for C14H16O18S2Gd2(3)(%):C,19.76(19.63);H,1.90(1.96);S,7.54(7.46).IR Spectra for 3(KBr,cm-1):3 090(s),2 973(s),2 849(s),2 653(s),2 547(s),2 035(w),1 861(w),1 661(s),1 527(s),1 478(m),1 417(s),1 341(m),1 273(s),1 231(s),1 161(m),1 101(m),1 104(m),1 038(s),931(s),854(s),756(s),672(w),543(m),490(m),463(w).

        1.3 X-ray crystallography

        Data were collected on a Bruker SMART Apex CCD diffractometer(Mo Kα,λ=0.071 073 nm)at 298 K for 2 and 3,and crystal sizes of crystals for crystallography test were 0.15 mm ×0.02 mm×0.01 mm(2)and 0.20 mm×0.14 mm×0.06 mm(3).Absorption corrections were applied using the multiscan program SADABS[51].The structures were solved by direct methods,and the non-hydrogen atoms were refined anisotropically by the least-squares method on F2using the SHELXTL program[52].The hydrogen atoms of organic ligand were generated geometrically(C-H 0.096 nm,N-H 0.090 nm).Crystal data,as well as details of the data collection and refinement,for the complexes are summarized in Table 1,and selected bond lengths and angles are summarized in Table S1~S3(Supporting information).

        CCDC:1818984,2;1818985,3.

        Table 1 Crystal data and details of data collection and refinement for the complexes 2 and 3

        2 Results and discussion

        Complex 2 consists of two Laバcations,two TDC2-and one SUC2-ligands.Crystal structure analysis reveals that the central Laバcation is nine-coordinated by four carboxylates of four TDC2-ligands with one in bidentate mode and three in monodentate mode,and three carboxylates from three SUC2-ligands with one in bidentate mode and two in monodentate mode in capped square antiprism geometry as shown in Fig.1.The bond lengths of LaO are in the range from 0.238 8(3)to 0.296 5(4)nm,slightly longer than those of[Ln(INO)(H2O)(SO4)]n(INO=isonicotinate-N-oxide)[53].The 2D structure of{[La2(SUC)]}n4n+in 2 can be viewed as each SUC2-ligand with its each oxygen atom bridged with two adjacent Laバ cations(La…La=0.420 1 nm)as shown in Fig.2a,while the 3D structure of 2 can be viewed as adjacent two 2D structures connected through oxygen atoms of the TDC2-ligand with its one carboxylate coordinated to two Laバcations from one 2D layer in syn-syn mode and another coordinated to two Laバfrom adjacent layer in syn-syn and chelate mode as shown in Fig.2b.It was noted that such a unique coordination mode has not observed in TDC-based complex on the survey of Cambridge Data Base[54].

        Fig.1 Coordination environment of Laバcenters in 2 with 50%probability ellipsoids

        Single-crystal structural analysis reveals that complex 3 consists of two Gdバcations,two TDC2-ligands,one ox2-and six water molecules.There are two independent Gdバcenters in the asymmetry unit in 3(Fig.3).One(Gd1)iseight-coordinated respectively by four TDC2-ligands in monodentate mode and two ox2-in bidentate mode in a di-capped trigonal prism coordination geometry.The other (Gd2)is eightcoordinated by four TDC2-ligands in monodentate mode and four water molecules in a di-capped trigonal prism coordination geometry.The bond lengths of GdO are in the range from 0.230 8(4)to 0.249 2(4)nm,very close to those of[Gd6Cu24(μ3-OH)30(mAla)16(ClO4)(H2O)22](ClO4)17(OH)2·20H2O(mAla=2-methylalanine)[55].The 2D structure of{[Gd(TDC)]}nn+in 3 can be viewed as each TDC2-ligand coordinated to four Gdバcations with its each carboxylate bridged with two Gdバ cation in anti-syn mode and each Gdバcation coordinated with four oxygen atoms respectively from four TDC2-ligands (Fig.4a),while the 3D structure of 3 can be viewed as the adjacent 2D structures pillared by ox2-ligand as shown in Fig.4b.

        Fig.2 (a)2D structure of{[La2(SUC)]}n4n+in 2;(b)3D structure of 2

        Fig.3 Coordination environment of two independent Gdバcenters in 3 with 50%probability ellipsoids

        Fig.4 (a)Layer structure of{[Gd(TDC)]}nn+in 3;(b)3D structure of 3

        3 Conclusions

        In summary,three we have reported syntheses of three lanthanide-based 3D coordination polymers through hydrothermal reaction of Ln(NO3)3(Ln=La,Gd)and H2TDC,and the crystal structure of complexes 2 and 3.H2TDC decomposed into oxalic acid,succinic acid and sulphuric acid in these reactions,respectively.

        Supportinginformation is available at http://www.wjhxxb.cn

        [1]Feng SH,Xu R R.Acc.Chem.Res.,2001,34(3):239-247

        [2]Cundy CS,Cox PA.Chem.Rev.,2003,103(3):663-702

        [3]Stock N,Bein T.Angew.Chem.Int.Ed.,2004,43(6):749-752

        [4]Chen X M,Tong M L.Acc.Chem.Res.,2007,40(2):162-170

        [5]Wei L,Wei Q,Lin Z E,et al.Angew.Chem.,2014,53(28):7188-7191

        [6]Zheng ST,Yuan D Q,Zhang J,et al.Inorg.Chem.,2007,46(11):4569-4574

        [7]Wei Q,Wang J,He C,et al.Chem.Eur.J.,2016,22(31):10759-10762

        [8]ünalerolu C,Zümreolu-Karan B,Zencir Y,et al.Polyhedron,1997,16(13):2155-2161

        [9]Li X,Cao R,Sun D F,et al.Inorg.Chem.Commun.,2003,6(7):815-818

        [10]Zhai B,Yi L,Wang H S,et al.Inorg.Chem.,2006,45(21):8471-8473

        [11]Zhang L Z,Gu W,Li B,et al.Inorg.Chem.,2007,46(3):622-624

        [12]Kong X J,Ren Y P,Long L S,et al.J.Am.Chem.Soc.,2007,129(22):7016-7017

        [13]Wu T,Li M,Li D,et al.Cryst.Growth Des.,2016,8(2):568-574

        [14]Haloi D J,Singha N K.J.Polym.Sci.Part A:Polym.Chem.,2015,49(7):1564-1571

        [15]Wei Q H,Zhang L Y,Yin G Q,et al.J.Am.Chem.Soc.,2004,126(32):9940-9941

        [16]Zhang JP,Zheng SL,Huang X C,et al.Angew.Chem.Int.Ed.,2004,43(2):206-209

        [17]Chen B L,Mok K F,Ng SC,et al.Polyhedron,1998,17(23/24):4237-4247

        [18]Sun X Z,Sun Y F,Ye B H,et al.Inorg.Chem.Commun.,2003,6(11):1412-1414

        [19]Jia H P,Li W,Ju ZF,et al.Eur.J.Inorg.Chem.,2010(21):4264-4270

        [20]Demessence A,Rogez G,Rabu P.Inorg.Chem.,2007,46(9):3423-3425

        [21]Zhang JP,Lin Y Y,Huang X C,et al.Eur.J.Inorg.Chem.,2006(17):3407-3412

        [22]Xu J,Cheng J W,Su W P,et al.Cryst.Growth Des.,2011,11(6):2294-2301

        [23]Sun Y G,Jiang B,Cui T F,et al.Dalton Trans.,2011,40(43):11581-1190

        [24]LIU Jing(劉靜),WANG Min(王敏),ZHANG Zhen-Wei(張振偉),et al.Chinese J.Inorg.Chem.(無機化學(xué)學(xué)報),2012,28(1):50-54

        [25]Tsai C S,Chen W T,Liao J H.J.Chin.Chem.Soc.,2013,60(7):755-761

        [26]Xue L P,Chang X H,Li SH,et al.Dalton Trans.,2014,43(19):7219-7226

        [27]He Y P,Tan Y X,Zhang J.Cryst.Growth Des.,2014,14(14):3493-3498

        [28]Sibille R,Mazet T,Elkam E,et al.Inorg.Chem.,2013,52(2):608

        [29]Xue L P,Li Z H,Li SH,et al.Chin.J.Struct.Chem.,2013,32(5):704-708

        [30]Zhou L,Wang C,Zheng X,et al.Dalton Trans.,2013,42(46):16375-16386

        [31]ZHANG Yan-Hong(張雁紅),Adhikari S P,Day C,et al.Chinese J.Inorg.Chem.(無機化學(xué)學(xué)報),2017,33(7):1305-1312

        [32]Demessence A,Rogez G,Welter R,et al.Inorg.Chem.,2007,46(9):3423-3425

        [33]Guerriero P,Casellato U,Sitran S,et al.Inorg.Chem.,Acta,1987,133(2):337-345

        [34]Rosi N L,Kim J,Eddaoudi M,et al.J.Am.Chem.Soc.,2005,127(5):1504-1518

        [35]Wang J,Zheng SL,Hu S,et al.Inorg.Chem.,2007,46(3):795-800

        [36]Han L,Bu X H,Zhang Q C,et al.Inorg.Chem.,2006,45(15):5736-5738

        [37]Diwan K,Singh B,Singh SK,et al.Dalton Trans.,2012,41(2):367-369

        [38]Zhu Q,Sheng T,Tan C,et al.Inorg.Chem.,2011,50(16):7618-7624

        [39]Zhu H B,Li L,Wang H,et al.Inorg.Chem.Commun.,2010,13(1):30-32

        [40]Ma L F,Wang L Y,Du M.CrystEngComm,2009,11(12):2593-2596

        [41]Ma L F,Wang Y Y,Wang L Y,et al.Cryst.Growth Des.,2009,9(5):2036-2038

        [42]Zhang X M,Fang R Q,Wu H S.J.Am.Chem.Soc.,2005,127(21):7670-7671

        [43]Yang SY,Long L S,Jiang Y B,et al.Chem.Mater.,2002,14(8):3229-3231

        [44]Sun J,Zhou Y,Fang Q,et al.Inorg.Chem.,2006,45(21):8677-8684

        [45]LU Jiu-Fu(盧久富),ZHAO Cai-Bin(趙蔡斌),JIN Ling-Xia(靳玲俠),et al.Chinese J.Inorg.Chem.(無機化學(xué)學(xué)報),2016,32(6):961-967

        [46]Chui S S Y,Lo S M F,Charmant J P H,et al.Science,1999,283(5405):1148

        [47]Chen J X,Yu T,Chen Z X,et al.Chem.Lett.,2003,32(7):590-591

        [48]Chen W X,Wu S T,Long L S,et al.Cryst.Growth Des.,2007,7(6):1171-1175

        [49]DONG Jiao-Jiao(董嬌嬌),JIN Jing(金晶),YAN Xin(鄢欣),et al.Journal of Jilin University:Science Edition(吉林大學(xué)學(xué)報:理學(xué)版),2014,52(5):1067-1072

        [50]Zhang QZ,Lu CZ,Yang WB,et al.Inorg.Chem.Commun.,2004,7(7):889-892

        [51]Sheldrick G M.SADABS,Version 2.05,University of G?ttingen,Germany,2000.

        [52]Sheldrick GM.SHELXTL-2014,Programfor Crystal Structure Refinement,University of G?ttingen,Germany,2014.

        [53]He Z,Gao E Q,Wang Z M,et al.Inorg.Chem.,2005,44(4):862-874

        [54]Cambridge Structural Database,Version 5.28,Cambridge,UK,2008.

        [55]Zhang JJ,Hu SM,Xiang SC,et al.Inorg.Chem.,2006,45(18):7173-7181

        猜你喜歡
        二羧酸噻吩劉靜
        劉靜設(shè)計作品
        大眾文藝(2023年24期)2024-01-12 06:01:22
        糖人王
        金秋(2023年24期)2023-03-18 01:49:06
        Optimization Method of Bearing Support Positions in a High-Speed Flexible Rotor System
        探討醫(yī)藥中間體合成中噻吩的應(yīng)用
        4,7-二噻吩-[2,1,3]苯并硒二唑的合成及其光電性能
        聚丙烯成核劑雙環(huán)[2.2.1]-庚烷-2,3-二羧酸鈉的合成
        化工進展(2015年6期)2015-11-13 00:27:25
        直接合成法制備載銀稻殼活性炭及其對苯并噻吩的吸附
        兩個基于2,2’-聯(lián)吡啶-3,3’-二羧酸的稀土配合物的晶體結(jié)構(gòu)和熒光性質(zhì)
        吡啶-3,5-二羧酸鎳(Ⅱ)配合物的合成、結(jié)構(gòu)、性質(zhì)及密度泛函研究
        2-(間甲氧基)苯基咪唑二羧酸構(gòu)筑的鋅配位聚合物的制備及晶體結(jié)構(gòu)
        久久久亚洲日本精品一区| 18成人片黄网站www| 六月丁香久久| 日韩在线手机专区av| 亚洲国产中文字幕精品| 人妻插b视频一区二区三区| 波多野结衣aⅴ在线| 久久精品熟女亚洲av艳妇| 中文字幕精品一区二区的区别| 先锋五月婷婷丁香草草| 富婆如狼似虎找黑人老外| 国产精品一区二区三区不卡| 精品三级国产一区二区三| 免费网站看av片| 中文亚洲日韩欧美| 亚洲精品日本久久久中文字幕| 蜜臀av毛片一区二区三区| 亚洲国产精品综合久久网各| 国产网站视频| 中文字幕一区二区区免| 国产香蕉视频在线播放| 精品国产aⅴ无码一区二区| 无码国产精品一区二区AV| av免费在线播放观看| 久久久久人妻精品一区三寸| 成人片黄网站色大片免费观看app| 在线视频一区二区亚洲| 风骚人妻一区二区三区| 国产乱码精品一区二区三区四川人| 热久久网站| 日本精品av中文字幕| 波多野结衣绝顶大高潮| 免费现黄频在线观看国产| 久久99热精品免费观看麻豆| 国产亚洲精品97在线视频一| 国产亚洲精品资源在线26u| 一区二区三区国产在线网站视频| 毛片在线视频成人亚洲| 日本一本之道高清不卡免费| 在线欧美不卡| 国产在线视频一区二区三区|