李 敏,黃勤珍
(西南民族大學電氣信息工程學院,四川 成都 610041)
馬爾可夫跳變系統(tǒng)是一類特殊的隨機混雜系統(tǒng).馬爾可夫跳變往往來源于系統(tǒng)在運行過程中所受到的環(huán)境突變、內(nèi)部子系統(tǒng)連接方式突然改變、系統(tǒng)部件損壞等隨機因素干擾[1-2].因此,研究馬爾可夫跳變系統(tǒng)為解決工程控制問題提供了理論基礎[3-4].眾所周知,時滯廣泛存在于各種實際系統(tǒng)中,然而,它的存在會使系統(tǒng)不穩(wěn)定或性能遭到破壞[5].因此,研究馬爾可夫時滯跳變系統(tǒng)具有實際的意義.
許多實際系統(tǒng)通過考慮無源性問題可以有效地抑制外界噪聲干擾[6-7].近年來,系統(tǒng)無源性研究成為了一個重要的熱點問題[8-9],吸引了眾多學者的關注[10-12].文獻[1]給出時滯馬爾可夫跳變系統(tǒng)的隨機無源性定義.文獻[13]分析了線性時滯系統(tǒng)的時滯相關無源控制問題.文獻[14]討論了時變時滯的神經(jīng)網(wǎng)絡無源性問題.
本文研究了具有不確定性矩陣的馬爾可夫跳變時滯系統(tǒng)的無源性問題.文章其余部分結構如下:第1節(jié)介紹本文研究的馬爾可夫跳變時滯系統(tǒng)和推導所需的定義與引理.第2節(jié)得到滿足系統(tǒng)無源性約束的充分判據(jù).第3節(jié)給出一個數(shù)值例子驗證所得理論結果的有效性與可行性.第4節(jié)總結全文.
本節(jié)主要推導保證系統(tǒng)(2)具有隨機無源性的充分條件.
定理1若存在對稱正定矩陣使得如下線性矩陣不等式成立:
則系統(tǒng)(2)是隨機無源的.
這部分用一個例子來驗證所提出的主要結果.
例1給定一個完備概率空間,考慮一個兩模態(tài)的馬爾可夫跳變系統(tǒng)(2),具體參數(shù)設置如下:
表1 最大時滯上界TTable 1 Upper bounds of T for different values of d
圖1 輸出信號圖Fig.1 Output signal of system
圖2 切換信號圖Fig.2 The switching signals
本文研究了馬爾可夫跳變系統(tǒng)的無源性問題,其中,轉移概率是已知的.通過構建Lyapunov泛函,得到馬爾可夫跳變時滯系統(tǒng)的隨機無源性充分判據(jù).在實際系統(tǒng)中,轉移概率是變化或未知的,研究不確定馬爾可夫跳變系統(tǒng)具有一定的挑戰(zhàn)性.因此,在未來的工作中將進一步對不確定馬爾可夫時滯系統(tǒng)展開研究.
[1]WU Y Q,SU H,LU R,et al.Passivity-based non-fragile control for Markovian jump systems with aperiodic sampling[J].Systems& Control Letters,2015,84:35-43.
[2]SONG J,NIU Y,ZOU Y.Asynchronous output feedback control of time-varying Markovian jump systems within a finite-time interval[J].Journal of the Franklin Institute,2017,354(15):6747-6765,.
[3]RAKKIYAPPAN R,SASIREKHA R,LAKSHMANAN S,et al.Synchronization of discrete-time Markovian jump complex dynamical networks with random delays via non-fragile control[J].Journal of the Franklin Institute,2016,353(16):4300-4329.
[4]FEI Z,GAO H,SHI P.New results on stabilization of Markovian jump systems with time delay[J].Automatica,2009,45(10):2300-2306.
[5]LIU X,ZHONG S,ZHAO Q.Dynamics of delayed switched nonlinear systems with applications to cascade systems[J].Automatica,2018,87:251-257.
[6]YUE D,LAM J.Non-fragile guaranteed cost control for uncertain descriptor systems with time-varying state and input delays[J].Optimal Control Applications & Methods,2005,26(2):85-105,.
[7]YANG G H,WANG J L.Non-fragile H∞ control for linear systems with multiplicative controller gain variations[J].Automatica,2001,37(5):727-737.
[8]SHEN H,XU S,LU J,et al.Passivity-based control for uncertain stochastic jumping systems with mode-dependent round-trip time delays[J].Journal of the Franklin Institute,2012,349(5):1665-1680.
[9]HE S,LIU F.Optimal finite-time passive controller design for uncertain nonlinear Markovian jumping systems[J].Journal of the Franklin Institute,2014,351(7):3782-3796.
[10]WANG B,ZHU Q.Stability analysis of Markov switched stochastic differential equations with both stable and unstable subsystems[J].Systems& Control Letters,2017,105:55-61.
[11]CHEN G,XIA J,ZHUANG G.Delay-dependent stability and dissipativity analysis of generalized neural networks with Markovian jump parameters and two delay components[J].Journal of the Franklin Institute,2016,353(9):2137-2158.
[12]MA C.Non-fragile mixed H∞and passive synchronization of Markov jump neural networks with mixed time-varying delays and randomly occurring controller gain fluctuation[J].PLoS One,2017,12(4):e0175676.
[13]XIA Z,LI J,LI J.Passivity-based resilient adaptive control for fuzzy stochastic delay systems with Markovian switching[J].Journal of the Franklin Institute,2014,351(7):3818-3836.
[14]ZHANG Z,MOU S,LAM J,et al.New passivity criteria for neural networks with time-varying delay[J].Neural Networks,2009,22(7):864-868.
[15]HAN Q L.A new delay-dependent stability criterion for linear neutral systems with norm-bounded uncertainties in all system matrices[J].International Journal of Systems Science,2005,36(8):469-475.
[16]XIE L.Output feedback H∞ control of systems with parameter uncertainty[J].International Journal of Control,1996,63(4):741-750.