亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        豬源Toll樣受體家族(TLRs)及其在抗病育種中的應(yīng)用

        2018-03-21 11:05:13戴超輝馮海悅吳圣龍包文斌
        關(guān)鍵詞:氨基酸受體通路

        戴超輝,馮海悅,吳圣龍,2,包文斌,2,*

        (1.揚(yáng)州大學(xué) 動(dòng)物科學(xué)與技術(shù)學(xué)院,江蘇 揚(yáng)州 225009; 2.江蘇省種豬繁育和健康養(yǎng)殖工程技術(shù)研究中心,江蘇 揚(yáng)州 225009)

        豬病頻發(fā)是當(dāng)前規(guī)模化養(yǎng)豬業(yè)面臨的嚴(yán)峻問(wèn)題,給養(yǎng)豬產(chǎn)業(yè)帶來(lái)了嚴(yán)重的經(jīng)濟(jì)損失,而抗生素和藥物等的濫用又引發(fā)了一系列如環(huán)保、抗生素殘留、食品安全等問(wèn)題。雖然現(xiàn)在養(yǎng)殖場(chǎng)的管理水平和疾病防治技術(shù)不斷完善和提高,在一定程度上減少了疾病的發(fā)生和傳播,但并未從根本上徹底防控豬病的發(fā)生。因此,發(fā)掘與抗病性狀有關(guān)的分子標(biāo)記,通過(guò)分子選育從遺傳本質(zhì)上提高豬群的一般抗病力和特殊抗病力,是從長(zhǎng)遠(yuǎn)角度解決豬病發(fā)生的有效手段之一。豬的抗病性狀多表現(xiàn)為中遺傳力或低遺傳力,通過(guò)傳統(tǒng)的育種方法難以對(duì)豬的抗病力實(shí)施有效的遺傳改良,所以,抗病育種可以通過(guò)間接方法即對(duì)抗病力性狀(免疫指標(biāo)或免疫性狀)進(jìn)行選擇[1]。免疫力和抗病力有很密切的關(guān)系,因此可以通過(guò)增強(qiáng)機(jī)體的一般免疫力來(lái)間接提高機(jī)體的抗病能力。Toll樣受體(Toll like receptors, TLRs)最早被發(fā)現(xiàn)在果蠅的Toll蛋白,它不僅可以參與調(diào)節(jié)胚胎果蠅背腹側(cè)極性的形成,而且還直接介導(dǎo)果蠅微生物感染的天然免疫反應(yīng)[2]。在哺乳動(dòng)物中,Toll樣受體基因家族屬于I型跨膜蛋白受體,并廣泛分布在胃腸道和呼吸道等組織中,在機(jī)體固有免疫和誘導(dǎo)的適應(yīng)性免疫,特別是先天免疫活化的防御機(jī)制中起到重要作用[3]。近些年來(lái),豬Toll樣受體(TLRs)已經(jīng)被廣泛研究,并且它們?cè)谙忍烀庖咧械木薮笾匾阅壳罢诒唤沂?;同時(shí)豬是重要的模式動(dòng)物,其具有TLR的主要的樹(shù)突細(xì)胞群體與人類是相似的,對(duì)豬源TLRs的研究也將為人類疾病研究和疫苗的開(kāi)發(fā)提供了有效的模型和手段,具有重要的科學(xué)意義和應(yīng)用前景。為此,本文主要綜述了國(guó)內(nèi)外對(duì)豬源TLRs的種類、功能、介導(dǎo)的信號(hào)通路以及在豬抗病育種中應(yīng)用的相關(guān)研究進(jìn)展,旨在為進(jìn)一步探討TLRs對(duì)豬免疫調(diào)控作用的機(jī)制研究提供理論參考。

        1 豬源Toll受體家族研究進(jìn)展

        在人類中已經(jīng)發(fā)現(xiàn)了13種TLR蛋白;在豬中,已經(jīng)克隆并鑒定了TLR1-10這10種TLR蛋白,在豬中已經(jīng)鑒定的10個(gè)TLR基因具體信息見(jiàn)表1。

        1.1 豬源Toll受體家族種類及其分子克隆

        豬TLR1基因定位于8號(hào)染色體上,它的開(kāi)放閱讀框(open reading frame, ORF)長(zhǎng)2 391 bp,并編碼796個(gè)氨基酸[4]。豬TLR2基因的ORF長(zhǎng)2 358 bp,編碼785個(gè)氨基酸,其氨基酸序列與人的同源性為72.3%,與鼠的同源性為61.0%;TLR2胞外區(qū)有4個(gè)富含亮氨酸的重復(fù)單位(leucine-rich repeat, LRR),膜外區(qū)含6個(gè)N連接的糖基化位點(diǎn),膜外區(qū)蛋白是彎曲狀的螺旋結(jié)構(gòu),由背側(cè)的α螺旋和內(nèi)側(cè)的β折疊平行交替排列形成,它的N末端有信號(hào)肽[4,6]。豬TLR3基因的ORF長(zhǎng)2 718 bp,編碼906個(gè)氨基酸,為跨膜蛋白,氨基酸序列與哺乳動(dòng)物的同源性較高,其次是雞,而與斑馬魚(yú)的同源性較低[7-9]。另外,管齊賽等[10]克隆的TLR3剪接體基因pTLR3a和pTLR3b由第3外顯子部分或全部缺失組成,使得其缺失部分蛋白質(zhì)的編碼框發(fā)生改變,導(dǎo)致TLR3蛋白二級(jí)結(jié)構(gòu)發(fā)生了較大的變化。TLR4基因ORF長(zhǎng)2 526 bp,編碼了785個(gè)氨基酸殘基,其胞外區(qū)包含13個(gè)LRR,膜外區(qū)有8個(gè)糖基化位點(diǎn),膜外區(qū)蛋白是彎曲狀的螺旋結(jié)構(gòu),由背側(cè)的α螺旋和內(nèi)側(cè)的β折疊平行交替排列形成,它的N末端存在信號(hào)肽[11-13]。楊秀芹等[14]克隆的野豬TLR4基因也是由胞外區(qū)、跨膜區(qū)和胞內(nèi)區(qū)3部分組成,在多肽鏈上依次排列著信號(hào)肽和LRRs等結(jié)構(gòu)功能域。TLR5基因ORF長(zhǎng)2 571 bp,由642個(gè)氨基酸組成的胞外區(qū)、23個(gè)氨基酸組成的跨膜區(qū)和191個(gè)氨基酸組成的胞內(nèi)區(qū)組成;胞外區(qū)具有LRR結(jié)構(gòu)域,胞內(nèi)區(qū)具有TIR結(jié)構(gòu)域(Toll/Interleukin-1 receptor domain),表現(xiàn)出典型的TLR家族結(jié)構(gòu)特征[14-18]。TLR6基因和TLR1基因一樣,定位于8號(hào)染色體上,它的開(kāi)放閱讀框(ORF)長(zhǎng)2 391 bp,并編碼796個(gè)氨基酸,總氨基酸序列和TLR1具有71%的相似性,特別是在細(xì)胞質(zhì)區(qū)域高達(dá)92%,這與在人TLR1和TLR6之間的高度相似性是一致的,表明TLR1和TLR6具有高度同源性[5]。豬TLR7基因ORF長(zhǎng)3 150 bp,編碼1 050個(gè)氨基酸殘基,在進(jìn)化過(guò)程中具有高度保守性,親緣關(guān)系越近,同源性越高,與牛和綿羊的同源性較高,與馬、狗、人、家鼠、褐鼠的次之;其胞外區(qū)包含LRR-RI結(jié)構(gòu)域,胞內(nèi)包含TIR結(jié)構(gòu)域,也是TLR家族典型的結(jié)構(gòu)特征[8,19-25]。

        表1豬Toll樣受體基本信息

        Table1Pig Toll-like receptor information

        豬TLR8基因的ORF長(zhǎng)3 087 bp,編碼1 029個(gè)氨基酸。同源性分析結(jié)果顯示,與牛、馬、羊和人的同源性較高,與鼠的同源性次之,與雞的同源性最低,其蛋白分子結(jié)構(gòu)預(yù)測(cè)表明豬TLR8為跨膜蛋白[8,26]。豬TLR9基因ORF長(zhǎng)3 093 bp,編碼1 030個(gè)氨基酸殘基,包含24個(gè)氨基酸構(gòu)成的信號(hào)肽序列,屬于I型跨膜受體,具有LRR結(jié)構(gòu)域和TIR結(jié)構(gòu)域;與牛、馬、羊和人的同源性較高,與家鼠、褐鼠的次之[27-29]。豬TLR10基因ORF長(zhǎng)2 862 bp,編碼811個(gè)氨基酸,豬TLR10和人TLR10的氨基酸序列有80%的相似性[4]。因此,在整個(gè)TLRs家族中,TLRs在進(jìn)化過(guò)程中具有高度保守性,它們的分子結(jié)構(gòu)與其分子功能相適應(yīng),在機(jī)體中扮演著不同卻重要的角色。

        1.2 豬源TLRs遺傳變異

        Bergman等[30]對(duì)野豬和家豬(漢普夏、長(zhǎng)白和大白)的TLR1、TLR2和TLR6基因的開(kāi)放閱讀框進(jìn)行了測(cè)序,在TLR1、TLR2和TLR6中分別檢測(cè)到20,27和26個(gè)SNPs;并且這3個(gè)基因在野豬中的SNP頻率要相對(duì)低于家豬。Shinkai等[15]研究發(fā)現(xiàn)在來(lái)自11個(gè)品種的96頭豬的和TLR1、TLR2、TLR4、TLR5和TLR6基因的編碼序列中分別包含了21、11、7、13和11個(gè)引起氨基酸取代的SNPs。在Muneta等[31]的研究中,分析了7個(gè)不同品種豬的TLR2的單核苷酸多態(tài)性(C406G)的基因分型,結(jié)果發(fā)現(xiàn)C406G突變僅在日本的長(zhǎng)白豬品種中發(fā)現(xiàn)。劉勝貴等[32]發(fā)現(xiàn)豬TLR2基因多態(tài)性程度低,僅在編碼區(qū)第1 255位點(diǎn)上存在1個(gè)單堿基突變位點(diǎn),并且該位點(diǎn)為異義突變。在陳月嬋等[33]的研究中,豬TLR3基因存在3個(gè)核苷酸的差異,分別是c.36C>T、c.2643T>C和c.2649A>G,且均為同義突變。李海濤等[34]在野豬、民豬、杜洛克、長(zhǎng)白豬和大白豬的TLR3基因中檢測(cè)出了8個(gè)SNPs,并且各種基因型在不同豬品種中的分布存在著明顯的差異。邢明偉[35]等分析了豬TLR3基因A1116T點(diǎn)突變的功能,并在細(xì)胞水平上初步確定了該點(diǎn)突變對(duì)TLR3的配體識(shí)別、信號(hào)轉(zhuǎn)導(dǎo)能力具有一定影響。Palermo等[36]的研究發(fā)現(xiàn)豬TLR4基因存在34個(gè)SNP,17個(gè)在編碼區(qū),17個(gè)在非編碼區(qū),5個(gè)非同義突變聚集在外顯子3上。潘章源等[37-38]在豬TLR4基因外顯子1中分離檢測(cè)到3個(gè)等位基因,6種基因型,且TLR4基因外顯子1的多態(tài)性在中國(guó)地方豬品種和引進(jìn)品種中的分布存在極顯著的差異。劉筱等[39]在中國(guó)地方豬品種(梅山豬、二花臉、蘇鐘豬、姜曲海豬、金華豬和淮豬)、引進(jìn)品種(大約克和皮特蘭)等9個(gè)群體的TLR4編碼區(qū)檢測(cè)到C1027A 突變可引起編碼氨基酸性質(zhì)的改變。朱衛(wèi)華等[40]也在霍壽黑豬和長(zhǎng)白豬的TLR4基因第3外顯子檢測(cè)到了1個(gè)錯(cuò)義突變C1027A,并且該多態(tài)位點(diǎn)基因型在霍壽黑豬和長(zhǎng)白豬2個(gè)中外豬品種間的分布存在極顯著差異。丁月云等[41]對(duì)安徽地方豬皖南黑豬、圩豬、安慶六白豬、霍壽黑豬及引進(jìn)品種長(zhǎng)白豬共5個(gè)群體354個(gè)樣本的TLR4基因外顯子3部分片段的遺傳變異進(jìn)行了檢測(cè),發(fā)現(xiàn)G417A、C1027A的各基因型在5個(gè)中外豬品種間的分布存在極顯著差異。周波等[42]在所檢測(cè)的5個(gè)品種(梅山豬、新淮豬、大白豬、長(zhǎng)白豬和杜洛克豬)TLR4基因的SNP中發(fā)現(xiàn)了2個(gè)能引起編碼的氨基酸性質(zhì)發(fā)生改變。陳月嬋等[43]對(duì)北京黑豬、長(zhǎng)白豬、野豬、杜洛克豬、大白豬、民豬6個(gè)中外豬品種TLR4基因第3外顯子1 824位點(diǎn)的G / A和3′UTR的208位點(diǎn)T / C多態(tài)進(jìn)行群體遺傳學(xué)分析,發(fā)現(xiàn)它們各基因型在不同豬品種間的分布均存在顯著或極顯著差異。Ju等[44]克隆了巴馬香豬TLR4基因的選擇性剪接變體,發(fā)現(xiàn)TLR4基因的第2外顯子存在167 bp的短剪接體,并且該蛋白被推定為一種截短的膜蛋白,由缺乏信號(hào)肽的膜外區(qū)、跨膜區(qū)和膜內(nèi)區(qū)組成。楊秀芹等[45]比較分析了抗病性差異明顯的民豬和長(zhǎng)白豬的TLR5基因的變異情況,結(jié)果發(fā)現(xiàn)TLR5基因c. 834 T>G點(diǎn)突變?cè)谶@2個(gè)品種間的分布具有極顯著差異,民豬以G為優(yōu)勢(shì)等位基因,長(zhǎng)白豬以T為優(yōu)勢(shì)等位基因。魏麟等[46]發(fā)現(xiàn)豬TLR6基因片段MspI酶切位點(diǎn)具有兩種等位基因T / C,并且C等位基因是群體中的優(yōu)勢(shì)等位基因。Bergman[47]發(fā)現(xiàn)TLR1和TLR2基因在家豬中比在野豬中存在更多的SNPs。Clop等[48]對(duì)10個(gè)豬品種的10個(gè)TLR基因進(jìn)行了基因分型研究,最終鑒定了306個(gè)SNPs,其中147個(gè)變異位點(diǎn)能夠引起氨基酸的改變。豬10種TLRs的CDS區(qū)中多態(tài)性的分布情況見(jiàn)表2。

        在整體上,TLRs家族雖然高度保守,但仍具有一定的遺傳變異多樣性,尤其是一些非同義突變可能對(duì)蛋白結(jié)構(gòu)甚至對(duì)基因功能產(chǎn)生影響。并且在不同豬品種中,TLRs的遺傳變異也具有一定的差異性,這跟不同豬品種的抗逆性或抗病性也是有一定聯(lián)系的,例如抵抗力相對(duì)較高的野豬、藏豬、民豬、梅山豬等豬品種中,TLRs的多態(tài)性普遍偏低。因此,篩查顯著影響表型的變異位點(diǎn)將對(duì)豬的抗病育種具有重要的意義。

        1.3 豬源TLRs表達(dá)模式

        Uddin等[50]的研究發(fā)現(xiàn)豬TLR家族(TLR1-10)基因在所檢測(cè)的腸相關(guān)淋巴組織(胃粘膜、十二指腸,空腸和回腸和腸系膜淋巴結(jié))中都有mRNA表達(dá),并且TLR3在TLRs中顯示出最高的mRNA豐度;成年豬腸系膜淋巴結(jié)中的TLR1和TLR6的表達(dá)量高于新生豬;TLR2、TLR3和TLR9的蛋白質(zhì)定位顯示TLR表達(dá)在細(xì)胞固有層中,并且在腸中的淋巴集結(jié)以及在腸系膜淋巴結(jié)中的淋巴濾泡周圍和內(nèi)部豐度較高。Marantidis等[51]發(fā)現(xiàn),所有檢測(cè)的TLRs基因都在雄性和雌性豬的生殖器官中表達(dá),其中TLR3和TLR5表達(dá)較高,TLR9最低;在胚胎中,TLR1顯示出高表達(dá)水平。Cheng等[52]調(diào)查了約克夏和藏豬的胸腺、脾、血液、扁桃體、腸系膜和肺門(mén)淋巴結(jié)等組織中TLR基因(TLR1-TLR9)的表達(dá)模式,發(fā)現(xiàn)所有組織中均檢測(cè)到所有TLR基因的mRNA表達(dá),具有廣譜的表達(dá)特點(diǎn)。在王鵬飛[9]的研究中,TLR3基因在肝、脾、腎和胃中均有較高豐度的表達(dá),在心臟、肺、大腦、肌肉、子宮、淋巴結(jié)、大腸和小腸中表達(dá)較低,而在小腦和扁桃體中幾乎檢測(cè)不到其表達(dá)。lvarez等[53]發(fā)現(xiàn)豬TLR4 mRNA在樹(shù)突狀細(xì)胞、單核細(xì)胞、巨噬細(xì)胞以及骨髓、胸腺、淋巴結(jié)、脾、肝、腎臟和卵巢等組織中均有表達(dá)。同樣地,邱小田等[54]通過(guò)RT-PCR表明豬源TLR4 mRNA在心臟、肝臟、脾臟、肺、腎臟、骨骼肌、胸腺、淋巴結(jié)、白質(zhì)、灰質(zhì)、睪丸和小腸等12種組織中均有表達(dá),并且在肺中有最高的表達(dá)豐度。JU等[44]通過(guò)qRT-PCR定量檢測(cè)TLR4可變剪接變體的表達(dá),發(fā)現(xiàn)熱應(yīng)激豬的外周血單核細(xì)胞中TLR4的選擇性剪接變體(TLR4-ASV)的表達(dá)水平顯著增加。Wang等[55]檢測(cè)了大白豬、蘇太豬和梅山豬中TLR4基因的組織表達(dá)譜,發(fā)現(xiàn)TLR4基因在所檢測(cè)的心、肝、脾、肺、腎、胃、肌肉、胸腺、淋巴、十二指腸和空腸組織中均有表達(dá),并且在免疫組織中具有相對(duì)較高的表達(dá)豐度,但在肺中表達(dá)水平最高。Ansari等[56]通過(guò)免疫組化技術(shù)分析TLR4蛋白在懷孕母豬子宮中的分布,發(fā)現(xiàn)TLR4蛋白在子宮的不同組織學(xué)層中均有表達(dá)。楊秀芹等[14]發(fā)現(xiàn)野豬TLR4和TLR5基因在所檢測(cè)的各組織內(nèi)(胃、腎、脾、肺、心、肝、腸和肌肉)都有不同豐度的表達(dá)。朱浩妮[57]通過(guò)對(duì)榮昌仔豬TLR基因的表達(dá)發(fā)育規(guī)律的檢測(cè),發(fā)現(xiàn)TLR2、3、4、7、9的表達(dá)量在肝臟、脾臟、肺、腸系膜淋巴結(jié)和空腸組織中存在明顯的差異,并且總體上隨著日齡的增加,表達(dá)量顯著增加。Balachandran等[58]通過(guò)免疫組化和免疫電子顯微鏡研究表明,TLR10在豬的肺內(nèi)血管內(nèi)皮和平滑肌中均有表達(dá)。

        表2豬模式識(shí)別受體PRRs的CDS區(qū)中多態(tài)性的分布

        Table2Distribution of polymorphisms in CDS of porcine pattern recognition receptors (PRRs)

        基因GeneSNP總數(shù)SNPsum總計(jì)Total非同義Nonsynonymous同義Synonymous配體區(qū)SNPSNPinregionforligandrecognition總計(jì)Total非同義Nonsynonymous同義Synonymous信號(hào)轉(zhuǎn)導(dǎo)區(qū)SNPSNPinregionforsignaltransduction總計(jì)Total非同義Nonsynonymous同義Synonymous參考資料ReferenceTLR1452124341717514[49]TLR223111217107312[49]TLR31569936202[49]TLR413761073101[49]TLR535132221111012111[49]TLR62011914104202[49]TLR7153121239202[49]TLR82291320713000[49]TLR92571818513101NCBITLR10634221352312945NCBI

        綜上,不同的TLRs具有不同的組織表達(dá)水平,并且在不同時(shí)間段的表達(dá)水平也有所差異,不同豬品種之間也存在表達(dá)差異。TLRs的表達(dá)與機(jī)體的免疫調(diào)控密切相關(guān),這也從側(cè)面揭示了不同豬品種、不同生長(zhǎng)發(fā)育階段以及不同組織中的TLRs表達(dá)在機(jī)體免疫應(yīng)答中發(fā)揮的調(diào)控作用。圖1展示了不同TLRs在所檢測(cè)的不同組織中的整體表達(dá)水平情況,總體來(lái)說(shuō)在大多數(shù)組織中TLR1-TLR10都有表達(dá),并且TLR3的表達(dá)水平相對(duì)較高,TLR2和TLR6次之,TLR9和TLR10相對(duì)較低,除了基因本身功能,這與所報(bào)道的文獻(xiàn)不是很多也有一定的關(guān)系。

        A軸的1~10代表TLR1-TLR10;B軸的1~16代表肝、脾、肺、腎、胃、肌肉、胸腺、淋巴、十二指腸、空腸、回腸、血液、扁桃體、胚胎、睪丸和卵巢等16個(gè)組織;C軸代表相對(duì)表達(dá)水平,并定義3為最高表達(dá)水平,2為中等表達(dá)水平,1為普遍表達(dá)水平,0.5為低表達(dá)水平Number 1-10 on A axis represented TLR1-TLR10; Number 1-16 on B axis represented 16 different tissues such as liver, spleen, lung, kidney, tummy, muscle, thymus, lymph, duodenum, jejunum, ileum, blood, tonsil, embryo, testes and ovary. And on C axis number 3 was defined as the highest expression level, number 2 was defined as middle expression level, number 1 was defined as common expression level and number 0.5 was defined as low expression level圖1 豬源TLRs在不同組織中的表達(dá)模式Fig.1 Expression pattern in different tissues of pig’s TLRs

        1.4 豬Toll樣受體(TLRs)信號(hào)傳導(dǎo)

        人的TLRs信號(hào)通路已經(jīng)被研究的非常深入,除了TLR10,其他TLRs的配體均被明確鑒定(圖2)。在哺乳動(dòng)物(包括豬)體內(nèi),識(shí)別細(xì)胞外微生物成分或結(jié)構(gòu)的TLRs(如 TLR1、2、4、5和 6)表達(dá)在宿主細(xì)胞膜表面,識(shí)別病毒或細(xì)菌核酸成分的TLRs(如 TLR3、7、8和9)表達(dá)在細(xì)胞內(nèi)內(nèi)吞小泡上。與人源類似,豬源TLRs信號(hào)通路也主要分為髓樣分化因子88(myeloid differentiation factor 88, MyD88)依賴通路、β干擾素TIR結(jié)構(gòu)域銜接蛋白(TIR receptor domain containing adaptor inducing interferon-β,TRIF)依賴通路(又稱TICAM1依賴通路)[59]、小GTP酶通路[60]和磷脂酰肌醇(PIPs)通路[61]。其中最主要的通路是MyD88依賴通路,它可以最終激活核因子-κB(nuclear factor-κB, NF-κB),導(dǎo)致許多目的基因表達(dá)上調(diào)。所有的TLRs均包含TIR結(jié)構(gòu)域,MyD88的TIR結(jié)構(gòu)域都可與之結(jié)合;MyD88依賴通路是除TLR3外所有TLRs的共同通路,因此MyD88依賴通路是最主要的TLR信號(hào)通路[62-64]。

        豬MyD88基因位于豬第13號(hào)染色體,編碼293個(gè)氨基酸的序列,與人相比同源性達(dá)到87%~88%。其在各組織中廣泛表達(dá),特別是在免疫組織和腸道組織中高表達(dá),MyD88作為T(mén)LRs/IL-1R信號(hào)通路中一個(gè)關(guān)鍵接頭分子,在傳遞炎癥信號(hào)和增強(qiáng)炎癥強(qiáng)度,引發(fā)腸道炎癥介質(zhì)的釋放中具有重要的作用[65-66]。Dai等[67]發(fā)現(xiàn)在MyD88基因沉默的PK15細(xì)胞中,TLR4和IL-1β的轉(zhuǎn)錄水平顯著降低;當(dāng)細(xì)胞被LPS(0.1 μg·mL-1)誘導(dǎo)6 h后,促炎細(xì)胞因子的總體水平均發(fā)生上調(diào)且IL-1β、TNF-α、IL-6、IL-8和IL-12的水平對(duì)照組顯著高于RNAi組,揭示MyD88基因沉默后可以減少TLR4信號(hào)轉(zhuǎn)導(dǎo),抑制促炎細(xì)胞因子的釋放,并一定程度上導(dǎo)致免疫抑制。圖3主要揭示了MyD88介導(dǎo)的豬源TLRs信號(hào)的傳導(dǎo)和免疫調(diào)控。

        2 Toll受體家族在豬抗病育種中的研究

        2.1 TLRs與支原體感染的關(guān)系

        Muneta等[5]發(fā)現(xiàn)抗磷酸TLR2和TLR6抗體能夠協(xié)同阻斷豬肺泡巨噬細(xì)胞由豬肺炎支原體刺激的腫瘤壞死因子-α(TNF-α)的產(chǎn)生,表明TLR2和TLR6對(duì)豬肺泡巨噬細(xì)胞中識(shí)別豬肺炎支原體具有重要的作用。Uenishi等[49]發(fā)現(xiàn)豬PRR基因的多態(tài)性可能與豬的疾病易感性有關(guān),并且TLR2的特定等位基因顯示出肺炎感染趨勢(shì)的增加。方曉敏等[70]發(fā)現(xiàn)豬TLR4基因C1027A的C等位基因極可能是豬抗支原體肺炎感染的優(yōu)勢(shì)基因。劉筱等[71]發(fā)現(xiàn)蘇鐘豬感染肺炎支原體后,可引起TLR2和TLR4表達(dá)的增加以及肺內(nèi)促炎因子TNF-α、IL-1β的釋放,導(dǎo)致肺部炎癥反應(yīng)。Shinkai等[72]發(fā)現(xiàn)杜洛克豬TLR5基因中特異單倍型(a/b和a/d)能夠引起放線桿菌肺炎支原體(APP)血清型2和5疫苗接種的應(yīng)答增加。因此,對(duì)這些TLRs確證的影響支原體感染的變異位點(diǎn)的篩選將對(duì)豬抗支原體性狀的遺傳改良產(chǎn)生重要意義。

        圖片資料引用自文獻(xiàn)[68]Image data was cited from the reference [68]圖2 人源TLRs及其所識(shí)別的微生物相關(guān)分子模式(MAMPs)Fig.2 Human TLRs and their identified microbial related molecular patterns (MAMPs)

        圖片資料引用自文獻(xiàn)[69];這里顯示的只有參與信號(hào)通路的代表性分子,其中虛線箭頭表示信號(hào)傳遞,實(shí)線箭頭表示分子遷移Image data was cited from the reference [69]. Only representative molecules participating in the signaling pathway were shown here. Dotted arrows indicated the transmission of signals. Arrows with solid lines showed the translocation of the molecules圖3 豬源TLRs分子誘導(dǎo)的不同類型信號(hào)通路的示意圖Fig.3 Schematic illustration of different types of signaling pathway induced by porcine TLR molecules

        2.2 TLRs與病毒感染的關(guān)系

        Liu等[73]發(fā)現(xiàn)用豬繁殖與呼吸綜合征病毒(porcine reproductive and respiratory syndrome virus, PRRSV)感染豬后,TLR2、3、4、7、8 的表達(dá)量均發(fā)生顯著上調(diào)。Miguel等[74]發(fā)現(xiàn)PRRSV的感染增加了支氣管淋巴結(jié)中TLR3、TLR4和TLR7的mRNA表達(dá)水平,并導(dǎo)致促炎細(xì)胞因子表達(dá)水平增加。Wang等[75]對(duì)豬TLR3基因編碼區(qū)5個(gè)已知的非同義SNP進(jìn)行分析,結(jié)果發(fā)現(xiàn),SNP c.933A>G能顯著降低Poly (I∶C)反應(yīng),還可導(dǎo)致TLR3基因高度保守的第12亮氨酸重復(fù)區(qū)域中的保守氨基酸發(fā)生改變。Duan等[76]發(fā)現(xiàn),體外培養(yǎng)的豬淋巴細(xì)胞與圓環(huán)病毒(porcine circovirus,PCV)2型共孵育時(shí),MyD88蛋白的表達(dá)明顯增加,并且TLR1,TLR3,TLR4和TLR9的mRNA表達(dá)顯著上調(diào),表明TLR-MyD88-NF-κB信號(hào)通路在PCV2誘導(dǎo)淋巴細(xì)胞的免疫過(guò)程中發(fā)揮了重要的調(diào)控功能。王建立等[77]發(fā)現(xiàn)PCV2感染初期仔豬出現(xiàn)了免疫應(yīng)答,而病毒感染后期,TLR2和TLR4的mRNA表達(dá)水平下調(diào),仔豬免疫應(yīng)答受到一定程度的抑制;在病毒感染后28 d,TLR2和TLR4的mRNA表達(dá)趨勢(shì)接近對(duì)照組,即感染后28 d模式識(shí)別受體mRNA開(kāi)始恢復(fù)轉(zhuǎn)錄水平,表明此時(shí)豬細(xì)胞模式識(shí)別受體(PRR)的功能也開(kāi)始恢復(fù),這樣有利于發(fā)揮巨噬細(xì)胞執(zhí)行清除病毒的功能。Shinkai等[72]發(fā)現(xiàn)杜洛克豬TLR5基因中特異單倍型(a/b和a/d)顯示針對(duì)丹毒(erysipelas, ER)血清型接種的抗體應(yīng)答降低。在周敬禹[78]的研究中,輪狀病毒(poreine rotavirus, PRV)感染組中IPEC-J2細(xì)胞的TLR3及NF-κB的mRNA 表達(dá)水平隨感染時(shí)間延長(zhǎng)而不斷加強(qiáng),且差異顯著。曹志[79]發(fā)現(xiàn)豬瘟病毒(classical swine fever virus, CSFV)能顯著上調(diào)TLR2、TLR4和TLR7基因的表達(dá)。Brogaard等[80]通過(guò)檢測(cè)豬感染甲型流感病毒(influenza A virus, IAV)前和感染后第1、3和14天的先天免疫因子mRNA轉(zhuǎn)錄物的差異表達(dá),發(fā)現(xiàn)TLR4、TLR7和TLR8的表達(dá)水平在干擾后24 h發(fā)生顯著上調(diào),其中TLR4基因上調(diào)到最高水平;而在第14天,TLR3、TLR4和TNF基因表達(dá)開(kāi)始下調(diào),并接近未感染水平,提示感染清除;豬的IAV感染證實(shí)了感染期間和之后免疫因子PRR等的mRNA調(diào)節(jié)的動(dòng)態(tài)變化,先天免疫信號(hào)的傳導(dǎo)在IAV感染過(guò)程中發(fā)揮了重要的調(diào)控作用。Borrego等[81]發(fā)現(xiàn)口蹄疫病毒(foot and mouth disease virus, FMDV)模擬物能夠觸發(fā)豬細(xì)胞模式識(shí)別受體(PRR)參與的快速先天免疫反應(yīng),并發(fā)現(xiàn)巴非洛霉素A1能夠抑制體外培養(yǎng)的豬外周血單核細(xì)胞(PBMCs)內(nèi)源性TLR3、7、8和9的信號(hào)傳導(dǎo)。由此可見(jiàn),TLRs的表達(dá)和遺傳變異在PRRSV、PCV、ER、PRV、CSFV、IAV和FMDV等病毒的識(shí)別以及免疫反應(yīng)中確實(shí)發(fā)揮了重要的調(diào)控作用,有必要對(duì)其表達(dá)調(diào)控的分子機(jī)制進(jìn)行進(jìn)一步分析驗(yàn)證,深入挖掘?qū)Σ《厩秩揪哂锌剐宰饔玫倪z傳標(biāo)記,從而實(shí)施抗病育種。

        2.3 TLRs與細(xì)菌感染的關(guān)系

        王攀等[82]發(fā)現(xiàn)TLR2基因表達(dá)水平在內(nèi)毒素脂多糖(Lipopolysaccharide, LPS)刺激在五指山小型豬近交系主動(dòng)脈內(nèi)皮細(xì)胞后顯著升高,提示TLR2基因能夠介導(dǎo)細(xì)胞炎癥相關(guān)因子的表達(dá)。Jang等[83]發(fā)現(xiàn)喂食鼠李糖桿菌可增加豬氣管支氣管淋巴結(jié)中TLRs和促炎因子TNF-α的表達(dá),表明TLRs在鼠李糖桿菌引起的炎癥反應(yīng)中發(fā)揮了重要的調(diào)控作用。劉筱等[39]發(fā)現(xiàn)蘇鐘豬TLR4編碼區(qū)C1027A突變能影響TLR4識(shí)別內(nèi)毒素脂多糖(LPS)的能力,等位基因C為蘇鐘豬抗革蘭陰性菌感染的優(yōu)勢(shì)基因。Wang等[84]檢測(cè)比較了TLR4基因在蘇太斷奶仔豬F18大腸埃希菌敏感型和抗性型個(gè)體中的表達(dá)水平,發(fā)現(xiàn)蘇太豬大腸埃希菌F18敏感型個(gè)體中TLR4表達(dá)水平要顯著高于抗性型個(gè)體,TLR4基因表達(dá)的下調(diào)與斷奶仔豬對(duì)大腸埃希菌F18的抗性相關(guān)。Finamore等[85]發(fā)現(xiàn)產(chǎn)腸毒素大腸埃希菌(ETEC)誘導(dǎo)豬TLR4和MyD88蛋白水平的增加,磷酸化的IKKα、IKKβ、IκBα和NF-κB亞基p65以及炎癥細(xì)胞因子IL-8和IL-1β的產(chǎn)生。Zhang等[86]發(fā)現(xiàn)注射LPS的豬具有較高的TLR4基因表達(dá)水平和血漿TNF-α濃度,表明TLR4 基因在LPS引起的急性炎癥中發(fā)揮了重要的調(diào)控作用。孫麗等[87]研究發(fā)現(xiàn)LPS誘導(dǎo)豬小腸上皮細(xì)胞系(IPEC-J2)后TLR4基因及其信號(hào)通路關(guān)鍵基因表達(dá)水平均發(fā)生顯著上調(diào),推測(cè)LPS誘導(dǎo)引起TLR4信號(hào)途徑的信號(hào)傳遞,再經(jīng)過(guò)級(jí)聯(lián)免疫效應(yīng)引起下游促炎細(xì)胞因子的釋放,最終導(dǎo)致炎癥反應(yīng)。在Radhakrishnan等[88]的研究中,抑制TLR4信號(hào)通路能夠緩減高脂肪飲食(HFD)誘導(dǎo)的豬結(jié)腸/腸系膜脂肪炎癥。Arnal等[89]發(fā)現(xiàn)在母豬分娩期間用阿莫西林治療過(guò)的成年后代,直腸消化道中的結(jié)腸堿性磷酸酶(AP)、TLR2和TLR4濃度增加。Guo等[90]通過(guò)鉤端螺旋體脂多糖(L-LPS)刺激豬成纖維細(xì)胞,發(fā)現(xiàn)TLR2在L-LPS刺激后24 h內(nèi)表達(dá)明顯上調(diào),而TLR4表達(dá)相對(duì)較弱;同時(shí)MyD88、IL-6和IL-8基因表達(dá)顯著上調(diào),并推測(cè)豬細(xì)胞可以通過(guò)L-LPS刺激激活TLR2而不是TLR4,從而誘導(dǎo)細(xì)胞因子表達(dá)。因此,TLR2和TLR4都在細(xì)菌內(nèi)毒素LPS的侵染過(guò)程中發(fā)揮了重要的調(diào)控作用,TLR4與LPS引起的急性炎癥具有密切聯(lián)系,而TLR2可能在L-LPS刺激過(guò)程中發(fā)揮著比TLR4更直接的作用。

        TLR5能夠識(shí)別細(xì)菌鞭毛蛋白,在免疫系統(tǒng)中發(fā)揮重要作用。Li等[91]研究發(fā)現(xiàn)TLR5基因中的SNP可以改變宿主對(duì)鞭毛蛋白的免疫應(yīng)答,并且對(duì)人類和其他動(dòng)物感染性疾病的易感性具有影響,G2239A對(duì)受體功能有影響。Yang等[92]調(diào)查了來(lái)自5個(gè)豬品種的83個(gè)個(gè)體中TLR5基因編碼區(qū)的單核苷酸多態(tài)性(SNPs),鑒定了總共19個(gè)中等多態(tài)性SNP(0.25

        李文華等[93]建立了2型豬鏈球菌(Streptococcussuis2, SS2)感染J774A.1細(xì)胞模型,并發(fā)現(xiàn)TLR2基因的mRNA水平在感染SS2后明顯上調(diào),并且感染組TNF-α含量也極顯著升高,但阻斷TLR2后TNF-α表達(dá)顯著降低,提示TLR2基因及其信號(hào)通路的活性能夠影響SS2引起的細(xì)胞自噬作用。朱靜等[94]發(fā)現(xiàn)SS2莢膜唾液酸成分缺失后能夠顯著激活宿主單核/巨噬細(xì)胞TLR2分子,導(dǎo)致通路下游AKT磷酸化水平升高,核轉(zhuǎn)錄因子NF-κB激活,從而導(dǎo)致炎癥因子釋放,使得細(xì)菌更加容易被機(jī)體識(shí)別并清除,導(dǎo)致毒力下降。TLR2不僅與L-LPS刺激有關(guān),更與SS2的侵染有密切聯(lián)系。在一定范圍內(nèi),TLR2的高表達(dá)可能有利于細(xì)菌侵染的抗性調(diào)控。

        2.4 TLRs與熱應(yīng)激的關(guān)系

        選擇性剪接是真核生物中的細(xì)胞機(jī)制,其導(dǎo)致基因產(chǎn)物的相當(dāng)多樣性,它在幾種疾病和細(xì)胞信號(hào)調(diào)節(jié)中起重要作用[95]。熱應(yīng)激是誘導(dǎo)豬免疫抑制的主要因素,而關(guān)于豬的選擇性剪接和熱應(yīng)激之間的相關(guān)性了解甚少,Ju等[44]研究了豬TLR4基因剪接體的mRNA水平與熱應(yīng)激的關(guān)系,結(jié)果發(fā)現(xiàn)應(yīng)激豬中TLR4基因剪接體的mRNA水平顯著上調(diào);與對(duì)照豬相比,熱應(yīng)激組外周血單個(gè)核細(xì)胞(peripheral blood mononuclear cell,PBMC)中TLR4的選擇性剪接變體(TLR4-ASV)的表達(dá)水平增加了2~3倍,提示熱休克可能通過(guò)調(diào)節(jié)TLR4及其可變剪接變體的表達(dá)調(diào)節(jié)宿主免疫應(yīng)答。

        3 展望

        自從Toll樣受體家族(TLRs)被發(fā)現(xiàn)以來(lái),有關(guān)其分子克隆、表達(dá)定位和功能鑒定等研究進(jìn)展非常迅速。由于其在機(jī)體免疫反應(yīng)過(guò)程中發(fā)揮的重要的調(diào)控作用,已經(jīng)成為人類、畜禽類甚至魚(yú)類相關(guān)生物學(xué)功能的研究熱點(diǎn)。TLRs可利用MyD88和TRIF等介導(dǎo)的信號(hào)傳導(dǎo)通路來(lái)激活不同的轉(zhuǎn)錄因子,以引起特異性免疫應(yīng)答。最重要的是,TLRs不僅在天然免疫反應(yīng)中發(fā)揮了重要的作用,還在一些由支原體、病毒、細(xì)菌等感染引起的免疫應(yīng)答過(guò)程中發(fā)揮了重要的調(diào)控功能。隨著分子生物學(xué)的迅猛發(fā)展,利用現(xiàn)代高新技術(shù)(高通量測(cè)序技術(shù)、全基因組關(guān)聯(lián)分析、基因編輯技術(shù)等),通過(guò)對(duì)豬源TLRs進(jìn)行基因功能和調(diào)控的分子機(jī)制研究,發(fā)掘有意義的分子標(biāo)記,從遺傳的角度,通過(guò)提高機(jī)體免疫力的分子選育間接提高抗病性能,將對(duì)豬的抗病育種產(chǎn)生深遠(yuǎn)的影響。

        [1] 王超,趙書(shū)紅,朱猛進(jìn). 豬抗病育種的相關(guān)問(wèn)題及研究進(jìn)展[J]. 中國(guó)畜牧雜志,2014,50(22):67-72.

        WANG C, ZHAO S H, ZHU M J. Related problems and research progress in anti-disease breeding of pig[J].ChineseJournalofAnimalScience, 2014, 50(22):67-72. (in Chinese with English abstract)

        [2] MEDZHITOV R. Toll-like receptors and innate immunity[J].NatureReviewsImmunology, 2001, 1(2):135-145.

        [3] BEUTLER B. The Toll-like receptors: analysis by forward genetic methods[J].Immunogenetics, 2005, 57(6):385-392.

        [4] MUNETA Y, UENISHI H, KIKUMA R, et al. Porcine TLR2 and TLR6: identification and their involvement in Mycoplasma hyopneumoniae infection[J].JournalofInterferonandCytokineResearch, 2003, 23(10):583-590.

        [5] SHINKAI H, MUNETA Y, SUZUKI K, et al. Porcine Toll-like receptor 1, 6, and 10 genes: complete sequencing of genomic region and expression analysis[J].MolecularImmunology, 2006, 43(9):1474-1480.

        [6] 徐漢進(jìn),雍艷紅,安立龍,等. 巴馬香豬TLR2基因cDNA的克隆及生物信息學(xué)分析[J]. 中國(guó)獸醫(yī)學(xué)報(bào),2010,30(7):949-953.

        XU H J, YONG Y H, AN L L, et al. Cloning and bioinformatics analysis ofTLR2 cDNA in Bama miniature pig[J].ChineseJournalofVeterinaryScience, 2010, 30(7):949-953. (in Chinese with English abstract)

        [7] SANG Y, ROSS C R, ROWLAND R R R, et al. Toll-like receptor 3 activation decreases porcine arterivirus infection[J].ViralImmunology, 2008, 21(3):303-314.

        [8] 張莉莉,白娟,王先煒,等. 豬Toll樣受體3, 7和8基因的克隆與序列分析[J]. 中國(guó)預(yù)防獸醫(yī)學(xué)報(bào),2010 (9):727-730.

        ZHANG L L, BAI J, WANG X W, et al. Cloning and sequencing analysis of porcine Toll-like receptor 3, 7 and 8 genes[J].ChineseJournalofPreventiveVeterinaryMedicine, 2010 (9):727-730. (in Chinese with English abstract)

        [9] 王鵬飛. 豬TLR3基因及SP-C,SP-D基因啟動(dòng)子功能分析[D]. 泰安:山東農(nóng)業(yè)大學(xué), 2014.

        WANG P F. Analysis on the promoter function of porcineTLR3 andSP-C,SP-Dgenes [D]. Tai’an: Shandong Agricultural University, 2014. (in Chinese with English abstract)

        [10] 管齊賽,房永祥,賈懷杰,等. 合作豬TLR3及其剪接體的基因克隆與序列分析[J]. 中國(guó)獸醫(yī)科學(xué),2012,42(7):731-736.

        GUAN Q S, FANG Y X, JIA H J, et al. Cloning and sequence analysis ofTLR3 and its spliceosomes in Hezuo pig[J].ChineseVeterinaryScience, 2012, 42(7):731-736. (in Chinese with English abstract)

        [11] THOMAS A V, BROERS A D, VANDEGAART H F, et al. Genomic structure, promoter analysis and expression of the porcine (Sus scrofa)TLR4 gene[J].MolecularImmunology, 2006, 43(6):653-659.

        [12] DAI Q X, YAO Y F, QI Z C, et al. Sequence characterization and phylogenetic analysis of toll-like receptor (TLR) 4 gene in the Tibetan macaque (Macacathibetana)[J].GeneticsandMolecularResearch, 2015, 14(1):1875-1886.

        [13] 巨向紅,徐漢進(jìn),雍艷紅,等. 巴馬香豬Toll樣受體TLR4基因cDNA的克隆及生物信息學(xué)分析[J]. 中國(guó)實(shí)驗(yàn)動(dòng)物學(xué)報(bào),2010,18(3):185-190.

        JU X H, XU H J, YONG Y H, et al. Cloning and bioinformatics analysis ofTLR4 cDNA in Bama miniature pig[J].ActaLaboratoriumAnimalisScientiaSinica, 2010, 18(3): 185-190. (in Chinese with English abstract)

        [14] 楊秀芹,李海濤,徐揚(yáng),等. 野豬Toll樣受體基因的結(jié)構(gòu)和功能鑒定[J]. 獸類學(xué)報(bào),2011,31(4):428-432.

        YANG X Q, LI H T, XU Y, et al. Structural and functional identification of Toll-like receptor genes in wild boar[J].ActaTheriologicaSinica, 2011, 31(4):428-432. (in Chinese with English abstract)

        [15] SHINKAI H, TANAKA M, MOROZUMI T, et al. Biased distribution of single nucleotide polymorphisms (SNPs) in porcine Toll-like receptor 1 (TLR1),TLR2,TLR4,TLR5, andTLR6 genes[J].Immunogenetics, 2006, 58(4):324-330.

        [16] 魏麟,黎曉英,陳斌,等. 豬Toll樣受體5基因cDNA克隆, 蛋白質(zhì)序列分析及其意義[J]. 中國(guó)預(yù)防獸醫(yī)學(xué)報(bào),2010,32(2):142-144.

        WEI L, LI X Y, CHEN B, et al. Cloning and sequence of porcine toll-like receptor 5 gene[J].ChineseJournalofPreventiveVeterinaryMedicine, 2010, 32(2): 142-144. (in Chinese with English abstract)

        [17] 孫小林,潘志明,方強(qiáng),等. 我國(guó)地方品種姜曲海豬TLR5基因的克隆, 表達(dá)及鑒定[J]. 細(xì)胞與分子免疫學(xué)雜志,2012,28(4):436-438.

        SUN X L, PAN Z M, FANG Q, et al. Cloning, expression and identification ofTLR5 gene from native Chinese variety Jiangquhai pigs[J].ChineseJournalofCellularandMolecularImmunology, 2012, 28(4):436-438. (in Chinese with English abstract)

        [18] 李海濤,陳月嬋,牛艷春,等. 豬TLR5基因定點(diǎn)突變表達(dá)載體構(gòu)建[J]. 東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2012,43(6):11-15.

        LI H T, CHEN Y C, NIU Y C, et al. Construction of expression vector of porcineTLR5 gene with site directed mutagenesis[J].JournalofNortheastAgriculturalUniversity, 2012, 43(6):11-15. (in Chinese with English abstract)

        [19] AlVES M P, NEUHAUS V, GUZYLACK P L, et al. Toll-like receptor 7 and MyD88 knockdown by lentivirus-mediated RNA interference to porcine dendritic cell subsets[J].GeneTherapy, 2007, 14(10):836-844.

        [20] 李強(qiáng),李學(xué)偉,朱礪,等. 豬Toll樣受體7 cDNA的克隆及序列分析[J]. 畜牧獸醫(yī)學(xué)報(bào),2008,39(5):531-535.

        LI Q, LI X W, ZHU L, et al. Cloning and sequence analysis of cDNA encoding porcine Toll-like receptor 7[J].ChineseJournalofAnimalandVeterinarySciences, 2008, 39(5):531-535. (in Chinese with English abstract)

        [21] 段鳳云,房永祥,陳國(guó)華,等. 豬Toll樣受體7基因的克隆及序列分析[J]. 細(xì)胞與分子免疫學(xué)雜志,2010 (6):599-601.

        DUAN F Y, FANG Y X, CHEN G H, et al. Cloning and sequence analysis of Toll-like receptor 7 gene in pigs[J].ChineseJournalofCellularandMolecularImmunology, 2010 (6):599-601. (in Chinese with English abstract)

        [22] 和燕玲,房永祥,陳國(guó)華,等. 豬TLR7基因胞外區(qū)部分片段的克隆, 表達(dá)及其重組蛋白的純化分析[J]. 安徽農(nóng)業(yè)科學(xué),2009,37(24):11450-11452.

        HE Y L, FANG Y X, CHEN G H, et al. Research on the clone and expression of the extra cellular domain fragment of porcineTLR7 gene and analysis of the purification of its recombinant protein[J].JournalofAnhuiAgriculturalSciences, 2009, 37(24):11450-11452. (in Chinese with English abstract)

        [23] 宋紅芹,姜翠翠,孫懷昌. 豬Toll樣受體7基因人工miRNA表達(dá)質(zhì)粒的構(gòu)建與篩選[J]. 細(xì)胞與分子免疫學(xué)雜志,2013,29(1):18-21.

        SONG H Q, JIANG C C, SUN H C. Construction and screening of the artificial miRNA plasmids targeting porcine Toll-like receptor 7 gene[J].ChineseJournalofCellularandMolecularImmunology, 2013, 29(1):18-21. (in Chinese with English abstract)

        [24] 胡曉亮, 姜騫, 郭東春, 等. 巴馬小型豬主要固有免疫分子的克隆及序列分析[J]. 黑龍江畜牧獸醫(yī), 2014 (11):13-16.

        HU X L, JIANG Q, GUO D C, et al. Cloning and sequence analysis of the main innate immune molecules in Bama miniature pig[J].HeilongjiangAnimalScienceandVeterinaryMedicine, 2014 (11):13-16. (in Chinese with English abstract)

        [25] 鈔安軍,吳宇陽(yáng),李坤,等. 豬TOLL樣受體7全基因的擴(kuò)增, 克隆及生物信息學(xué)分析[J]. 華北農(nóng)學(xué)報(bào),2013,28(1):112-116.

        CHAO A J, WU Y Y, LI K, et al. Amplification, cloning and bioinformatic analysis of porcineTLR7 gene[J].ActaAgricultureBoreli-Sinica, 2013, 28(1):112-116. (in Chinese with English abstract)

        [26] ZHU J, LAI K, BROWNILE R, et al. PorcineTLR8 andTLR7 are both activated by a selectiveTLR7 ligand, imiquimod[J].MolecularImmunology, 2008, 45(11):3238-3243.

        [27] SHIMOSATO T, KITAZAWA H, KATOH S, et al. Swine Toll-like receptor 9 recognizes CpG motifs of human cell stimulant[J].BiochimicaetBiophysicaActa(BBA)-GeneStructureandExpression, 2003, 1627(1):56-61.

        [28] 王建魁. 豬Toll樣受體9基因胞外區(qū)的克隆及其原核表達(dá)[D]. 蘭州:甘肅農(nóng)業(yè)大學(xué),2006.

        WANG J K. Cloning and proayotic expression of extracellular of domain fragment Toll-like Receptor 9 gene of swine[D]. Lanzhou: Gansu Agricultural University, 2006. (in Chinese with English abstract)

        [29] 段鳳云,景志忠,房永祥,等. 豬Toll樣受體9基因的克隆, 序列分析及其結(jié)構(gòu)預(yù)測(cè)[J]. 中國(guó)獸醫(yī)學(xué)報(bào),2009 (12):1640-1644.

        DUAN F Y, JING Z Z, FANG Y X, et al. Cloning,sequencing and prediction structure of porcine Toll-like receptor 9 gene[J].ChineseJournalofVeterinaryScience, 2009 (12):1640-1644. (in Chinese with English abstract)

        [30] BERGMAN I M, ROSENGREN J K, EDMAN K, et al. European wild boars and domestic pigs display different polymorphic patterns in the Toll-like receptor (TLR) 1,TLR2, andTLR6 genes[J].Immunogenetics, 2010, 62(1):49-58.

        [31] MUNETA Y, MINAGAWA Y, KUSUMOTO M, et al. Development of allele-specific primer PCR for a swine TLR2 SNP and comparison of the frequency among several pig breeds of Japan and the Czech Republic[J].JournalofVeterinaryMedicalScience, 2012, 74(5):553-559.

        [32] 劉勝貴, 魏麟, 史憲偉, 等. 豬TLR2基因Bi-PASA遺傳標(biāo)記的建立及多態(tài)性研究[J]. 黑龍江畜牧獸醫(yī), 2007 (1):7-9.

        LIU S G, WEI L, SHI X W, et al. Bi-PASA geneticmarker and polymorph ism of the porcineTLR2 gene[J].HeilongjiangAnimalScienceandVeterinaryMedicine, 2007 (1):7-9. (in Chinese with English abstract)

        [33] 陳月嬋. 豬TLR3基因的SNPs功能分析[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué),2012.

        CHEN Y C. Function analysis of single nucleotide polymorphisms (SNPs) in porcineTLR3 gene [D]. Ha’erbin: Northeast Agricultural University, 2012. (in Chinese with English abstract)

        [34] 李海濤,翟春媛,劉娣,等. 豬TLR3基因變異位點(diǎn)分析[J]. 黑龍江畜牧獸醫(yī),2011 (6):11-13.

        LI H T, ZHAI C Y, LIU D, et al. The analysis of mutation sites onTLR3 genes in pig[J].HeilongjiangAnimalScienceandVeterinaryMedicine, 2011 (6): 11-13. (in Chinese with English abstract)

        [35] 邢明偉,翟春媛,李海濤,等. 豬TLR3基因A1116T點(diǎn)突變功能初步分析[J]. 畜牧獸醫(yī)學(xué)報(bào),2011,42(4):468-474.

        XING M W, ZHAI C Y, LI H T. A1116T SNP functional analysis of porcineTLR3 gene[J].ActaVeterinariaetZootechnicaSinica, 2011, 42(4):468-474. (in Chinese with English abstract)

        [36] PALERMO S, CAPRA E, TORREMORELL M, et al. Toll-like receptor 4 genetic diversity among pig populations[J].AnimalGenetics, 2009, 40(3):289-299.

        [37] 潘章源,葉蘭,朱璟,等. 豬TLR4基因外顯子1新等位基因的分離及遺傳變異分析[J]. 遺傳,2011,33(2):163-167.

        PAN Z Y, YE L, ZHU J, et al. Isolation of new alleles of the swineTLR4 gene and analysis of its genetic variation[J].Hereditas, 2011, 33(2):163-167. (in Chinese with English abstract)

        [38] 蘇先敏,王靖,趙喬輝,等. 大白豬TLR4基因外顯子1遺傳變異及其與細(xì)胞因子水平的關(guān)系[J]. 中國(guó)畜牧雜志,2013,49(13):1-4.

        SU X M, WANG J, ZHAO Q H, et al. The Genetic Variation ofTLR4 gene exon 1 and its correlation with cytokines level in Large White pigs[J].ChineseJournalofAnimalScience, 2013, 49(13):1-4. (in Chinese with English abstract)

        [39] 劉筱,方曉敏,鄒曉龍,等. 蘇鐘豬TLR4多態(tài)性及編碼區(qū)C1027A 功能分析[J]. 中國(guó)農(nóng)業(yè)科學(xué),2011,45(6):1206-1214.

        LIU X, FANG X M, ZOU X L, et al. Polymorphism ofTLR4 and function analysis of C1027A in Suzhong pig[J].ScientiaAgriculturaSinica, 2011, 45(6):1206-1214. (in Chinese with English abstract)

        [40] 朱衛(wèi)華,杜恒,楊勇,等. 霍壽黑豬和長(zhǎng)白豬TLR4基因第3外顯子的SNP檢測(cè)及其遺傳差異分析[J]. 安徽農(nóng)業(yè)大學(xué)學(xué)報(bào),2014,41(5):808-812.

        ZHU W H, DU H, YANG Y, et al. Single nucleotide polymorphism (SNP) detection and genetic difference analysis ofTLR4 gene exon 3 in Huoshou black and Landrance pigs[J].JournalofAnhuiAgriculturalUniversity, 2014, 41(5):808-812. (in Chinese with English abstract)

        [41] 丁月云,朱衛(wèi)華,薛瑋緯,等. 安徽地方豬TLR4基因3外顯子的SNP分析[J]. 畜牧獸醫(yī)學(xué)報(bào),2014 (11):1767-1774.

        DING Y Y, ZHU W H, XUE W W, et al. Single nucleotide polymorphisms (SNPs) analysis ofTLR4 gene exon 3 in Anhui native pig breeds[J].ActaVeterinariaetZootechnicaSinica, 2014 (11):1767-1774. (in Chinese with English abstract)

        [42] 周波,劉傳武,虞德兵,等. 用PCR-SSCP方法檢測(cè)豬Toll樣受體4 (TLR4) 基因外顯子3的SNP[J]. 畜牧與獸醫(yī),2008,40(6):26-30.

        ZHOU B, LIU C W, YU De-bing, et al. Detection of SNP in porcineTLR4 gene with polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP)[J].AnimalHusbandry&VeterinaryMedicine, 2008, 40(6):26-30. (in Chinese with English abstract)

        [43] 陳月嬋, 翟春媛, 劉娣, 等. 豬TLR4基因2個(gè)突變位點(diǎn)的PCR-SSCP分析[J]. 黑龍江畜牧獸醫(yī), 2012 (9):1-3.

        CHEN Y C, ZHAI C Y, LIU D, et al. The analysis of the two mutation sites in theTLR4 genes in pig by PCR-SSCP[J].HeilongjiangAnimalScienceandVeterinaryMedicine, 2012 (9):1-3. (in Chinese with English abstract)

        [44] JU X, XU H, YONG Y, et al. Heat stress upregulates the expression ofTLR4 and its alternative splicing variant in bama miniature pigs[J].JournalofIntegrativeAgriculture, 2014, 13(11):2479-2487.

        [45] 楊秀芹,牛艷春,李海濤,等. 民豬, 長(zhǎng)白豬TLR5基因變異的比較分析[J]. 黑龍江畜牧獸醫(yī),2012(5):60-61.

        YANG X Q, NIU Y C, LI H T, et al. Comparative Analysis ofTLR5 gene variation in Min and Landrace pigs[J].HeilongjiangAnimalScienceandVeterinaryMedicine, 2012(5):60-61. (in Chinese)

        [46] 魏麟,陳斌,黎曉英,等. 豬TLR6基因MspI多態(tài)性與生長(zhǎng)性狀相關(guān)性研究[J]. 中國(guó)農(nóng)學(xué)通報(bào),2011,27(11):5-9.

        WEI L, CHEN B, LI X Y, et al. Associations between MspI polymorphism ofTLR6 gene and growth traits of pigs[J].ChineseAgriculturalScienceBulletin, 2011, 27(11):5-9. (in Chinese with English abstract)

        [47] BERGMAN I M. Polymorphism in pattern recognition receptor genes in pigs[D]. G?teborg: Linnaeus University Dissertations, 2010.

        [48] CLOP A, HUISMAN A, VAN AS P, et al. Identification of genetic variation in the swine toll-like receptors and development of a porcineTLRgenotyping array[J].GeneticsSelectionEvolution, 2016, 48(1):28.

        [49] UENISHI H, SHINKAI H, MOROZUMI T, et al. Polymorphisms in pattern recognition receptors and their relationship to infectious disease susceptibility in pigs[J].BMCProceedings:BioMedCentral, 2011, 5(Suppl 4):S27.

        [50] UDDIN M J, KAEWMALA K, TESFAYE D, et al. Expression patterns of porcine Toll-like receptors family set of genes (TLR1-10) in gut-associated lymphoid tissues alter with age[J].ResearchinVeterinaryScience, 2013, 95(1):92-102.

        [51] MARANTIDIS A, LALIOTIS G P, MICHAILIDIS G, et al. Study of Toll-Like Receptor and B-defensins genes expression pattern in porcine reproductive organs[J].AnimalBiotechnology, 2015, 26(3):188-193.

        [52] CHENG C, SUN W K, LIU R, et al. Comparison of gene expression of Toll-like receptors and antimicrobial peptides in immune organs and tissues between Yorkshire and Tibetan pigs[J].AnimalGenetics, 2015, 46(3):272-279.

        [54] 邱小田, 李玉華, 李何君, 等. 豬Toll-like Receptor 4(TLR4)的定位和組織表達(dá)[J]. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào), 2007, 15(1):37-40.

        QIU X T, LI Y H, LI H J, et al. Mapping and tissue expression of porcine Toll-like receptor 4 (TLR4)[J].JournalofAgriculturalBiotechnology, 2007, 15(1):37-40. (in Chinese with English abstract)

        [55] WANG J, PAN Z Y, ZHENG X R, et al.TLR4 gene expression in pig populations and its association with resistance toEscherichiacoliF18[J].GeneticsandMolecularResearch, 2013, 12(3):2625-2632.

        [56] ANSARI A R, Ge X H, HUANG H B, et al. Expression patterns of Toll-like receptor 4 in pig uterus during pregnancy[J].PakistanVeterinaryJournal, 2015, 35(4):466-469.

        [57] 朱浩妮. 不同品種仔豬TLRs表達(dá)規(guī)律及VA對(duì)仔豬TLRs表達(dá)量影響的研究[D]. 雅安:四川農(nóng)業(yè)大學(xué),2010.

        ZHU H N. TLRs expression profile in piglets of different breeds and effect of vitamin A on TLRS expression of piglets [D]. Ya’an: Sichuan Agricultural University, 2010. (in Chinese with English abstract)

        [58] BALACHANDRAN Y, Knaus S, Caldwell S, et al. Toll-like receptor 10 expression in chicken, cattle, pig, dog, and rat lungs[J].VeterinaryImmunologyandImmunopathology, 2015, 168(3):184-192.

        [59] SU X, LI S, MENG M, et al. TNF receptor-associated factor-1 (TRAF1) negatively regulates Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF)-mediated signaling[J].EuropeanJournalofImmunology, 2006, 36(1):199-206.

        [60] MANUKYAN M, NALBANT P, LUXEN S, et al. RhoA GTPase activation by TLR2 and TLR3 ligands: connecting via Src to NF-κB[J].TheJournalofImmunology, 2009, 182(6):3522-3529.

        [61] ZHAO X L, XIAO S Y, BERK S, et al. Structural basis of phosphoinositide (PIP) recognition by the TIRAP PIP-binding motif[J].BiophysicalJournal, 2015, 108(2):93a.

        [62] MITCHELL J A, PAUL C M J, Clarke G W, et al. Critical role of toll-like receptors and nucleotide oligomerisation domain in the regulation of health and disease[J].JournalofEndocrinology, 2007, 193(3):323-330.

        [63] LIN S C, LO Y C, WU H. Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signaling[J].Nature, 2010, 465(7300):885-890.

        [64] BROWN J, WANG H, HAJISHENGALLIS G N, et al. TLR-signaling networks: an integration of adaptor molecules, kinases, and cross-talk[J].JournalofDentalResearch, 2011, 90(4):417-427.

        [65] TOHNO M, SHIMAZU T, ASO H, et al. Molecular cloning and functional characterization of porcine MyD88 essential for TLR signaling[J].Cellular&MolecularImmunology, 2007, 4(5):369-376.

        [66] LI X, LIU H, SHULIN Y, et al. Characterization analysis and polymorphism detection of the porcineMyd88 gene[J].GeneticsandMolecularBiology, 2009, 32(2):295-300.

        [67] DAI C, SUN L, YU L, et al. Effects of porcine MyD88 knockdown on the expression ofTLR4 pathway-related genes and proinflammatory cytokines[J].BioscienceReports, 2016, 36(6):e00409.

        [68] KRAUSS J L, POTEMPA J, LAMBRIS J D, et al. Complementary Tolls in the periodontium: How periodontal bacteria modify complement and Toll-like receptor responses to prevail in the host[J].Periodontol2000, 2010, 52(1):141-162.

        [69] UENISHI H, SHINKAI H. Porcine Toll-like receptors: the front line of pathogen monitoring and possible implications for disease resistance[J].Developmental&ComparativeImmunology, 2009, 33(3):353-361.

        [70] 方曉敏,劉筱,孟翠,等. 豬Toll樣受體基因的變異及其與支原體肺炎感染的關(guān)系[J]. 華北農(nóng)學(xué)報(bào),2012,27(2):6-11.

        FANG X M, LIU X, MENG C, et al. Genetic variation of Toll-like receptors and mycoplasma pneumoniae infection in pigs[J].ActaAgricultureBoreali-Sinica, 2012, 27(2):6-11. (in Chinese with English abstract)

        [71] 劉筱,方曉敏,鄒曉龍,等. 豬感染肺炎支原體后肺組織TLR2,TLR4 及促炎癥因子TNF-α,IL-1β基因表達(dá)的變化[J]. 江蘇農(nóng)業(yè)學(xué)報(bào),2011,27(6):143-147.

        LIU X, FANG X M, ZOU X L, et al. Alterations of Toll-like receptorsTLR2 andTLR4 and gene expression of proinflammatory factorsTNF-αandIL-1βin lungs of swine after Myco-plasma pneumoniae infection[J].JiangsuJournalofAgriculturalSciences, 2011, 27(6):143-147. (in Chinese with English abstract)

        [72] SHINKAI H, ARAKAWA A, TANAKA-MATSUDA M, et al. Genetic variability in swine leukocyte antigen class II and Toll-like receptors affects immune responses to vaccination for bacterial infections in pigs[J].ComparativeImmunologyMicrobiologyandInfectiousDiseases, 2012, 35(6):523-532.

        [73] LIU C H, CHAUNG H C, CHANG H, et al. Expression of Toll-like receptor mRNA and cytokines in pigs infected with porcine reproductive and respiratory syndrome virus[J].VeterinaryMicrobiology, 2009, 136(3):266-276.

        [74] MIGUEL J C, CHEN J, VAN ALSTINE W G, et al. Expression of inflammatory cytokines and Toll-like receptors in the brain and respiratory tract of pigs infected with porcine reproductive and respiratory syndrome virus[J].VeterinaryImmunologyandImmunopathology, 2010, 135(3):314-319.

        [75] WANG L, CHEN Y C, ZHANG D J, et al. Functional characterization of genetic variants in the porcineTLR3 gene[J].GeneticsandMolecularResearch: 2014, 13(1):1348-1357.

        [76] DUAN D, ZHANG S, LI X, et al. Activation of the TLR/MyD88/NF-κB signal pathway contributes to changes in IL-4 and IL-12 production in piglet lymphocytes infected with porcine circovirus type 2 in vitro[J].PLoSOne, 2014, 9(5):e97653.

        [77] 王建立,楊柳,楊凱,等. 豬圓環(huán)病毒2型感染的豬肺泡巨噬細(xì)胞TLR2/TLR4/CD16/CD18轉(zhuǎn)錄水平動(dòng)態(tài)變化[J]. 中國(guó)畜牧獸醫(yī),2013,40(3):110-117.

        WANG J L, YANG L, YANG K, et al. Changes in transcription level of TLR2/TLR4/CD16/CD18 of porcine pulmonary alveolar macrophages post-infected PCV2 in vivo[J].ChinaAnimalHusbandry&VeterinaryMedicine, 2013, 40(3):110-117. (in Chinese with English abstract)

        [78] 周敬禹. TLR3及NF-κB信號(hào)通路在豬輪狀病毒體外感染小腸上皮細(xì)胞免疫應(yīng)答中的作用研究[D]. 長(zhǎng)春:吉林農(nóng)業(yè)大學(xué),2014.

        ZHOU J Y. Study on the function of TLR3 and NF-κB passway on immune response in porcine rotavirus infection of intestinal epithelial cells in vitro [D]. Changchun: Jilin Agricultural University, 2014. (in Chinese with English abstract)

        [79] 曹志. 豬瘟病毒及其非結(jié)構(gòu)蛋白對(duì)豬巨噬細(xì)胞Toll樣受體介導(dǎo)天然免疫應(yīng)答的影響[D]. 西安:西北農(nóng)林科技大學(xué),2015.

        CAO Z. Effect of CSFV and its non-structural proteins on TLR-mediated innate immune response in swine macrophages [D]. Xi’an: Northwest A&F University, 2015. (in Chinese with English abstract)

        [80] BROGAARD L, HEEGAARD P M H, LARSEN L E, et al. Late regulation of immune genes and microRNAs in circulating leukocytes in a pig model of influenza A (H1N2) infection[J].ScientificReports, 2016, 6: 21812.

        [81] BORREGO B, RODRGUEZ-PULIDO M, REVILLA C, et al. Synthetic RNAs mimicking structural domains in the Foot-and-Mouth disease virus genome elicit a broad innate immune response in porcine cells triggered by RIG-I and TLR activation[J].Viruses, 2015, 7(7):3954-3973.

        [82] 王攀,陶曉莉,沈祖楠,等. 五指山小型豬近交系主動(dòng)脈內(nèi)皮細(xì)胞體外培養(yǎng)模型的建立和TLR2介導(dǎo)炎癥相關(guān)因子的表達(dá)[J]. 中國(guó)農(nóng)業(yè)科學(xué),2011,45(2):346-352.

        WANG P, TAO X L, SHEN Z N, et al. Establishment of aortic endothelial cells model in vitro from Wuzhishan of inbred miniature pig and expression of inflammatory cytokines mediated by TLR2[J].ScientiaAgriculturaSinica, 2011, 45(2):346-352. (in Chinese with English abstract)

        [83] JANG S, LAKSHMAN S, MOLOKIN A, et al.Lactobacillusrhamnosusand flavanol-enriched cocoa powder altered the immune response to infection with the parasitic nematodeAscarissuumin a pig model[J].TheFASEBJournal, 2016, 30(Suppl 1): 1176.14-1176.14.

        [84] WANG J, PAN Z Y, ZHENG X R, et al.TLR4 gene expression in pig populations and its association with resistance toEscherichiacoliF18[J].GeneticsandMolecularResearch, 2013, 12(3):2625-2632.

        [85] FINAMORE A, ROSELLI M, IMBINTO A, et al. Lactobacillus amylovorus inhibits the TLR4 inflammatory signaling triggered by enterotoxigenicEscherichiacolivia modulation of the negative regulators and involvement of TLR2 in intestinal Caco-2 cells and pig explants[J].PLoSOne, 2014, 9(4):e94891.

        [86] ZHANG J, FU S L, LIU Y, et al. Analysis of MicroRNA expression profiles in weaned pig skeletal muscle after lipopolysaccharide challenge[J].InternationalJournalofMolecularSciences, 2015, 16(9):22438-22455.

        [87] 孫麗,夏日煒,殷學(xué)梅,等. LPS誘導(dǎo)條件下豬小腸上皮細(xì)胞TLR4及其信號(hào)通路基因表達(dá)變化分析[J]. 畜牧獸醫(yī)學(xué)報(bào),2015,46 (7):1095-1101.

        SUN L, XIA R W, YIN X M, et al. Analysis of differential expression of TLR4 and TLR4 signaling pathway genes under lipopolysaccharide-induced pig intestinal epithelial cells[J].ActaVeterinariaetZootechnicaSinica, 2015, 46 (7):1095-1101. (in Chinese with English abstract)

        [88] RADHAKRISHNAN S, KIM S, REDDIVARI L, et al. Purple-fleshed potato, even after processing, prevents and reverses high-fat diet elevated colonic-mesenteric fat systemic inflammation cascade in pig model (1045.47)[J]. The FASEB Journal, 2014, 28(Suppl 1):1045.47.

        [89] ARNAL M E, ZHANG J, ERRIDGE C, et al. Maternal antibiotic-induced early changes in microbial colonization selectively modulate colonic permeability and inducible heat shock proteins, and digesta concentrations of alkaline phosphatase and TLR-stimulants in swine offspring[J].PLoSOne, 2015, 10(2):e0118092.

        [90] GUO Y, FUKUDA T, DONAI K, et al. Leptospiral lipopolysaccharide stimulates the expression of toll‐like receptor 2 and cytokines in pig fibroblasts[J].AnimalScienceJournal, 2015, 86(2):238-244.

        [91] LI H T, LIU D, YANG X Q. Identification and functional analysis of a novel single nucleotide polymorphism (SNP) in the porcine Toll like receptor (TLR) 5 gene[J].ActaAgriculturaeScandinavica(SectionA-AnimalScience), 2011, 61(4):161-167.

        [92] YANG X Q, LI H T, GUAN Q Z, et al. Genetic diversity of Toll-like receptor 5 among pig populations[J].GeneticsandMolecularBiology, 2013, 36(1):37-42.

        [93] 李文華,王瑩,陳偉,等. Toll 樣受體2 (TLR2) 參與豬鏈球菌誘導(dǎo)的自噬作用[J]. 中國(guó)獸醫(yī)學(xué)報(bào),2013,33(2): 222-226.

        LI W H, WANG Y, CHEN W, et al. Toll-like receptor 2 is involved in autophagy induced by streptococcus suis type 2[J].ChineseJournalofVeterinaryScience, 2013, 33(2):222-226. (in Chinese with English abstract)

        [94] 朱靜,胡丹,劉麗娜,等. 莢膜唾液酸對(duì)豬鏈球菌激活巨噬細(xì)胞TLR2-AKT-NF-κB信號(hào)通路影響的研究[J]. 微生物學(xué)通報(bào),2013,40(6):1058-1067.

        ZHU J, HU D, LIU L N, et al. Research on the role of capsular sialic acid inStreptococcussuisactivate macrophage TLR2-AKT-NF-κB signaling pathway[J].MicrobiologyChina, 2013, 40(6):1058-1067. (in Chinese with English abstract)

        [95] FU R H, LIU S P, HUANG S J, et al. Aberrant alternative splicing events in Parkinson’s disease[J].CellTransplantation:TheRegenerativeMedicineJournal, 2013, 22(4):653-661.

        猜你喜歡
        氨基酸受體通路
        月桂酰丙氨基酸鈉的抑菌性能研究
        UFLC-QTRAP-MS/MS法同時(shí)測(cè)定絞股藍(lán)中11種氨基酸
        中成藥(2018年1期)2018-02-02 07:20:05
        Toll樣受體在胎膜早破新生兒宮內(nèi)感染中的臨床意義
        2,2’,4,4’-四溴聯(lián)苯醚對(duì)視黃醛受體和雌激素受體的影響
        Kisspeptin/GPR54信號(hào)通路促使性早熟形成的作用觀察
        一株Nsp2蛋白自然缺失123個(gè)氨基酸的PRRSV分離和鑒定
        proBDNF-p75NTR通路抑制C6細(xì)胞增殖
        通路快建林翰:對(duì)重模式應(yīng)有再認(rèn)識(shí)
        氨基酸分析儀測(cè)定玉米漿中17種游離氨基酸的不確定度評(píng)定
        Hippo/YAP和Wnt/β-catenin通路的對(duì)話
        遺傳(2014年2期)2014-02-28 20:58:11
        国产在线视频一区二区三区| 日韩精品一区二区三区视频| 久久青青草原亚洲AV无码麻豆| 国产精品不卡在线视频| 久久久精品亚洲一区二区国产av| 中文字幕日本人妻久久久免费| 娇妻玩4p被三个男人伺候电影| 吃下面吃胸在线看无码| 激情亚洲不卡一区二区| 粗大的内捧猛烈进出看视频| 成人h动漫精品一区二区| 国产精品女同久久免费观看| 福利视频偷拍一区二区| 精品国产免费一区二区三区香蕉| 午夜福利电影| 久久亚洲精彩无码天堂| 中文字幕乱码亚洲一区二区三区| 亚洲av日韩aⅴ无码色老头| 亚洲人成无码网站久久99热国产 | 午夜一区欧美二区高清三区| 国产精品国产三级国产av创| 亚洲a级视频在线播放| 人妻精品久久久久中文字幕| 亚洲av无码一区二区三区网站| 无码啪啪熟妇人妻区| 中文字幕精品一区二区的区别| 国产精品视频免费播放| 色yeye免费视频免费看| 国产喷白浆精品一区二区豆腐| 婷婷精品国产亚洲av麻豆不片| 大肉大捧一进一出好爽视频mba| 精品一区二区三区在线视频观看| 日韩中文字幕熟女人妻| 影音先锋色小姐| 伊人网视频在线观看| 亚洲女同av一区二区在线观看| 国产精品午夜福利视频234区| 亚洲一区av无码少妇电影| 国产三级国产精品三级在专区| 国产一区二区三区激情视频| 亚洲男人的天堂在线aⅴ视频|