亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        蔬菜作物應(yīng)答非生物逆境脅迫的分子生物學(xué)研究進展

        2018-04-03 08:37:38郭仰東張磊李雙桃曹蕓運齊傳東王晉芳
        中國農(nóng)業(yè)科學(xué) 2018年6期
        關(guān)鍵詞:脯氨酸逆境擬南芥

        郭仰東,張磊,李雙桃,曹蕓運,齊傳東,王晉芳

        (中國農(nóng)業(yè)大學(xué)園藝學(xué)院/設(shè)施蔬菜生長發(fā)育調(diào)控北京市重點實驗室,北京 100193)

        2010年以來,中國蔬菜種植面積從1.9×107hm2增至2015年的2.2×107hm2,蔬菜生產(chǎn)總量穩(wěn)定增長,2015年全國蔬菜生產(chǎn)總量約為78 526. 7萬t,比2010年增長 20.6%[1]。然而,在蔬菜生長發(fā)育過程中,常常遭受非生物逆境的脅迫,嚴重影響蔬菜作物的產(chǎn)量及品質(zhì)。

        非生物逆境是對植物生長不利的各種環(huán)境因素的總稱, 也稱為環(huán)境脅迫, 如干旱、鹽、極端溫度、重金屬等。當(dāng)蔬菜作物面臨非生物脅迫時,會啟動一系列基因表達調(diào)控進程,誘導(dǎo)相關(guān)基因/轉(zhuǎn)錄因子的激活表達,這些逆境響應(yīng)基因的表達進一步誘發(fā)植物體做出各種生理反應(yīng)以抵抗和緩解逆境所致的影響。因此,研究蔬菜抗逆過程中的關(guān)鍵調(diào)控因子以及相應(yīng)的逆境響應(yīng)功能基因,成為蔬菜非生物逆境研究的熱點。在中科院與湯森路透聯(lián)合發(fā)布《2015研究前沿》中,植物抗逆性的研究占據(jù)了農(nóng)業(yè)、植物和動物學(xué)領(lǐng)域研究的 8個熱點前沿,組成了“植物應(yīng)對生物和非生物脅迫的分子機制和調(diào)控”前沿群。本文就近年來國內(nèi)外蔬菜非生物逆境方面的研究進展進行綜述及展望。

        1 干旱脅迫

        干旱脅迫影響植物的生長、發(fā)育和繁殖,是最不利于植株生長的因素之一,也是研究最多的逆境因子之一[2]。干旱脅迫對植物形態(tài)結(jié)構(gòu)和生理功能的影響十分廣泛。植物生物量、水分利用效率、光合作用、滲透調(diào)節(jié)能力、細胞膜穩(wěn)定性、抗氧化防御系統(tǒng)和激素水平等指標(biāo)常常被用來評價植物抗旱性的高低。經(jīng)過漫長的進化過程,植物形成了一系列信號傳導(dǎo)機制以抵御干旱脅迫,包括干旱脅迫信號的感知、第二信使的產(chǎn)生、信號轉(zhuǎn)導(dǎo)和信號網(wǎng)絡(luò)的形成[3]。信號轉(zhuǎn)導(dǎo)的結(jié)果是相關(guān)基因的表達和蛋白質(zhì)的合成,這可能會導(dǎo)致滲透系統(tǒng)和抗氧化系統(tǒng)的變化,最終提高植株對干旱逆境的抵抗能力[4]。耐旱性是一系列的分子、細胞和生理過程綜合作用的結(jié)果,包括多種基因的誘導(dǎo)和抑制,各種滲透調(diào)節(jié)物質(zhì)的積累,抗氧化系統(tǒng)的提高,蒸騰作用減弱以及植株生長抑制等。在這樣的背景下,闡明控制、感知與傳導(dǎo)逆境信號的分子機制非常重要[5]。研究者利用現(xiàn)代遺傳學(xué)和功能基因組學(xué)的方法,如轉(zhuǎn)錄組學(xué)、蛋白質(zhì)組學(xué)和代謝組學(xué),深入研究了干旱脅迫響應(yīng)中的關(guān)鍵基因。這些關(guān)鍵基因編碼的蛋白質(zhì)包括轉(zhuǎn)錄因子、蛋白激酶和蛋白磷酸酶,以及具有代謝和調(diào)控功能的蛋白質(zhì),如水通道蛋白(Aquaporin)、離子轉(zhuǎn)運蛋白(ion transporter)、熱激蛋白(heat shock protein,HSP)和LEA蛋白(late embryogenesis abundant protein)。轉(zhuǎn)錄因子通過調(diào)節(jié)下游響應(yīng)逆境的基因在調(diào)節(jié)多種非生物脅迫中起著關(guān)鍵作用。轉(zhuǎn)錄因子通過與啟動子特定區(qū)域相結(jié)合調(diào)控不同逆境相關(guān)基因的表達[6-7]。在特定的時間,這些調(diào)控基因表達的遺傳修飾可以極大地影響植物的抗逆性,因為其進一步調(diào)控許多下游應(yīng)激反應(yīng)基因[8-9]。

        1.1 抗旱功能基因

        水不僅是合成細胞中多種生命物質(zhì)的重要底物,同時參與調(diào)節(jié)植物體內(nèi)營養(yǎng)代謝和滲透平衡。無論是整個植物或是細胞水平,水分吸收和膜運輸系統(tǒng)對植物的生長和發(fā)育是必需的。水通道蛋白介導(dǎo)植物中的水分跨膜運輸,是調(diào)節(jié)水分吸收與轉(zhuǎn)運的關(guān)鍵。近年來,它已成為植物逆境分子生物學(xué)的研究熱點。水的跨膜運輸主要由水通道蛋白家族實現(xiàn),植物對非生物脅迫的反應(yīng),會導(dǎo)致植物的水分短缺,影響植物生長發(fā)育。抵御逆境脅迫在很大程度上取決于其調(diào)控能力[10]。LI等[11]篩選了在番茄根中表達量較高的3個質(zhì)膜型內(nèi)在蛋白(plasma membrane intrinsic proteins)基因SlPIP2;1、SlPIP2;7、SlPIP2;5,并轉(zhuǎn)入擬南芥和番茄植株中,過表達植株在干旱脅迫下表現(xiàn)出更強的生長勢;發(fā)芽率、根系導(dǎo)水率和存活率都顯著提高。在干旱脅迫下,過表達番茄具有較高的相對含水量,而丙二醛(MDA)含量則較低。辣椒水通道蛋白(Tonoplast intrinsic proteins)基因CaTIP1-1在花、果、種子中表達高于根、莖、葉,該基因受0.15 mol·L-1NaCl、0.15 mol·L-1甘露醇、5 mmol·L-1水楊酸(SA)和 100 μmol·L-1脫落酸(ABA)誘導(dǎo)上調(diào)表達[12]。病毒誘導(dǎo)該基因沉默后,植株表現(xiàn)矮化[12]。超量表達 CaTIP1-1增強了細胞的活力、提高了活性氧清除能力,使轉(zhuǎn)基因煙草對干旱脅迫的抗性增強[12]。辣椒質(zhì)膜內(nèi)在蛋白CaPIP1-1定位在質(zhì)膜和其他亞細胞器,該基因在果實中表達量最高,低溫、鹽、甘露醇、脫落酸和辣椒疫霉菌侵染處理后上調(diào)表達[12]。病毒誘導(dǎo)該基因沉默后,辣椒植株矮化,離體葉片對干旱脅迫的抗性降低[12]。QIAN等[13]發(fā)現(xiàn)當(dāng)黃瓜幼苗浸泡在PEG和NaCl溶液中,根中水通道蛋白AQP的表達下降,根系導(dǎo)水率的下降可能是由于水通道蛋白活力的下降。CsPIP1;2和CsPIP2;4表達的下降導(dǎo)致葉片和葉片細胞的導(dǎo)水率下降。這些結(jié)果表明,黃瓜的水通道蛋白介導(dǎo)黃瓜幼苗的水分運輸[13]。

        SlSlZ1(SAP and Mizl)蛋白可以調(diào)節(jié)類泛素化過程,ZHANG等[14]在番茄中擴增得到一個SlSlZ1,該基因的表達受到干旱脅迫的誘導(dǎo),在煙草中過表達SlSlZ1,經(jīng)過干旱處理后,轉(zhuǎn)基因植株降低了ROS的積累,并提高了脯氨酸含量,表現(xiàn)出更強的抗旱能力。LIU等[15]在番茄中克隆得到了一個 ShDHN(SK3-type dehydrin),ShDHN是番茄中的一類脫水蛋白,表達受到不同逆境脅迫的誘導(dǎo)。在番茄中過表達ShDHN,轉(zhuǎn)基因植株積累了更高含量的脯氨酸,提高了抗氧化酶的活性,提高了轉(zhuǎn)基因植株對干旱脅迫的抗性。

        1.2 抗旱轉(zhuǎn)錄因子

        在擬南芥中,目前鑒定已知的轉(zhuǎn)錄因子家族主要包括:AREB、DREB、MYB、WRKY、NAC和bZIP家族。

        DREB類轉(zhuǎn)錄因子在植物響應(yīng)非生物脅迫的過程中起著重要的作用。JIANG等[16]利用酵母文庫分離克隆得到了一個番茄的SlDREB1,SlDREB1在根中的表達顯著高于莖中,其表達受到干旱和鹽脅迫的誘導(dǎo)。SlDREB1在擬南芥中表達的結(jié)果表明,經(jīng)過干旱處理后,過表達擬南芥植株的抗旱性顯著高于對照。凝膠遷移實驗(electrophoretic mobility shift assay,EMSA)結(jié)果分析表明,SlDREB1蛋白可以與下游基因啟動子上CCGAC的元件相結(jié)合進而調(diào)控下游基因的表達。ERD15受到SlDREB1的直接調(diào)控,進而提高了轉(zhuǎn)基因植株的抗旱性[16]。LIU等[17]克隆分離得到了一個甘藍的DREB1。為進一步研究BpDREB1的功能,在擬南芥中過表達該基因,結(jié)果表明干旱脅迫后轉(zhuǎn)基因植株的可溶性糖和脯氨酸含量顯著高于對照,轉(zhuǎn)基因植株表現(xiàn)出更強的抗旱性。

        WRKY轉(zhuǎn)錄因子是一類植物特有的轉(zhuǎn)錄因子,參與到不同的生物脅迫和非生物脅迫的調(diào)節(jié)過程中。SUN等[18]擴增得到一個番茄的SlWRKY39,其表達受到鹽脅迫和干旱脅迫的誘導(dǎo)。在番茄中過表達SlWRKY39,轉(zhuǎn)基因植株積累了更多的脯氨酸和更低的MDA,逆境相關(guān)基因SlRD22和SlDREB2A的表達高于對照植株。SlWRKY39作為一個轉(zhuǎn)錄激活因子通過提高抗逆基因SlRD22和SlDREB2A的表達提高了植株的抗旱性[18]。

        NAC轉(zhuǎn)錄因子是一類植物特有的轉(zhuǎn)錄因子,其在植物響應(yīng)逆境脅迫的過程中起著十分重要的作用。ZHU等[19]發(fā)現(xiàn)番茄 NAC轉(zhuǎn)錄因子SlNAC4的表達受到逆境脅迫的誘導(dǎo),RNAi干擾番茄SlNAC4后,轉(zhuǎn)基因番茄植株受到的逆境傷害更大,生長狀況顯著弱于對照植株,葉片葉綠素含量和相對含水量顯著降低。在RNAi干擾番茄植株中,許多逆境相關(guān)基因的表達顯著下降,表明 SlNAC4作為一個轉(zhuǎn)錄激活因子參與番茄的抗旱反應(yīng)[19]。WANG等[20]分離克隆得到一個番茄的SlNAC11,利用RNAi技術(shù)沉默該基因,結(jié)果表明轉(zhuǎn)基因番茄的抗旱性降低,表現(xiàn)在葉綠素含量和種子萌發(fā)率的降低,而丙二醛的含量顯著升高。

        bHLH轉(zhuǎn)錄因子是一類植物特有的轉(zhuǎn)錄因子,響應(yīng)不同的生物脅迫和非生物脅迫。FENG等[21]擴增得到了一個MYC類的bHLH轉(zhuǎn)錄因子SlICE1a(inducer of CBF expression)。為進一步研究SlICE1a的功能,在煙草中過表達 SlICE1a,轉(zhuǎn)基因植株的耐旱性顯著提高,SlICE1a通過激活下游基因 CBF3/DREB1A(C-repeat binding factor/dehydration resistance element binding protein 1)的表達,從而提高轉(zhuǎn)基因植株的抗旱性。bZIP類轉(zhuǎn)錄因子是一類植物特有的轉(zhuǎn)錄因子,參與不同的生物學(xué)過程和非生物脅迫的響應(yīng)。ORELLANA等[22]在番茄中克隆得到一個 SlAREB1(ABA responsive element binding protein),該基因是ABF(ABRE binding factors)亞家族中的一員,其表達受到干旱脅迫的誘導(dǎo)。在番茄中過表達SlAREB1,提高了轉(zhuǎn)基因植株的抗旱性。

        2 鹽脅迫

        鹽脅迫是指土壤中鹽分過多對植物正常生長發(fā)育所造成的傷害作用,也稱為鹽害。鹽害是全球作物減產(chǎn)的主要原因之一,全球約有 7%的土地受到鹽漬化的威脅[23],在中國土壤鹽漬化也日益嚴重。土壤鹽堿化嚴重影響農(nóng)業(yè)的安全生產(chǎn)和健康發(fā)展,是當(dāng)今世界較為嚴重的生態(tài)環(huán)境和社會經(jīng)濟問題之一。

        植物抵御鹽脅迫的有效方法之一是維持細胞內(nèi)離子平衡,防止 Na+積累造成毒害,SOS(salt overly sensitive)途徑是維持細胞內(nèi)離子平衡的重要信號通路,它在調(diào)節(jié) Na+/K+穩(wěn)態(tài)和耐鹽性中起重要作用。SOS途徑的主要成員包括能夠調(diào)節(jié)根部Na+外排和木質(zhì)部 Na+裝載的質(zhì)膜 Na+/H+逆向轉(zhuǎn)運蛋白SOS1,絲氨酸/蘇氨酸蛋白激酶 SOS2和鈣結(jié)合蛋白 SOS3。

        在酵母中首次證實在鹽脅迫下SOS1能夠特異性的轉(zhuǎn)運Na+,sos突變體的生理分析與基因表達的研究表明擬南芥中SOS1參與離子從胞內(nèi)向維管束或表皮細胞周圍介質(zhì)的運輸,從而保持根細胞中 Na+的低濃度[24]。

        SOS3感應(yīng)由鹽脅迫引起的 Ca2+信號,與 Ca2+結(jié)合后 SOS3能夠結(jié)合并激活 SOS2[25-26],隨后發(fā)現(xiàn)SCaBP8/CBL10(SOS3-like calcium binding protein/Cineurin B-like)同樣能夠調(diào)節(jié)SOS2活性,SCaBP8/CBL10主要在莖中發(fā)揮作用,而SOS3主要在根中發(fā)揮作用[27]。SOS2磷酸化 SCaBP8從而增強 SCaBP8-SOS2復(fù)合物的穩(wěn)定性[28],SOS3-SOS2 /SCaBP8-SOS2復(fù)合物將SOS2運輸至質(zhì)膜從而激活SOS1的活性,將Na+排出細胞[27,29-30]。

        SOS1的活性調(diào)節(jié)并不僅僅依賴于SOS3-SOS2復(fù)合物,SOS1是PLD(phospholipase D)信號通路的靶蛋白,在鹽脅迫下參與離子傳感與動態(tài)平衡調(diào)節(jié)。鹽處理下,擬南芥PLDα1酶活性增強,引起第二信使磷脂酸(phosphatidic acid,PA)瞬時迅速積累,PA激活MPK6(mitogen-activated protein kinase 6),MPK6直接磷酸化SOS1。PLDα1及MPK6的功能缺失突變體對鹽脅迫更為敏感。盡管PLD信號通路通過SOS1調(diào)節(jié)離子排斥和內(nèi)穩(wěn)態(tài)的維持,但它對SOS1的調(diào)節(jié)似乎平行于SOS3-SOS2復(fù)合物的調(diào)節(jié)[31]。有報道發(fā)現(xiàn)GI(GIGANTEA)是SOS途徑上的負調(diào)控因子,GI通過與SOS2結(jié)合從而抑制SOS1在無脅迫情況下的激活[30]。Na+外排及離子平衡的調(diào)節(jié)機制比目前理解的更為復(fù)雜,SOS信號通路并不是控制Na+外排的唯一方式。

        OLíAS等[32]發(fā)現(xiàn)番茄質(zhì)膜 Na+/H+逆向轉(zhuǎn)運蛋白SlSOS1通過維持離子平衡和和調(diào)節(jié)植物器官中Na+的分配,使Na+大量積累在莖中,從而保護根和光合器官免受 Na+毒害,在番茄耐鹽中發(fā)揮重要的作用。BELVER[33]和 HUERTAS[34]等先后發(fā)現(xiàn)番茄 SlSOS2/SLCIPK24(calcineurin-interacting protein kinase)和SlSOS2.1增強番茄過表達植株的耐鹽性,SlSOS2和SlSOS2.1能夠調(diào)節(jié) SlSOS1和 Na+/H+逆向轉(zhuǎn)運蛋白(LeNHX2和LeNHX4)在根中和地上部的表達,根質(zhì)膜和細胞內(nèi)膜上的Na+/H+交換活性,這些調(diào)控導(dǎo)致Na+更多地在莖及葉片中分布和貯藏。LI等[35]首次在茄子中鑒定出 5個 CBL(CBL interacting protein kinase)和15個CIPK,并證實SmCBLs和SmCIPKs互作。SmCBL7和SmCIPK17顯著響應(yīng)NaCl脅迫,因此推測 SmCBL7-SmCIPK17復(fù)合物在鹽脅迫信號通路中發(fā)揮重要作用。

        2.1 抗鹽轉(zhuǎn)錄因子

        轉(zhuǎn)錄調(diào)控是植物對逆境脅迫產(chǎn)生應(yīng)答的關(guān)鍵步驟,轉(zhuǎn)錄因子在植物對逆境脅迫的應(yīng)答過程中發(fā)揮重要作用。SlNAC11-RNAi番茄植株對鹽耐受性降低,在ABA處理下轉(zhuǎn)基因株系幼苗下胚軸和根較對照更長,SlNAC11-RNAi番茄植株對 ABA敏感性降低。這些結(jié)果表明SlNAC11參與非生物脅迫響應(yīng)[20]。

        鹽脅迫、細菌病原體和信號分子誘導(dǎo)SlNAC35表達,暗示其參與植物對非生物和生物刺激的反應(yīng)。與野生型相比,SlNAC35過表達煙草植株在鹽脅迫下側(cè)根數(shù)更多,根長更長,這些結(jié)果表明在鹽處理下過表達SlNAC35促進了根的生長和發(fā)育[36]。同時在鹽脅迫下,SlNAC35過表達株系中影響根系發(fā)育的重要轉(zhuǎn)錄因子 NtARF1、NtARF2和 NtARF8表達上升[37]。這說明SlNAC35是通過調(diào)節(jié)NtARF的表達從而促進根的生長和發(fā)育[36]。HAN[38]和 YANG 等[39]發(fā)現(xiàn)NAC家族成員SlNAC1、SlNAM1和SlNAC3在鹽處理下上調(diào)或下調(diào)表達,這暗示他們在逆境響應(yīng)中發(fā)揮作用。

        乙烯響應(yīng)因子(ethylene responsive factor,ERF)在植物響應(yīng)逆境中發(fā)揮了重要作用,LU等[40]發(fā)現(xiàn)過表達 SlERF1番茄植株幼苗抗鹽能力增強,在鹽處理下,過表達植株相對含水量比對照高,MDA和電解質(zhì)滲透較低,并積累了更多的游離脯氨酸及可溶性糖。此外,SlERF1激活了抗逆相關(guān)基因 LEA、P5CS、DREB3-1等的表達,這些結(jié)果都證明SlERF1在番茄抗鹽中發(fā)揮積極作用[40]。

        對黃瓜中82個NAC進行表達分析,發(fā)現(xiàn)與其他脅迫相比,CsNACs對鹽脅迫更為敏感,說明NAC轉(zhuǎn)錄因子是黃瓜鹽脅迫應(yīng)答反應(yīng)中的重要調(diào)控因子[41]。對黃瓜中MYB家族55位成員進行不同處理下的表達分析,發(fā)現(xiàn)12個基因響應(yīng)鹽處理,但一些基因在不同的處理下表現(xiàn)出相反的表達方式。例如,CsMYB16的表達量受高鹽誘導(dǎo)而被 ABA抑制,這表明它們在植物對非生物反應(yīng)的響應(yīng)中起重要作用,并參與不同信號轉(zhuǎn)導(dǎo)途徑[42]。

        2.2 抗鹽功能基因

        滲透調(diào)節(jié)是耐鹽的最常見方式,脯氨酸和甜菜堿(Betaine)是最重要、最有效的滲透調(diào)節(jié)劑,植物在受到鹽脅迫后體內(nèi)脯氨酸含量迅速增高。脯氨酸在生物體內(nèi)具有調(diào)節(jié)細胞滲透勢,穩(wěn)定蛋白質(zhì)、膜系統(tǒng)和亞細胞結(jié)構(gòu),通過清除活性氧保護細胞完整性等作用[43]。

        CHEN等[44]成功克隆得到菜豆PvP5CS,它編碼的吡咯啉-5-羧酸合成酶參與脯氨酸合成。在鹽處理下PvP5CS的表達明顯上調(diào),而在鹽處理9 h后脯氨酸的積累達到峰值。這些結(jié)果表明 PvP5CS是一個脅迫誘導(dǎo)基因,調(diào)節(jié)脯氨酸積累應(yīng)對環(huán)境脅迫[44]。番茄 tomPRO2編碼一個全長的 P5CS酶,在 200 mmol·L-1NaCl處理下在番茄根和葉片中脯氨酸含量增加60多倍,而tomPRO2的表達量僅增加不足3 倍[45]。而 AMINI等[46]發(fā)現(xiàn)在 160 mmol·L-1NaCl處理下葉片中tomPRO2的表達量明顯下降,而根中tomPRO2的表達量未發(fā)生明顯變化。這些結(jié)果說明tomPRO2與番茄耐鹽及脯氨酸合成的關(guān)系仍有待深入探究。脯氨酸脫氫酶(ProDH)是存在于線粒體內(nèi)的催化脯氨酸降解的關(guān)鍵酶,楊鵬等[47]從青花菜中克隆得到 ProDH cDNA全長,并發(fā)現(xiàn)在外源 L-脯氨酸存在時,BoiProDH干擾植株脯氨酸脫氫酶的活性受到了明顯抑制,說明植物在鹽脅迫下可能通過抑制 BoiProDH的表達,從而提高游離脯氨酸含量應(yīng)對脅迫。LI等[48]發(fā)現(xiàn)敲除青花菜CesA(cellulose synthase)干擾植株抗鹽能力提高,BoiCesA干擾植株中脯氨酸和可溶性糖含量增加,同時逆境相關(guān)基因 BoiPIP2;2、BoiPIP2;3表達量上升,而 BoiProH表達量下降,揭示了BoiCesA干擾植株抗鹽能力提高的機理。

        甜菜堿在細胞中起著滲透保護劑的作用,其大量積累可保持許多代謝過程中重要酶類的活性,甜菜堿醛脫氫酶(BADH)是甜菜堿合成途徑中的關(guān)鍵酶。研究發(fā)現(xiàn),不管是在對照還是鹽處理下,過表達SlBADH植株中BADH的表達量都明顯高于對照植物。并且隨著處理濃度的增加,過表達SlBADH植株中BADH的表達量也隨之上升。在鹽處理下過表達 SlBADH植株長勢明顯優(yōu)于對照,鹽處理 7 d后對照植株開始萎蔫,而過表達 SlBADH植株仍然挺立,說明BADH的超表達增強了番茄的抗鹽能力[49]。

        3 溫度脅迫

        溫度是影響蔬菜生長發(fā)育的關(guān)鍵環(huán)境因素之一。近年來,全球氣溫波動加劇,極端高溫、低溫天氣頻次增加[50]。為提高蔬菜作物對于極端溫度條件的耐受性,研究蔬菜作物抵御極端高溫及低溫條件過程中的分子機理具有非常重要的意義。

        3.1 高溫脅迫

        環(huán)境溫度的上升對農(nóng)作物生長發(fā)育帶來重大影響,極端高溫天氣會引起農(nóng)作物一系列生理生化水平的變化[51]。在高溫條件下,植物光合系統(tǒng)會到影響,其中光系統(tǒng)Ⅱ(PSⅡ)電子傳遞被抑制,光化學(xué)效率降低,造成大量光能剩余,從而產(chǎn)生大量的活性自由基[52]。這些植物細胞內(nèi)產(chǎn)生的大量剩余自由基導(dǎo)致膜脂過氧化,細胞膜透性發(fā)生改變,電解質(zhì)外滲,對植物造成傷害。為減輕或避免這種傷害,由過氧化物酶(POD)、過氧化氫酶(CAT)、超氧化物歧化酶(SOD)和抗壞血酸過氧化物酶(APX)構(gòu)成的膜保護酶系統(tǒng)與可溶性糖和脯氨酸等滲透調(diào)節(jié)物質(zhì)會起到清除活性氧、維護細胞膜穩(wěn)定性的作用[53]。

        在高溫條件下,植物內(nèi)源激素的含量、分布都會出現(xiàn)變化,這其中ABA參與植物抗逆反應(yīng),并在逆境信號轉(zhuǎn)導(dǎo)以及生理生化保護性反應(yīng)過程中起著重要作用。毛勝利等[54]在研究高溫脅迫下番茄中ABA變化時,發(fā)現(xiàn)番茄耐熱品種葉片ABA含量提高的幅度明顯大于不耐熱品種;耐熱品種花器官中ABA含量無論在常溫還是在高溫下,都高于不耐熱品種,推測花器官中形成高水平的 ABA對高溫脅迫下花粉活力有決定性影響。張玉華等[55]在對黃瓜的研究也表明黃瓜花器官中的 ABA參與了對高溫逆境的響應(yīng)。

        在植物對于高溫逆境的響應(yīng)過程中,熱激蛋白作為一類高度保守的功能性蛋白可以起到維護細胞結(jié)構(gòu)的穩(wěn)定,維持細胞正常生理功能的作用[56],而熱激轉(zhuǎn)錄因子(heat stress transcription factors,HSFs)作為一類轉(zhuǎn)錄調(diào)節(jié)因子可以調(diào)控?zé)峒さ鞍谆蛟趦?nèi)的多種抗逆基因的表達,在整個植物響應(yīng)高溫逆境的分子調(diào)控網(wǎng)絡(luò)中處于中心位置,具有重要作用[57]。AHSAN 等[58]在經(jīng)過熱激處理的大豆幼苗的葉、莖和根中分別分離出了54、35和61種不同的蛋白質(zhì),發(fā)現(xiàn)多種熱激蛋白在不同組織中皆有不同程度的上調(diào)表達,說明熱激蛋白在大豆幼苗對高溫脅迫的響應(yīng)中具有重要作用。BHARTI等[59]發(fā)現(xiàn)在番茄中,熱激轉(zhuǎn)錄因子 HsfB1可以作為共激活子與 HsfA1結(jié)合形成復(fù)合體,增強下游相關(guān)基因的表達從而提高植株對于高溫逆境的耐受性。LI等[60]發(fā)現(xiàn)番茄熱激轉(zhuǎn)錄因子SlHsfA3可直接調(diào)控SlHsp26.1-P和SlHsp21.5-ER的表達,使其表達量顯著增加,過表達 SlHsfA3的擬南芥植株耐熱性增強并且花期推遲。FRAGKOSTEFANAKIS等[61]在番茄中發(fā)現(xiàn)HsfA1a的共激活子HsfA2在經(jīng)過熱激處理的番茄幼苗中大量表達并調(diào)控大量下游的熱激響應(yīng)基因,提高了番茄對高溫脅迫的耐受性,此外還發(fā)現(xiàn) HsfA2的過表達會導(dǎo)致花粉的活力及萌發(fā)率降低,表明HsfA2是在熱脅迫下維持花粉活性的重要調(diào)控因子,其具體調(diào)控機制還有待研究。目前,植物熱激蛋白及熱激轉(zhuǎn)錄因子功能及調(diào)控網(wǎng)絡(luò)的研究是分子生物學(xué)的熱點問題之一,蔬菜作物中有關(guān)熱激蛋白及熱激轉(zhuǎn)錄因子響應(yīng)高溫逆境的具體作用機制及功能的研究主要集中在番茄中,其他蔬菜作物的研究報道相對較少。

        此外,植物響應(yīng)高溫脅迫的過程中還有許多基因具有重要的功能。SHEN等[62]將擬南芥中的受體激酶基因ERECTA過表達至番茄和水稻野生型植株中,發(fā)現(xiàn)在番茄和水稻的過表達株系中熱激蛋白的表達量與野生型相比顯著升高,植株也表現(xiàn)出對于高溫脅迫更強的耐受性。YANG等[63]將菠菜的甜菜堿醛脫氫酶基因SoBADH-1過表達轉(zhuǎn)入煙草中,發(fā)現(xiàn)轉(zhuǎn)基因煙草的耐熱性高于對照,進一步研究表明,甜菜堿可以維持Rubisco活化酶的活性從而緩解其活性的降低,提高了植株在高溫條件下對CO2同化的耐受性,增強了轉(zhuǎn)基因煙草對高溫的耐受性。張揚[64]利用VIGS技術(shù)沉默了番茄 S-亞硝基谷胱甘肽還原酶基因SlGSNOR,發(fā)現(xiàn)高溫下沉默植株與野生型植株相比葉片凈光合速率下降,Rubisco酶活性降低,對高溫的耐受性下降。

        3.2 低溫脅迫

        低溫是主要的非生物脅迫因子之一,低溫脅迫可以分為冷脅迫(0—15℃)和冰凍脅迫(<0℃)。研究表明,植物在受到低溫脅迫后,會出現(xiàn)水分狀況、礦質(zhì)營養(yǎng)、光合作用、呼吸作用和新陳代謝等生理過程的紊亂,造成冷害甚至死亡。WANG等[65]在番茄的研究中發(fā)現(xiàn)植株受到冷脅迫后,光合系統(tǒng)獲得的過剩激發(fā)能量會導(dǎo)致光抑制和光氧化發(fā)生,降低寒冷期間光合速率,表現(xiàn)為葉綠體膜脂質(zhì)過氧化作用增強,葉綠素、胡蘿卜素和葉黃素發(fā)生降解。冷脅迫還會造成植物細胞膜流動性及膜結(jié)合酶的活性降低,影響植物的生長發(fā)育與生理代謝。

        植物對冷脅迫的響應(yīng)通常表現(xiàn)為內(nèi)源激素含量、膜質(zhì)組成、抗氧化成分及冷脅迫相關(guān)基因轉(zhuǎn)錄水平的改變[66]。研究表明,在植物對冷脅迫的響應(yīng)過程中,CBF/DREB1轉(zhuǎn)錄因子具有重要作用,位于整個分子調(diào)控網(wǎng)絡(luò)的中心位置。研究顯示,植物體內(nèi)存在2條途徑調(diào)節(jié)CBF的表達:一條為鈣離子信號途徑[67],質(zhì)膜感受到冷信號,通過改變胞質(zhì)中的三磷酸肌醇IP3含量,誘導(dǎo)胞質(zhì)內(nèi)鈣離子的積累,迅速增加的鈣離子與鈣調(diào)蛋白結(jié)合轉(zhuǎn)錄因子CAMTA3(Calmodulin- binding transcription activator 3)形成復(fù)合物,通過CAMTA3與CBF2啟動子上CG-1元件結(jié)合,激活CBF的表達;另外一條途徑是ICE-CBF寒冷響應(yīng)途徑。ICE是類似MYC的bHLH轉(zhuǎn)錄因子,可以與位于CBF上游啟動子中的ICE結(jié)合元件相結(jié)合,誘導(dǎo)CBF表達,而后CBF表達產(chǎn)物與下游一系列 COR(cold responsive gene)基因啟動子中的CRT/DRE(c-repeat/Dehydration responsive element)元件結(jié)合,誘導(dǎo)一系列抗冷基因表達,從而提高植物抗冷性[68]。YU等[69]在番茄中過表達ICE1轉(zhuǎn)錄因子,發(fā)現(xiàn)轉(zhuǎn)基因番茄植株中,CBF的表達量上調(diào),在冷脅迫條件下,與野生型番茄相比,過表達植株中丙二醛含量降低,脯氨酸含量增加,過氧化物酶、過氧化氫酶活性升高,對冷脅迫的耐受性增強。BEHNAM等[70]將擬南芥的DREB1A及RD29A共轉(zhuǎn)入馬鈴薯中,發(fā)現(xiàn)轉(zhuǎn)基因馬鈴薯植株中DREB1A及RD29A互作,顯著提高了馬鈴薯植株對冷脅迫的耐受性。

        此外,在植物響應(yīng)冷脅迫的過程中,胚胎后期豐富蛋白、熱激蛋白、滲透調(diào)節(jié)物質(zhì)生物合成所需的酶等蛋白質(zhì)對于植物建立對低溫的抗性,以及受凍害后的恢復(fù)都具有重要作用。LEA和HSPs是在低溫脅迫下表達量明顯升高的兩類重要蛋白,在脅迫過程中起到維持功能蛋白正常結(jié)構(gòu),防止蛋白質(zhì)變性,增強細胞膜流動性,維持細胞的正常生理功能[71]。番茄和菠菜在低溫下產(chǎn)生一類Hsp70家族蛋白,這些蛋白類分子伴侶可在低溫條件下調(diào)節(jié)蛋白質(zhì)的折疊和運輸,維持酶的活性[72]。

        4 其他非生物脅迫

        4.1 重金屬脅迫

        重金屬污染一般是指密度在4.5 g·cm-3以上的金屬(包括銅、鋅、鉻、鉛、汞、鎳、鈷等)或其化合物在環(huán)境中所造成的污染。重金屬濃度一旦超過植物自凈能力,會對植物的生長發(fā)育產(chǎn)生極大的抑制作用。中國北京、上海、天津、壽光、哈爾濱、福州、長沙、大同、成都、貴陽等地都對郊區(qū)菜園土壤和產(chǎn)出蔬菜中的重金屬積累情況進行過調(diào)查,結(jié)果顯示形勢十分嚴峻,各大城市郊區(qū)蔬菜都已經(jīng)受到了不同程度的重金屬污染,有些甚至超過了食品衛(wèi)生安全標(biāo)準[73]。

        在長期的進化過程中,植物形成了多種機制防御重金屬離子的毒害。根系能夠在根尖部分外排分泌物,其成分復(fù)雜多樣,其中研究較多的是有機酸、氨基酸和糖類等。根系分泌的有機酸,包括檸檬酸、草酸和蘋果酸,這些有機酸能夠在根際螯合重金屬從而形成無毒的穩(wěn)定復(fù)合物。根系分泌物對于鋁毒耐受性的研究較為清楚。不同植物會分泌不同的有機酸來緩解鋁脅迫,番茄和菠菜能夠在鋁的刺激下分泌草酸、蘋果酸和檸檬酸,四季豆能分泌蘋果酸[74],而蘿卜能分泌檸檬酸和蘋果酸[75]。另外,有兩種轉(zhuǎn)運蛋白能夠增加鋁誘導(dǎo)的蘋果酸或檸檬酸的外排和鋁抗性。在甘藍中克隆到了一個鋁誘導(dǎo)的檸檬酸轉(zhuǎn)運蛋白 MATE[76],但是另一種蘋果酸轉(zhuǎn)運蛋白ALMT在蔬菜中尚未報道,在擬南芥、油菜中已被鑒定[77-78]。

        重金屬離子必須跨過根系細胞膜才能進入植物體內(nèi)產(chǎn)生毒害,因此,細胞膜的選擇性吸收是重金屬抗性機理的重要部分。目前有大量金屬離子的轉(zhuǎn)運器被鑒定,包括鐵離子轉(zhuǎn)運器(IRT)[79],ZIP家族轉(zhuǎn)運蛋白[80],自然抵抗相關(guān)的巨噬細胞蛋白(Nrump)[81],P-type ATPase家族蛋白[82]。然而這些金屬離子轉(zhuǎn)運子的研究多集中于擬南芥、水稻等模式作物中,在蔬菜中少有報道。

        當(dāng)重金屬進入細胞后,能夠和細胞內(nèi)的蛋白質(zhì)、有機酸、谷胱甘肽等形成復(fù)雜的螯合物,從而使重金屬的毒性降低。植物絡(luò)合素(phytochelatins,PCs)是一種重金屬結(jié)合多肽,最早是從Ophiorrhiza mungos懸浮細胞中分離得到[83]。正常情況下,PCs在植物體內(nèi)的含量很低,但是在重金屬的誘導(dǎo)下,能夠由植物絡(luò)合素合成酶(PCS)催化以半胱氨酸為底物迅速合成。PCs能夠與重金屬離子結(jié)合形成無毒的化合物,之后被送至液泡儲存起來。STEFFENS等[84]發(fā)現(xiàn)抗高濃度鎘(Cd)脅迫的番茄細胞中 PCs的含量遠高于普通番茄細胞,并且用谷氨酰半胱氨酸合成酶抑制劑處理抗Cd的番茄細胞后,其抗性消失。另外也有研究顯示Cd脅迫提高了馬鈴薯中PCS的轉(zhuǎn)錄活性與酶活性[85]。擬南芥AtPCS1缺失突變體對鎘高度敏感,并且過表達AtPCS1能夠提高植物對鎘的耐受性[86]。目前只有少量蔬菜中的PCS被克隆,包括萵苣[87]、印度芥菜[88]。另一種高等植物具有的能與金屬離子結(jié)合的多肽是金屬硫蛋白(MTs)。除了可以螯合重金屬達到解毒的目的外,MTs也可以清除重金屬毒害造成的大量自由基[89]。蕪菁BrMT1[90]、大蒜AsMT2b和芋CeMT2b[91]能夠增加擬南芥的鎘抗性。

        4.2 水淹脅迫

        大多數(shù)植物無法長期浸沒在水中,蔬菜作物尤其不能耐受水淹[92]。澇害和水淹導(dǎo)致植物根系處于低氧狀態(tài),抑制根系生長甚至爛根。擬南芥中的研究表明,乙烯信號和低氧信號在植物抵御水淹脅迫中發(fā)揮著重要作用[93]。VIDOZ等[94]發(fā)現(xiàn),乙烯會刺激生長素向莖中運輸積累進而刺激更多的乙烯合成。大量積累的乙烯進一步促進生長素在受到水淹的組織中積累,從而誘導(dǎo)番茄生長出新的根系組織替代被澇害損傷的根系。在水淹條件下,乙烯合成抑制劑(ethylene biosynthesis inhibitor aminoethoxyvinylglycine,AVG)和生長素轉(zhuǎn)運抑制劑(auxin transport inhibitor 1-naphthylphthalamic acid,NPA)處理的番茄較未處理的番茄,不定根數(shù)量減少,導(dǎo)致番茄耐澇能力降低。乙烯響應(yīng)轉(zhuǎn)錄因子在乙烯抗?jié)承盘栔衅鸬街匾饔?。在擬南芥中,過表達乙烯響應(yīng)因子 HRE1和 HRE2(hypoxia-inducible ethylene response factor)表現(xiàn)出較強抗?jié)承訹95]。RAP2.12、RAP2.2和RAP2.3(ERF-VII factor)則不受低氧脅迫誘導(dǎo),但會在蛋白水平上受到氧含量的負調(diào)控[96-97]。在蔬菜作物中,抗?jié)澈Φ年P(guān)鍵轉(zhuǎn)錄因子仍未被揭示,但一些功能基因被報道與抗?jié)诚嚓P(guān)。CHIANG等[98]在擬南芥中過表達茄子和絲瓜的APX增強過表達擬南芥植株在澇害條件下清除H2O2的能力,進而增強抗?jié)衬芰?。在黃瓜中,干擾CsSUS3(sucrose synthase 3)使黃瓜耐低氧能力降低[99]。QI等[100]利用高通量 Tag-seq測序檢測黃瓜在水淹條件下 24 h內(nèi)差異表達的基因,得到的差異基因涉及碳穩(wěn)態(tài)、光合作用、活性氧產(chǎn)生和清除、激素合成及其信號通路等。蔬菜作物應(yīng)答非生物逆境的基因/轉(zhuǎn)錄因子相關(guān)研究總結(jié)如表1。

        表1 蔬菜作物應(yīng)答非生物逆境的基因/轉(zhuǎn)錄因子Table 1 Genes/transcription factors of abiotic stress responses in vegetable crops

        4.3 弱光脅迫

        光是光合作用的能量來源,是植物生長發(fā)育最重要的環(huán)境因素。而過弱的光照會嚴重影響光合作用、生物量及抑制抗氧化酶活性,并且會影響葉綠體的定位;過強的光照則會使植物積累過多的自由基,同樣會抑制植物的生長發(fā)育。在蔬菜中,強光逆境研究少,所以本文僅對蔬菜弱光逆境的響應(yīng)展開討論。細胞分裂素(Cytokinins)廣泛影響植物的生長發(fā)育,能夠在維持葉綠體活性、減緩葉綠素降解、延緩衰老等方面起作用。在黃瓜中,6-BA能通過調(diào)節(jié)葉綠素的含量,減少氧自由基和 H2O2的產(chǎn)生,從而減少光合系統(tǒng)的損傷,進而提高CO2的同化效率,積累更多的碳水化合物以供生長[101]。油菜素內(nèi)脂(brassinosteroids,Brs)作為近年新報道的植物激素,同樣對植物抵御弱光逆境有一定的作用。CUI等[102]用 0.1 μmol·L-1EBR 處理番茄,ATPase β亞族的活性相比對照植株有所提高,活性氧清除能力提高,使番茄在弱光條件下積累更少量的氧自由基和H2O2。但更加深入的逆境信號傳遞途徑以及激素信號傳導(dǎo)途徑在蔬菜作物中未見報道。更多的研究主要集中在營養(yǎng)和外源施加某種物質(zhì)來增強蔬菜作物抵御弱光逆境的能力[103-104]。HU 等[103]調(diào)整NH4+∶NO3-比例為 1∶9,從而提高了白菜中 rbcL(rubisco large subunit gene)、rbcS(rubisco small subunit gene)、FBPase(fructose-1, 6- bisphosphatase)及 TK(transketolase)等基因的表達量,該措施增強了白菜在弱光條件下的光合作用,增加了碳水化合物的積累,提高了白菜抗弱光的能力。YU等[104]通過外源施加亞精胺(spermidine)抑制了弱光條件下番茄的膜脂過氧化過程。

        5 展望

        非生物逆境對蔬菜作物的產(chǎn)量及品質(zhì)有重要影響。在分子生物學(xué)層面研究蔬菜作物抵抗非生物逆境機制成為近年來的熱點。在非生物逆境信號刺激下,植物體內(nèi)ABA水平升高,ABA信號受體PYL(pyrabactin resistance 1-like)與其共受體 PP2Cs(protein phosphatase 2Cs)互作并將信號傳遞給SnRK2(Sucrose nonfermenting related protein kinases 2)[105],進而誘導(dǎo)多種抗逆相關(guān)基因的差異表達,如WRKY、NAC,HSF等轉(zhuǎn)錄因子。這些轉(zhuǎn)錄因子的表達變化會進一步調(diào)節(jié)下游抗逆相關(guān)的功能基因變化及抗逆物質(zhì)的積累。但目前蔬菜作物的研究仍呈現(xiàn)碎片化,研究內(nèi)容僅針對某個轉(zhuǎn)錄因子或功能基因的研究。蔬菜作物中的逆境響應(yīng)信號轉(zhuǎn)導(dǎo)途徑是否與擬南芥中存在區(qū)別,ABA與轉(zhuǎn)錄因子之間的信號通路以及轉(zhuǎn)錄因子與功能基因間的直接調(diào)控關(guān)系并未得到深入研究。近年來的研究可以看出,機制性研究正在逐步深入。從基本的功能基因的研究逐步向調(diào)控因子上過渡。一些關(guān)鍵的調(diào)控因子如CBFs、ABIs在蔬菜中得以涉及,miRNA在蔬菜抵御逆境脅迫過程中的功能也有一定的研究[106-107]。

        目前,蔬菜作物的非生物逆境響應(yīng)機制研究受限于遺傳轉(zhuǎn)化體系的制約,除番茄、黃瓜等重要蔬菜外,大部分蔬菜的轉(zhuǎn)化體系仍未有效建立,基因功能的驗證僅能在擬南芥、煙草等模式植物上進行,制約了蔬菜作物非生物逆境脅迫響應(yīng)的研究。因此,建立穩(wěn)定的遺傳轉(zhuǎn)化體系對蔬菜作物的非生物逆境響應(yīng)機理研究十分重要。同時,目前蔬菜非生物逆境的相關(guān)研究仍有大量空白,各個非生物逆境的信號通路有待更加深入的研究,生物技術(shù)的進步也將為研究蔬菜非生物逆境響應(yīng)提供便利。CRISPR-Cas9是近年來研究基因功能的有效工具,在蔬菜作物中,CRISPR技術(shù)被用于生長發(fā)育及育種方向的研究[108-109],如LI等[109]利用CRISPR敲除多個 γ-氨基丁酸合成通路中的多個基因從而研究其代謝,但將其用于非生物逆境研究仍未見報道。CRISPR技術(shù)在蔬菜作物上的成功應(yīng)用將為探究蔬菜非生物逆境脅迫響應(yīng)機制提供助力。未來的研究可以通過EMS誘變或直接進行基因編輯獲得蔬菜作物中ABA信號通路、逆境應(yīng)答關(guān)鍵基因的突變體。以此為切入點,利用成熟的轉(zhuǎn)錄組學(xué)、蛋白組學(xué)、代謝組學(xué)等技術(shù),自上而下研究蔬菜抵御非生物逆境的信號通路。同時研究非生物逆境對蔬菜經(jīng)濟器官的影響(如果類蔬菜的果實發(fā)育以及葉類蔬菜的形態(tài)建成),指導(dǎo)蔬菜作物的生產(chǎn),具有重要的實際應(yīng)用價值。

        [1]李輝尚, 孔繁濤, 沈辰, 馬娟娟. “十三五”時期我國蔬菜產(chǎn)業(yè)發(fā)展策略研究. 經(jīng)濟縱橫, 2016 (11): 114-120.LI H S, KONG F T, SHEN C, MA J J. The study on development strategy of China's vegetable industry in “13th Five-Year” period.Economic Review, 2016(11): 114-120. (in Chinese)

        [2]魯松. 干旱脅迫對植物生長及其生理的影響. 江蘇林業(yè)科技, 2012,39(4): 51-54.LU S. Effects of drought stress on plant growth and physiological traits. Journal of Jiangsu Forestry Science & Technology, 2012, 39(4):51-54. (in Chinese)

        [3]王麗, 劉洋, 李德全. 植物干旱脅迫信號轉(zhuǎn)導(dǎo)及其調(diào)控機制研究進展. 生物技術(shù)通報, 2012(10): 1-7.WANG L, LIU Y, LI D Q. Drought stress signal transduction and regulation mechanism in plants. Biotechnology Bulletin, 2012(10): 1-7.(in Chinese)

        [4]田再民, 龔學(xué)臣, 抗艷紅, 王璞, 丁倩, 翟崇娜, 王凱峰, 楊會彩.植物對干旱脅迫生理反應(yīng)的研究進展. 安徽農(nóng)業(yè)科學(xué), 2011,39(26): 16475-16477.TIAN Z M, GONG X C, KANG Y H, WANG P, DING Q, ZHAI C N,WANG K F, YANG H C. Research progress on the physiological response of plants to drought stress. Journal of Anhui Agricultural Science, 2011, 39(26): 16475-16477. (in Chinese)

        [5]SANCHEZ D H, PIECKENSTAIN F L, SZYMANSKI J, ERBAN A, BROMKE M, HANNAH M A, KRAEMER U, KOPKA J,UDVARDI M K. Comparative functional genomics of salt stress in related model and cultivated plants identifies and overcomes limitations to translational genomics. PLoS ONE, 2011, 6:e170942).

        [6]NURUZZAMAN M, SHARONI A M, KIKUCHI S. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Frontiers in Microbiology, 2013, 4: 248.

        [7]FRANCO-ZORRILLA J M, LOPEZ-VIDRIERO I, CARRASCO J L,GODOY M, VERA P, SOLANO R. DNA-binding specificities of plant transcription factors and their potential to define target genes.Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(6): 2367-2372.

        [8]WANG H, WANG H, SHAO H, TANG X. Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Frontiers in Plant Science, 2016, 7: 67.

        [9]JOSHI R, WANI S H, SINGH B, BOHRA A, DAR Z A, LONE A,PAREEK A, SINGLA-PAREEK S L. Transcription factors and plants response to drought stress: current understanding and future directions.Frontiers in Plant Science, 2016, 7: 1029.

        [10]孫琳琳, 辛士超, 強曉晶, 程憲國. 非生物脅迫下植物水通道蛋白的應(yīng)答與調(diào)控. 植物營養(yǎng)與肥料學(xué)報, 2015, 21(4): 1040-1048.SUN L L, XIN S C, QIANG X J, CHENG X G. Responsive regulation of aquaporins in the plants exposed to abiotic stresses.Journal of Plant Nutrition and Fertilizer, 2015, 21(4): 1040-1048. (in Chinese)

        [11]LI R, WANG J, LI S, ZHANG L, QI C, WEEDA S, ZHAO B, REN S, GUO Y. plasma membrane intrinsic proteins SlPIP2;1, SlPIP2;7 and SlPIP2;5 conferring enhanced drought stress tolerance in tomato.Scientific Reports, 2016, 6: 31814.

        [12]YIN Y, WANG S, XIAO H, ZHANG H, ZHANG Z, JING H,ZHANG Y, CHEN R, GONG Z. Overexpression of the CaTIP1-1 pepper gene in tobacco enhances resistance to osmotic stresses.International Journal of Molecular Sciences, 2014, 15(11):20101-20116.

        [13]QIAN Z, SONG J, CHAUMONT F, YE Q. Differential responses of plasma membrane aquaporins in mediating water transport of cucumber seedlings under osmotic and salt stresses. Plant Cell and Environment, 2015, 38(3): 461-473.

        [14]ZHANG S, ZHUANG K, WANG S, LV J, MA N, MENG Q. A novel tomato SUMO E3 ligase, SlSIZ1, confers drought tolerance in transgenic tobacco. Journal of Integrative Plant Biology, 2017, 59(2):102-117.

        [15]LIU H, YU C, LI H, OUYANG B, WANG T, ZHANG J, WANG X,YE Z. Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato.Plant Science, 2015, 231: 198-211.

        [16]JIANG L, WANG Y, ZHANG S, HE R, LI W, HAN J, CHENG X.Tomato SlDREB1 gene conferred the transcriptional activation of drought-induced gene and an enhanced tolerance of the transgenic Arabidopsis to drought stress. Plant Growth Regulation, 2017, 81(1):131-145.

        [17]LIU X, CHEN L, ZHANG J, LI J, GAO Y, WANG Z. Isolation and functional analysis of a new DREB transcription factor (BpDREB1)from Brassica pekinensis. Acta Agronomica Sinica, 2013, 39(2):230-237.

        [18]SUN X, GAO Y, LI H, YANG S, LIU Y. Over-expression of SlWRKY39 leads to enhanced resistance to multiple stress factors in tomato. Journal of Plant Biology, 2015, 58(1): 52-60.

        [19]ZHU M, CHEN G, ZHANG J, ZHANG Y, XIE Q, ZHAO Z, PAN Y,HU Z. The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum). Plant Cell Reports, 2014, 33(11):1851-1863.

        [20]WANG L, HU Z, ZHU M, ZHU Z, HU J, QANMBER G, CHEN G.The abiotic stress-responsive NAC transcription factor SlNAC11 is involved in drought and salt response in tomato (Solanum lycopersicum L.). Plant Cell Tissue and Organ Culture, 2017, 129(1):161-174.

        [21]FENG H, MA N, MENG X, ZHANG S, WANG J, CHAI S, MENG Q. A novel tomato MYC-type ICE1-like transcription factor, SlICE1a,confers cold, osmotic and salt tolerance in transgenic tobacco. Plant Physiology and Biochemistry, 2013, 73: 309-320.

        [22]ORELLANA S, YANEZ M, ESPINOZA A, VERDUGO I,GONZALEZ E, RUIZ-LARA S, CASARETTO J A. The transcription factor SlAREB1 confers drought, salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato. Plant Cell and Environment, 2010, 33(12): 2191-2208.

        [23]LI J, PU L, HAN M, ZHU M, ZHANG R, XIANG Y. Soil salinization research in China: advances and prospects. Journal of Geographical Sciences, 2014, 24(5): 943-960.

        [24]SHI H Z, QUINTERO F J, PARDO J M, ZHU J K. The putative plasma membrane Na+/H+antiporter SOS1 controls long-distance Na+transport in plants. Plant Cell, 2002, 14(2): 465-477.

        [25]HRABAK E M, CHAN C, GRIBSKOV M, HARPER J F, CHOI J H,HALFORD N, KUDLA J, LUAN S, NIMMO H G, SUSSMAN M R,THOMAS M, WALKER-SIMMONS K, ZHU J K, HARMON A C.The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiology, 2003,132(2): 666-680.

        [26]LIU J P, ISHITANI M, HALFTER U, KIM C S, ZHU J K. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(7): 3730-3734.

        [27]QUAN R, LIN H, MENDOZA I, ZHANG Y, CAO W, YANG Y,SHANG M, CHEN S, PARDO J M, GUO Y. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell, 2007, 19(4):1415-1431.

        [28]LIN H, YANG Y, QUAN R, MENDOZA I, WU Y, DU W, ZHAO S,SCHUMAKER K S, PARDO JM, GUO Y. Phosphorylation of SOS3-Like Calcium Binding Protein8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis. Plant Cell, 2009, 21(5): 1607-1619.

        [29]QUINTERO F J, MARTINEZ-ATIENZA J, VILLALTA I, JIANG X,KIM W, ALI Z, FUJII H, MENDOZA I, YUN D, ZHU J, PARDO J M. Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(6): 2611-2616.

        [30]KIM W, ALI Z, PARK H J, PARK S J, CHA J, PEREZHORMAECHE J, JAVIER QUINTERO F, SHIN G, KIM M R,QIANG Z, NING L, PARK H C, LEE S Y, BRESSAN R A, PARDO J M, BOHNERT H J, YUN D. Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nature Communications, 2013, 4: 1352.

        [31]YU L, NIE J, CAO C, JIN Y, YAN M, WANG F, LIU J, XIAO Y,LIANG Y, ZHANG W. Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytologist, 2010, 188(3): 762-773.

        [32]OLIAS R, ELJAKAOUI Z, PARDO J M, BELVER A. The Na(+)/H(+)exchanger SOS1 controls extrusion and distribution of Na(+)in tomato plants under salinity conditions. Plant Signaling & Behavior, 2009,4(10): 973-976.

        [33]BELVER A, OLIAS R, HUERTAS R, PILAR RODRIGUEZROSALES M. Involvement of SlSOS2 in tomato salt tolerance.Bioengineered, 2012, 3(5): 298-302.

        [34]HUERTAS R, OLIAS R, ELJAKAOUI Z, JAVIER GALVEZ F, LI J,ALVAREZ DE MORALES P, BELVER A, PILAR RODRIGUEZROSALES M. Overexpression of SlSOS2 (SlCIPK24) confers salt tolerance to transgenic tomato. Plant Cell and Environment, 2012,35(8): 1467-1482.

        [35]LI J, JIANG M, REN L, LIU Y, CHEN H. Identification and characterization of CBL and CIPK gene families in eggplant (Solanum melongena L.). Molecular Genetics and Genomics, 2016, 291(4):1769-1781.

        [36]WANG G, ZHANG S, MA X, WANG Y, KONG F, MENG Q. A stress-associated NAC transcription factor (SlNAC35) from tomato plays a positive role in biotic and abiotic stresses. Physiologia Plantarum, 2016, 158(1): 45-64.

        [37]KUMAR R, TYAGI A K, SHARMA A K. Genome-wide analysis of auxin response factor (ARF) gene family from tomato and analysis of their role in flower and fruit development. Molecular Genetics and Genomics, 2011, 285(3): 245-260.

        [38]HAN Q, ZHANG J, LI H, LUO Z, ZIAF K, OUYANG B, WANG T,YE Z. Identification and expression pattern of one stress-responsive NAC gene from Solanum lycopersicum. Molecular Biology Reports,2012, 39(2): 1713-1720.

        [39]YANG R, DENG C, BO O, YE Z. Molecular analysis of two salt-responsive NAC-family genes and their expression analysis in tomato. Molecular Biology Reports, 2011, 38(2): 857-863.

        [40]LU C W, SHAO Y, LI L, CHEN A J, XU WQ, WU K J, LUO Y B,ZHU B Z. Overexpression of SlERF1 tomato gene encoding an ERF-type transcription activator enhances salt tolerance. Russian Journal of Plant Physiology, 2011, 58(1): 118-125.

        [41]ZHANG X M, YU H J, SUN C, DENG J, ZHANG X, LIU P, LI Y Y,LI Q, JIANG W J. Genome-wide characterization and expression profiling of the NAC genes under abiotic stresses in Cucumis sativus.Plant Physiology and Biochemistry, 2017, 113: 98-109.

        [42]LI Q, ZHANG C, LI J, WANG L, REN Z. Genome-Wide identification and characterization of R2R3MYB family in Cucumis sativus. PLoS ONE, 2012, 7: e4757610.

        [43]陳吉寶, 趙麗英, 景蕊蓮, 王述民, 盧玉瓊. 植物脯氨酸合成酶基因工程研究進展. 生物技術(shù)通報, 2010, (02): 8-10.CHEN J B, ZHAO L Y, JING R L,WANG S M, LU Y Q. Advance in Genetic Engineering of Proline Synthetase in Plant. Biotechnology Bulletin, 2010, (02): 8-10. (in Chinese)

        [44]CHEN J, WANG S, JING R, MAO X. Cloning the PvP5CS gene from common bean (Phaseolus vulgaris) and its expression patterns under abiotic stresses. Journal of Plant Physiology, 2009,166(1): 12-19.

        [45]FUJITA T, MAGGIO A, GARCIA-RIOS M, BRESSAN R A,CSONKA L N. Comparative analysis of the regulation of expression and structures of two evolutionarily divergent genes for Delta(1)-pyrroline-5-carboxylate synthetase from tomato. Plant Physiology,1998, 118(2): 661-674.

        [46]AMINI F, EHSANPOUR A A. Expression pattern analysis of TomPRO2 and LaPA1 genes in tomato under in vitro salt stress by Semi-quantitative RT-PCR. International Journal of Plant Production,2009, 3(2): 69-76.

        [47]楊鵬, 劉莉莎, 溫常龍, 趙立群, 趙冰, 郭仰東. 青花菜 ProDH 基因的克隆及功能鑒定. 基因組學(xué)與應(yīng)用生物學(xué), 2010, 29(2):206-214.YANG P, LIU L S, WEN C L, ZHAO L Q, ZHAO B, GUO Y D.cloning and functional identification of ProDH gene from Broccoli.Genomics and Applied Biology, 2010, 29(2): 206-214. (in Chinese)

        [48]LI S, ZHANG L, WANG Y, XU F, LIU M, LIN P, REN S, MA R,GUO Y. Knockdown of a cellulose synthase gene BoiCesA affects the leaf anatomy, cellulose content and salt tolerance in broccoli.Scientific Reports, 2017, 7: 41397.

        [49]WANG J, LAI L, TONG S, LI Q. Constitutive and salt-inducible expression of SlBADH gene in transgenic tomato (Solanum lycopersicum L. cv. Micro-Tom) enhances salt tolerance. Biochemical and Biophysical Research Communications, 2013, 432(2): 262-267.

        [50]PIAO S, CIAIS P, HUANG Y, SHEN Z, PENG S, LI J, ZHOU L,LIU H, MA Y, DING Y, FRIEDLINGSTEIN P, LIU C, TAN K,YU Y, ZHANG T, FANG J. The impacts of climate change on water resources and agriculture in China. Nature, 2010, 467(7311):43-51.

        [51]MITTLER R, FINKA A, GOLOUBINOFF P. How do plants feel the heat? Trends in Biochemical Sciences, 2012, 37(3): 118-125.

        [52]ALLAKHVERDIEV S I, KRESLAVSKI V D, KLIMOV V V, LOS D A, CARPENTIER R, MOHANTY P. Heat stress: An overview of molecular responses in photosynthesis. Photosynthesis Research,2008, 98(1/3): 541-550.

        [53]LAVANIA D, SIDDIQUI M H, AL-WHAIBI M H, SINGH A K,KUMAR R, GROVER A. Genetic approaches for breeding heat stress tolerance in faba bean (Vicia faba L.). Acta Physiologiae Plantarum,2015, 37: 17371.

        [54]毛勝利, 杜永臣, 王孝宣, 朱德蔚, 高建昌, 戴善書. 高溫脅迫下番茄體內(nèi) ABA水平的變化及其對花粉萌發(fā)的影響. 園藝學(xué)報,2005, (02): 234-238.MAO S L, DU Y C, WANG X X, ZHU D W, GAO J C, DAI S S.Changes of endogenous abscisic acid and the effent of exogenous aba on pollen germination under heat stress tomato. Acta Horticlturae Sinica, 2005, (02): 234-238. (in Chinese)

        [55]張玉華, 朱月林, 繆旻珉. 高溫脅迫對黃瓜花藥中 Ca(2+)分布、ABA含量及蛋白質(zhì)合成的影響. 園藝學(xué)報, 2005,(02): 314-317.ZHANG Y H, ZHU Y L, MIAO M M. Effect of heat stress on calcium distribution, ABA contents and the synthesis of proteins in cucumber anthers. Acta Horticlturae Sinica, 2005, (02): 314-317. (in Chinese)

        [56]JACOB P, HIRT H, BENDAHMANE A. The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnology Journal, 2017, 15(4): 405-414.

        [57]GUO M, LIU J, MA X, LUO D, GONG Z, LU M. The plant heat stress transcription factors (hsfs): structure, regulation, and function in response to abiotic stresses. Frontiers in Plant Science, 2016, 7: 114.

        [58]AHSAN N, DONNART T, NOURI M, KOMATSU S. Tissue-Specific defense and thermo-adaptive mechanisms of soybean seedlings under heat stress revealed by proteomic approach. Journal of Proteome Research, 2010, 9(8): 4189-4204.

        [59]BHARTI K, VON KOSKULL-DORING P, BHARTI S, KUMAR P,TINTSCHL-KORBITZER A, TREUTER E, NOVER L. Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with the plant CREB binding protein ortholog HAC1. Plant Cell, 2004, 16(6):1521-1535.

        [60]LI Z, ZHANG L, WANG A, XU X, LI J. Ectopic Overexpression of SlHsfA3, a heat stress transcription factor from tomato, confers increased thermotolerance and salt hypersensitivity in germination in transgenic Arabidopsis. PLoS ONE, 2013, 8: e548801.

        [61]FRAGKOSTEFANAKIS S, MESIHOVIC A, SIMM S, PAUPIERE M J, HU Y, PAUL P, MISHRA S K, TSCHIERSCH B, THERES K,BOVY A, SCHLEIFF E, SCHARF K. HsfA2 Controls the activity of developmentally and stress-regulated heat stress protection mechanisms in tomato male reproductive tissues. Plant Physiology,2016, 170(4): 2461-2477.

        [62]SHEN H, ZHONG X, ZHAO F, WANG Y, YAN B, LI Q, CHEN G,MAO B, WANG J, LI Y, XIAO G, HE Y, XIAO H, LI J, HE Z.Overexpression of receptor-like kinase ERECTA improves thermotolerance in rice and tomato. Nature Biotechnology, 2015,33(9): 996-1006.

        [63]YANG X H, LIANG Z, LU C M. Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiology,2005, 138(4): 2299-2309.

        [64]張揚. 番茄 S-亞硝基谷胱甘肽還原酶基因(SlGSNOR)沉默對番茄高溫抗性的影響[D]. 杭州: 浙江大學(xué), 2013.ZHANG Y. Effects of tomato S-nitrosoglutathione reductase gene(SlGSNOR) silencing on heat resistance in the leaves of tomato [D].Hangzhou: Zhejiang University, 2013. (in Chinese)

        [65]WANG N, FANG W, HAN H, SUI N, LI B, MENG Q.Overexpression of zeaxanthin epoxidase gene enhances the sensitivity of tomato PSII photoinhibition to high light and chilling stress.Physiologia Plantarum, 2008,132(3): 384-396.

        [66]LUKATKIN A S. Contribution of oxidative stress to the development of cold-induced damage to leaves of chilling-sensitive plants: 2. The activity of antioxidant enzymes during plant chilling. Russian Journal of Plant Physiology, 2002, 49(6): 782-788.

        [67]THOMASHOW M F. Molecular basis of plant cold acclimation:insights gained from studying the CBF cold response pathway. Plant Physiology, 2010, 154(2): 571-577.

        [68]JAGLO K R, KLEFF S, AMUNDSEN K L, ZHANG X, HAAKE V,ZHANG J Z, DEITS T, THOMASHOW M F. Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiology, 2001, 127(3): 910-917.

        [69]YU X H, JUAN J X, GAO Z L, ZHANG Y, LI W Y, JIANG X M.Cloning and transformation of INDUCER of CBF EXPRESSION1(ICE1) in tomato. Genetics and Molecular Research, 2015, 14(4):13131-13143.

        [70]BEHNAM B, KIKUCHI A, CELEBI-TOPRAK F, KASUGA M,YAMAGUCHI-SHINOZAKI K, WATANABE K N. Arabidopsis rd29A :: DREB1A enhances freezing tolerance in transgenic potato.Plant Cell Reports, 2007, 26(8): 1275-1282.

        [71]RENAUT J, HAUSMAN J F, WISNIEWSKI M E. Proteomics and low-temperature studies: Bridging the gap between gene expression and metabolism. Physiologia Plantarum, 2006, 126(1): 97-109.

        [72]LI Q B, HASKELL D W, GUY C L. Coordinate and non-coordinate expression of the stress 70 family and other molecular chaperones at high and low temperature in spinach and tomato. Plant Molecular Biology, 1999, 39(1): 21-34.

        [73]丁玉娟, 林昌虎, 何騰兵, 林紹霞, 張珍明. 蔬菜重金屬污染現(xiàn)狀及研究進展. 貴州科學(xué), 2012, 30(5): 78-83.DING Y J, LIN C H, HE T B, LIN S X, ZHANG Z M. Status and research progress of vegetables contaminated by heavy metals.Guizhou Science, 2012, 30(5): 78-83. (in Chinese)

        [74]MIYASAKA S C, BUTA J G, HOWELL R K, FOY C D. Mechanism of aluminum tolerance in snapbeans - root exudation of citric-acid.Plant Physiology, 1991, 96(3): 737-743.

        [75]KOCHIAN L V, PINEROS M A, HOEKENGA O A. The physiology,genetics and molecular biology of plant aluminum resistance and toxicity. Plant and Soil, 2005: 175-195.

        [76]WU X, LI R, SHI J, WANG J, SUN Q, ZHANG H, XING Y, QI Y,ZHANG N, GUO Y. Brassica oleracea MATE encodes a citrate transporter and enhances aluminum tolerance in Arabidopsis thaliana.Plant and Cell Physiology, 2014, 55(8): 1426-1436..

        [77]LIGABA A, KATSUHARA M, RYAN P R, SHIBASAKA M,MATSUMOTO H. The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells. Plant Physiology, 2006, 142(3):1294-1303.

        [78]HOEKENGA O A, MARON L G, PINEROS M A, CANCADO G,SHAFF J, KOBAYASHI Y, RYAN PR, DONG B, DELHAIZE E,SASAKI T, MATSUMOTO H, YAMAMOTO Y, KOYAMA H,KOCHIAN L V. AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(25): 9738-9743.

        [79]EIDE D, BRODERIUS M, FETT J, GUERINOT M L. A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(11): 5624-5628.

        [80]SHANMUGAM V, LO J, WU C, WANG S, LAI C, CONNOLLY E L, HUANG J, YEH K. Differential expression and regulation of iron-regulated metal transporters in Arabidopsis halleri and Arabidopsis thaliana - the role in zinc tolerance. New Phytologist,2011, 190(1): 125-137.

        [81]CURIE C, ALONSO J M, LE JEAN M, ECKER J R, BRIAT J F.Involvement of NRAMP1 from Arabidopsis thaliana in iron transport.Biochemical Journal, 2000, 347(3): 749-755.

        [82]PAPOYAN A, KOCHIAN L V. Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiology, 2004, 136(3): 3814-3823.

        [83]GRILL E, LOFFLER S, WINNACKER E L, ZENK M H.Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific gamma-glutamylcysteine dipeptidyl transpeptidase (Phytochelatin Synthase). Proceedings of the National Academy of Sciences of the United States of America, 1989,86(18): 6838-6842.

        [84]STEFFENS J C, HUNT D F, WILLIAMS B G. Accumulation of nonprotein metal-binding polypeptides (gamma-glutamyl-cysteinyl)n-glycine in selected cadmium-resistant tomato cells. Journal of Biological Chemistry, 1986, 261(30): 13879-13882.

        [85]STROINSKI A, GIZEWSKA K, ZIELEZINSKA M. Abscisic acid is required in transduction of cadmium signal to potato roots. Biologia Plantarum, 2013, 57(1): 121-127.

        [86]WOJAS S, CLEMENS S, HENNIG J, SKODOWSKA A, KOPERA E,SCHAT H, BAL W, ANTOSIEWICZ D M. Overexpression of phytochelatin synthase in tobacco: distinctive effects of AtPCS1 and CePCS genes on plant response to cadmium. Journal of Experimental Botany, 2008, 59(8): 2205-2219.

        [87]HE Z Y, LI J C, ZHANG H Y, MA M. Different effects of calcium and lanthanum on the expression of phytochelatin synthase gene and cadmium absorption in Lactuca sativa. Plant Science, 2005, 168(2):309-318.

        [88]HEISS S, WACHTER A, BOGS J, COBBETT C, RAUSCH T.Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure. Journal of Experimental Botany,2003, 54(389): 1833-1839.

        [89]HASSINEN V H, TERVAHAUTA A I, SCHAT H, KARENLAMPI S O. Plant metallothioneins - metal chelators with ROS scavenging activity? Plant Biology, 2011, 13(2): 225-232.

        [90]KIM S H, LEE H S, SONG W Y, CHOI K S, HUR Y.Chloroplast-targeted BrMT1 (Brassica rapa type-1 Metallothionein)enhances resistance to cadmium and ROS in transgenic Arabidopsis plants. Journal of Plant Biology, 2007, 50(1): 1-7.

        [91]ZHANG H Y, XU W Z, DAI W T, HE Z Y, MA M. Functional characterization of cadmium-responsive garlic gene AsMT2b: A new member of metallothionein family. Chinese Science Bulletin, 2006,51(4): 409-416.

        [92]LORETI E, VAN VEEN H, PERATA P. Plant responses to flooding stress. Current Opinion in Plant Biology, 2016, 33: 64-71.

        [93]VOESENEK L A C J, SASIDHARAN R. Ethylene - and oxygen signalling - drive plant survival during flooding. Plant Biology, 2013,15(3): 426-435.

        [94]VIDOZ M L, LORETI E, MENSUALI A, ALPI A, PERATA P.Hormonal interplay during adventitious root formation in flooded tomato plants. Plant Journal, 2010, 63(4): 551-562.

        [95]LICAUSI F, VAN DONGEN J T, GIUNTOLI B, NOVI G,SANTANIELLO A, GEIGENBERGER P, PERATA P. HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. Plant Journal, 2010,62(2): 302-315.

        [96]GIBBS D J, LEE S C, ISA N M, GRAMUGLIA S, FUKAO T,BASSEL G W, CORREIA C S, CORBINEAU F, THEODOULOU F L, BAILEY-SERRES J, HOLDSWORTH M J. Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature,2011, 479(7373): 415.

        [97]LICAUSI F, KOSMACZ M, WEITS D A, GIUNTOLI B, GIORGI F M, VOESENEK L A C J, PERATA P, VAN DONGEN J T. Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature, 2011, 479(7373): 419.

        [98]CHIANG C, CHEN C, CHEN S, LIN K, CHEN L, SU Y, YEN H.Overexpression of the ascorbate peroxidase gene from eggplant and sponge gourd enhances flood tolerance in transgenic Arabidopsis.Journal of Plant Research, 2017, 130(2): 373-386.

        [99]WANG H, SUI X, GUO J, WANG Z, CHENG J, MA S, LI X,ZHANG Z. Antisense suppression of cucumber (Cucumis sativus L.)sucrose synthase 3 (CsSUS3) reduces hypoxic stress tolerance. Plant Cell and Environment, 2014, 37(3): 795-810.

        [100]QI X, XU X, LIN X, ZHANG W, CHEN X. Identification of differentially expressed genes in cucumber (Cucumis sativus L.) root under waterlogging stress by digital gene expression profile.Genomics, 2012, 99(3): 160-168.

        [101]DING X, JIANG Y, WANG H, JIN H, ZHANG H, CHEN C, YU J.Effects of cytokinin on photosynthetic gas exchange, chlorophyll fluorescence parameters, antioxidative system and carbohydrate accumulation in cucumber (Cucumis sativus L.) under low light. Acta Physiologiae Plantarum, 2013, 35(5): 1427-1438.

        [102]CUI L, ZOU Z, ZHANG J, ZHAO Y, YAN F. 24-Epibrassinoslide enhances plant tolerance to stress from low temperatures and poor light intensities in tomato (Lycopersicon esculentum Mill.).Functional & Integrative Genomics, 2016, 16(1): 29-35.

        [103]HU L, LIAO W, DAWUDA M M, YU J, LV J. Appropriate NH4+:NO3-ratio improves low light tolerance of mini Chinese cabbage seedlings. BMC Plant Biology, 2017, 17(1): 22.

        [104]YU H, ZHAO W, WANG M, YANG X, JIANG W. The exogenous application of spermidine alleviates photosynthetic inhibition and membrane lipid peroxidation under low-light stress in tomato(Lycopersicon esculentum Mill.) seedlings. Plant Growth Regulation,2016, 78(3): 413-420.

        [105]ZHU J. Abiotic stress signaling and responses in plants. Cell, 2016,167(2): 313-324.

        [106]JIN Q, XU Y, MATTSON N, LI X, WANG B, ZHANG X, JIANG H,LIU X, WANG Y, YAO D. Identification of submergence-responsive micrornas and their targets reveals complex MiRNA-Mediated regulatory networks in lotus (Nelumb onucifera Gaertn). Frontiers in Plant Science, 2017, 8(6). Doi:10.3389/fpls.2017.00006.

        [107]向娟, 林鵬, 李興盛, 李雙桃, 劉夢云, 張磊, 郭仰東. 過表達番茄Sly-miR397基因增強擬南芥的耐旱性. 中國農(nóng)業(yè)大學(xué)學(xué)報, 2016,21(10): 51-58.XIANG J, LIN P, LI X S, LI S T, LIU M Y, ZHANG L, GUO Y D.Overexpression of tomato Sly-miR397 gene enhance drought tolerance in Arabidopsis thaliana. Journal of China Agricultural University, 2016, 21(10): 51-58. (in Chinese)

        [108]HAYUT S F, BESSUDO C M, LEVY A A. Targeted recombination between homologous chromosomes for precise breeding in tomato.Nature Communications, 2017, 8(15605). Doi:10.1038/ncomms 15605.

        [109]LI R, LI R, LI X, FU D, ZHU B, TIAN H, LUO Y, ZHU H.Multiplexed CRISPR/Cas9-mediated Metabolic Engineering of gamma-Aminobutyric Acid Levels in Solanum lycopersicum. Plant Biotechnology Journal, 2017. doi:10.1111/pbi.12781.

        猜你喜歡
        脯氨酸逆境擬南芥
        擬南芥:活得粗糙,才讓我有了上太空的資格
        國家藥監(jiān)局批準脯氨酸恒格列凈片上市
        中老年保健(2022年3期)2022-11-21 09:40:36
        超越逆境
        做人與處世(2022年6期)2022-05-26 10:26:35
        How adversity makes you stronger逆境如何讓你更強大
        植物體內(nèi)脯氨酸的代謝與調(diào)控
        反式-4-羥基-L-脯氨酸的研究進展
        尿黑酸對擬南芥酪氨酸降解缺陷突變體sscd1的影響
        兩種LED光源作為擬南芥生長光源的應(yīng)用探究
        干旱脅迫對馬尾松苗木脯氨酸及游離氨基酸含量的影響
        擬南芥干旱敏感突變體篩選及其干旱脅迫響應(yīng)機制探究
        日本一区二区在线播放| 黄色国产一区在线观看| 日韩极品在线观看视频| 在线视频夫妻内射| 国产欧美日韩精品a在线观看| 国产免费看网站v片不遮挡| 亚洲熟女一区二区三区不卡| 日韩中文字幕有码午夜美女| 中文字幕av免费专区| 亚洲视频天堂| 精品国产麻豆一区二区三区| 免费一区二区高清不卡av| 曰本人做爰又黄又粗视频| 狠狠狠色丁香婷婷综合激情| 人妻尤物娇呻雪白丰挺| 黄片视频免费在线播放观看| 免费人成视频在线| 亚洲爆乳大丰满无码专区| 精品国产一区二区av麻豆不卡| 性高朝久久久久久久3小时| 亚洲精品无播放器在线播放| 国产精品麻豆A啊在线观看 | 激情五月天色婷婷久久| 国产福利永久在线视频无毒不卡| 熟妇与小伙子matur老熟妇e| 少妇高潮无码自拍| 精品国产自在现线看久久| 亚洲精品午夜无码专区| 中文字幕在线日韩| 中文乱码字幕人妻熟女人妻| 色哟哟最新在线观看入口| 香蕉久久人人97超碰caoproen| 青青草极品视频在线播放| 亚洲婷婷久悠悠色悠在线播放| 熟女体下毛毛黑森林| 国产精品99精品一区二区三区∴| 人妻少妇中文字幕久久hd高清| 日本一区二区在线播放| 一级毛片60分钟在线播放| 少妇一级内射精品免费| 中文字幕亚洲综合久久|