亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        廢棄物能量回收技術(shù)用于城市固廢高效管理的綜述(下)

        2018-03-16 06:40:44AtulKumarSamadder翻譯張本民
        西部皮革 2018年3期
        關(guān)鍵詞:填埋場甲烷廢棄物

        Atul Kumar,S.R.Samadder(翻譯:張本民 )

        (1.Departmentof Environmental Science&Engineering,Indian Instituteof Technology(Indian School of Mines),Dhanbad 826004,India;2.惠州市質(zhì)量計量監(jiān)督檢測所,廣東惠州516003)

        (上接2018年1月第1期)

        4.2 生物轉(zhuǎn)換技術(shù)

        生物轉(zhuǎn)換技術(shù)基于微生物對MSW中的有機成分降解。許多研究者報道過這種技術(shù)當(dāng)環(huán)境合適時用于廢棄物能量回收(Pant et al.,2010)。通常廢棄物中有機生物可降解物質(zhì)含量高(易腐敗的)、濕度大時,是一種首選處理方法。生物轉(zhuǎn)換技術(shù)用于能量回收有兩種方式,分別為厭氧消化和生物產(chǎn)甲烷。

        4.2.1 厭氧消化

        厭氧消化(或生物產(chǎn)甲烷)是一種含氧條件下微生物降解有機可降解物質(zhì)的過程,可產(chǎn)生物氣和穩(wěn)定的污泥。所產(chǎn)生物氣的質(zhì)量取決于處理條件和底物組成;通常,生物氣由 50% ~75% 的 CH4,25% ~50%CO2和1%~15%其它氣體(如水蒸汽、NH3、H2S 等)(Surendra et al.,2014)。所產(chǎn)污泥可以用于土壤調(diào)節(jié)劑或作為農(nóng)業(yè)領(lǐng)域上一種有機修護劑 (Pivato et al.,2016;Tam boneet al.,2009)。厭氧消化常被用來從可降解廢棄物中回收營養(yǎng)和能量。據(jù)Aliet al.(2016)報道,厭氧消化的固體產(chǎn)物質(zhì)量(作為一種肥料)主要跟廢棄物原料的質(zhì)量有關(guān)(廢棄物中蛋白質(zhì)、礦物質(zhì)和維生素含量)。據(jù)Brow ne et al.(2014)報道,歐盟法規(guī)禁止將厭氧消化的固體產(chǎn)物作為肥料使用,因為廢棄物原料中存在不理想物質(zhì)。厭氧消化時,可降解MSW中有機物便會降解,通過一系列階段轉(zhuǎn)化為甲烷。最初的階段稱為水解,在此階段MSW中復(fù)雜的有機化合物如碳水化合物、蛋白質(zhì)和脂肪轉(zhuǎn)化為可溶解有機物如糖類、氨基酸和脂肪酸。厭氧消化過程下一階段為發(fā)酵,有機分子分解為乙酸、H2和CO2。最后階段是產(chǎn)甲烷,在此階段甲烷開始生成。有機物質(zhì)轉(zhuǎn)化為甲烷的詳細流程如圖4。厭氧消化過程主要分主兩種類型,“濕消化”(干基含量10%~15%)和“干消化”(干基含量24%~40%)過程(Luning et al.,2003)。濕消化過程產(chǎn)生更多液態(tài)廢棄物和較少固態(tài)產(chǎn)品。濕消化處理對反應(yīng)器的體積要求不如干消化處理高。反應(yīng)器的類型(單階段和多階段)、處理過程(干或濕處理)和甲烷產(chǎn)量取決于地區(qū)、廢棄物原料質(zhì)量和產(chǎn)物要求。

        據(jù)估計,每噸MSW經(jīng)厭氧消化在三周內(nèi)甲烷的產(chǎn)量比填埋處理6~7年回收的甲烷量高出2~4倍(Ahsan,1999;Saxena et al.,2009)。據(jù) M urphyet al.(2004)報道,以轉(zhuǎn)化效率35%計算算,厭氧消化處理產(chǎn)生1m3生物氣可以發(fā)電2.04kW h。若考慮MSW含60%有機物和40%水分,則每噸MSW可產(chǎn)甲烷150kg(Scarlat et al.,2015)。然而,處理過程中主要的問題是微生物反應(yīng)周期太長(一般20~40天)(Pham et al.,2015)。有時,廢棄物中存在含氮豐富的組分和陽離子(如鈉、鉀、鈣)會增加氨和鹽濃度,從而使產(chǎn)甲烷過程中出現(xiàn)有毒物。一些研究(Gom ez et al.,2006;Cristancho 和 Are llano,2006)建議,廢棄物氮含量低的MSW、污水污泥、食物廢棄物采用混合消化以降低氨濃度,增加處理過程中生物氣的產(chǎn)量。表6總結(jié)了MSW有機組分在許多研究者報道過的不同操作條件下的甲烷產(chǎn)量。大多數(shù)研究者使用食物垃圾加入合適的培養(yǎng)液,進行氣體最大化回收。使用厭氧消化技術(shù)所產(chǎn)生物氣的質(zhì)量可以通過移除CO2和其它微量氣體改善,進而用作運輸燃料,稱為生物甲烷。這種生物氣可以替代天然氣在許多家庭和企業(yè)上應(yīng)用 (Kasturirangan,2014;Appels et al.,2008)。早期,厭氧消化用于生活污水、工作廢棄物、有機廢棄物和動物糞便的處理,但現(xiàn)在廣泛用于MSW能量回收,尤其在發(fā)展中國家,因其廢棄物濕度比較大 (Yap and Nixon,2015)。Abbas et al.(2017)和 Aliet al.(2013a,b)評價了生物氣回收的可行性,發(fā)現(xiàn)通過厭氧消化技術(shù)回收生物氣經(jīng)濟、環(huán)境上具有可持續(xù)性。

        4.3 填埋法

        衛(wèi)生填埋是指為了減少環(huán)境負面影響,通過生物氣回收和瀝出液管理的方式在陸地上有控制的處理廢棄物(圖5)。然而,非衛(wèi)生填埋提供了一種更簡單更廉價處理大量增加廢棄物的方式,在發(fā)展中國家是最常見的處理方法,將為對環(huán)境產(chǎn)生很嚴重的危害(W ang and Geng,2015)。前人的研究表明,與其它廢棄物管理方法相比填埋產(chǎn)生的環(huán)境影響最大(Cherubiniet al.,2009;Em ery et al.,2007;M archettini et al.,2007;ISWA,2012)。據(jù)報道,大部分發(fā)展中國家城市,在城市郊外的低洼區(qū)域處理廢棄物 (Talyan et al.,2008;Kum ar and Chakrabarti,2010)。當(dāng)考慮到如環(huán)境影響、健康影響、土地退化、地下水污染的因素時,填埋法將成為最糟糕的選擇。然而,發(fā)達國家已經(jīng)開始通過立法、減排、循環(huán)利用抵制廢棄物填埋處理。填埋產(chǎn)生的瀝液(一種成分復(fù)雜,含有難降解化合物的深色廢水,)是一種從填埋物或垃圾儲存站釋放的主要污染物 (Müller et al.,2015),會污染周圍地表河道和地下含水層。據(jù)專家介紹,僅總廢棄物的10%~15%應(yīng)該采用填埋法,而且應(yīng)是土地有限的城市最后的選擇。

        表6 MSW厭氧消化甲烷產(chǎn)量

        4.3.1 填埋產(chǎn)氣模擬

        填埋場沉積物中殘留的有機物質(zhì)經(jīng)歷了復(fù)雜的生物和化學(xué)降解,結(jié)果有填埋氣體(LFG)產(chǎn)生。有機物質(zhì)降解產(chǎn)生LFG發(fā)生在5個不同階段(Noor et al.,2013)。第一階段是水解/好氧消化,在此階段好氧菌將復(fù)雜有機物分解為CO2和H2O,第二階段是水解和發(fā)酵,在兼性細菌存在下,水溶性有機成分分解為CO2、H2、NH3和有機酸。第三階段是酸化/乙酸化,第二階段產(chǎn)生的有機酸通過厭氧菌轉(zhuǎn)化為乙酸、甲酸、乙醇、H2和CO2。在第四階段(甲烷生成),產(chǎn)甲烷菌消耗第三階段產(chǎn)物,并且主要產(chǎn)生CH4、CO2,以及少量其他微量氣體。最后階段是氧化,本階段在需氧條件下CH4轉(zhuǎn)化為CO2和H2O。填埋場內(nèi)部LFG產(chǎn)率受許多因素影響,如填埋場類型、廢棄物組成、氣候條件(溫度和降水)、含水量和廢棄物存放時間(Scarlat et al.,2015)。LFG中含50%~60%甲烷(Unnikrishnan and Singh,2010)并且被認為是人工產(chǎn)甲烷的主要來源之一。據(jù)估計,每年從垃圾填埋場產(chǎn)生甲烷氣體為3000~7000萬噸(Johariet al.,2012)。因此,從填埋場回收甲烷用于發(fā)電或其它用途可以幫助減排。有時LFG回收技術(shù)上不可行,因為那種情況LFG當(dāng)場就已被燃燒。但是,在這種情況下有必要對填埋場內(nèi)部LFG預(yù)測。推薦的方法涉及到LFG生成模擬。有許多可以使用的模型預(yù)測填埋場甲烷的釋放。表7描述一些廣泛使用的模型(七種)。然而,由于不同國家的廢棄物組成不同,對同一種填埋場來說不同的模型會得出不同結(jié)果,這些模型已經(jīng)被開發(fā)可為該地區(qū)提供準(zhǔn)確的結(jié)果。在這七種模型中,六種基于歐盟情況,一種基于美國情況。這些模型減少了冗長的測量技術(shù),通常應(yīng)用于垃圾填埋場甲烷含量預(yù)測。盡管TNO模型根據(jù)荷蘭廢棄物特點而建立,但這種模型也可以用于其他國家LFG預(yù)測,因為在觀測值和計算值之間它的相對誤差很低(22%)。在一項研究中,據(jù)估計,1噸MSW產(chǎn)生80m 3LFG,到2020年時,僅中國或許就能為全球LFG排放貢獻100億m3(Qu et al.,2009)。

        5 W T E技術(shù)能量回收潛力和經(jīng)濟情況

        目前,中國每年廢棄物產(chǎn)量3億噸(W orld Energy Resources,2016),廢棄物中包含較多低熱值食物垃圾,以及與其他發(fā)展中國家類似的高濕度組分。所以,發(fā)達國家使用的傳統(tǒng)焚燒廠在此條件下處理效果不佳。因而,中國已經(jīng)在焚燒廠基礎(chǔ)上發(fā)展了循環(huán)流化床應(yīng)對這種問題,目前28套此種設(shè)備每天處理800噸MSW成功發(fā)電(W orld Energy Resources,2016;Zhao et al.,2016)。據(jù) Cheng et al.(2007)報道,基于循環(huán)流化床焚燒器的壁爐更適用于高濕度低能量的MSW。在埃塞俄比亞一種容量50MW的廢棄物焚燒廠(非洲撒哈拉以南第一個WTE設(shè)備)預(yù)計2017年投入使用,每年可以處理35萬噸廢棄物。然而,由于許多問題存在,如MSW熱值低,缺乏當(dāng)?shù)貙I(yè)技術(shù)以及能量價格低,該廠或許運營成本不足(W orld Energy Resources,2016)。據(jù) Perkoulidis et al.(2010)報道,在希臘中部一套WTE設(shè)備凈轉(zhuǎn)化率為22.5%時預(yù)計每噸MSW產(chǎn)電0.55MW。按照估計,到2020年馬來西亞預(yù)計僅從LFG中可產(chǎn)電2.63×109kW h,將為馬來西亞產(chǎn)生26200萬美元的稅收(Noor et al.,2013)。希臘直轄市五所厭氧消化廠的產(chǎn)能潛力為695kW h/噸,平均操作成本為85MYM/噸(Karagiannidis和Perkoulidis,2009)。巴西僅MSW填埋廠的產(chǎn)能潛力約為每天660MW電力。本研究綜述了100多篇2010~2017年發(fā)表,關(guān)于W TE技術(shù)的文獻,其中一些針對不同國家WTE技術(shù)選擇的重要點評文獻總結(jié)如表8。大多數(shù)表8所列研究中,WTE選擇被認為是一種對環(huán)境影響最小的潛力技術(shù)。

        前人發(fā)表的文獻分析了不同WTE技術(shù)的成本 (Ouda et al.,2016;Yap和Nixon,2015;Tolis et al.,2010),如表9。資本成本是首要投資成本如土地征收、設(shè)備采購、原材料需求;間接成本包括計劃成本、合同支持和發(fā)展階段的技術(shù)金融服務(wù)。操作成本是日常運行成本如勞務(wù)和維護成本。一家WTE廠的資本成本與需要處理的廢棄物質(zhì)量、采用的技術(shù)和廠的位置有關(guān)。一套WTE設(shè)備的平均壽命一般認為30年。表9為所需的成本范圍,對發(fā)達和發(fā)展中國家均有效。一系列成本范圍中低值代表發(fā)展中國家(如印度)所需成本,高值代表在發(fā)達國家的成本(如英國)(Yap and Nixon,2015)。表9顯示的成本為估算成本,因為實際成本還與許多其它因素關(guān),如政府激勵、原材料和熟練工人的可用性。(Ouda et al.,2016)。

        6 環(huán)境和健康影響

        MSW焚燒或許導(dǎo)致空氣污染(由于SOX、NOX、COX、二噁英和呋喃的排放),土壤和水污染(由于飛灰和底灰中存在重金屬)。但是,用于焚燒的污染控制技術(shù)和能量回收系統(tǒng)已經(jīng)大大發(fā)展,使其成為一種有吸引力的MSWM選擇(Dam gaard et al.,2010)。焚燒廠使用的空氣污染設(shè)備主要捕獲顆粒物、氧化氮、二噁英和呋喃,對環(huán)境的影響比傳統(tǒng)火力發(fā)電廠還小(Liam sanguan和Gheew ala,2007)。

        大量研究報道了廢棄物焚燒場所能感知到的健康風(fēng)險。甚至發(fā)達國家(如英國)也正面對公共抵制,因為焚燒廠的排放物帶來了可感知的健康危害(Nixon et al.,2013a,b)。盡管焚燒器潛在排放大量污染物,但主要關(guān)注的已經(jīng)是稱為“二噁英”類的有機化合物,如多氯代二苯并二惡英、多氯代二苯并呋喃和多氯聯(lián)苯,均由不完全燃燒產(chǎn)生。國際癌癥研究機構(gòu)通過實驗室動物實驗和對生活在工業(yè)區(qū)的群體研究認為二噁英為高度致癌物(Giusti,2009)。然而,關(guān)于焚燒場對公共健康的影響許多研究報道了不全面和無說服力的結(jié)果 (W orld Energy Resources,2016)。一種開發(fā)和控制良好的系統(tǒng)對廢棄物焚燒項目成功有效進行是非常重要的。

        7 對氣候變化的影響

        關(guān)于WTE廠和其它MSWN選擇對氣候變化影響的研究大都基于發(fā)達國家(UNEP,2010)。氣候變化是一個全球性問題需要各國共同努力解決。實施技術(shù)減少溫室氣體排放是非常重要的,緩解以傳統(tǒng)方式產(chǎn)能耗能帶來的氣候變化(IPCC,2007)。MSW已經(jīng)被認為是環(huán)境中第三大人工甲烷來源,占全球人工溫室氣體排放的3%~4%(Annepu,2012;IPCC,2006),總廢棄物部分將有18%的全球甲烷氣體排放 (Aleluia and Ferro,2016)。目前,還沒有完全建立的方法直接測量填埋場甲烷排放量,所以基于大量假設(shè)的理論模型被使用(UNEP,2010)。甲烷含能高,需要一種模式巧妙地捕獲后將其作為能源,從而避免大量潛在溫室氣體排放(比CO2強21倍)。廢棄物最少化以及循環(huán)利用可有效減少溫室氣體排放 (Aliet al.,2013a,b)。據(jù)Aracil et al.(2017)報道,MSW(非循環(huán))所產(chǎn)生物燃料將對氣候變化帶來積極影響。W TE技術(shù)的全球變暖潛力如表10。W ilson et al.(2010)估計使用3Rs(減排、重用、循環(huán))原則綜合管理固體廢棄物可以減少15%~15%全爾溫室氣體排放。

        表7 甲烷生成潛力的模型描述

        8 結(jié)論

        本文對用于能量回收的不同WTE技術(shù)進行了全面綜述。嘗試總結(jié)了目前全球WTE部門的案例。如果采用WTE技術(shù),MSW可被認為最有潛力的可再生能源之一,不僅可以減少對傳統(tǒng)能源的依賴,滿足不斷增加的能源需求,也可以減少MSWM的問題。綜述了所有可用WTE技術(shù)后,可以看出在發(fā)展中國家最可行的MSWN方法是厭氧消化有機廢棄物,焚燒混合MSW(除了可生物降解廢棄物),熱解和煤氣化特定類型廢棄物(塑料、輪胎、電子設(shè)備、電子廢棄物、食物廢棄物等),以及填埋惰性廢棄物。然而MSW的特性和組成在選擇合適的W TE技術(shù)時具有重要作用。

        表8 可用WTE選擇案例研究的點評

        表9 WTE技術(shù)成本比較

        表10 不同廢棄物處理選擇的全球變暖潛力

        通過改進WTE技術(shù)用于MSWM可以大大減少溫室氣體排放。在發(fā)達國家WTE技術(shù)已廣泛用于高效管理MSW。然而,在大多數(shù)發(fā)展中國家WTE設(shè)備缺少合適的基礎(chǔ)設(shè)施、污染控制系統(tǒng)和維護技術(shù)。本研究發(fā)現(xiàn)在多數(shù)發(fā)達國家WTE部門已完善并優(yōu)先使用,技術(shù)成熟。發(fā)達國家更加注重處理效率、循環(huán)/回收和污染控制策略。在發(fā)展中國家,根據(jù)國家法規(guī)和需求開發(fā)WTE設(shè)備很重要。WTE廠在一些發(fā)展中國家已經(jīng)建立,只是很小規(guī)模。

        政府政策和法規(guī),金融支持,改善技術(shù)將加強發(fā)展中國家WTE設(shè)備的投產(chǎn)使用。本文將幫助發(fā)達和發(fā)展中國家讀者和戰(zhàn)略決策者識別最佳W TE技術(shù)。

        (作者感謝丹巴德印度理工學(xué)院<印度礦業(yè)學(xué)院>,環(huán)境科學(xué)與工程系給予科研工作支持。)

        [1]Abbas,T.,Ali,G.,Adil,S.A.,Bashir,M.K.,Kam ran,M.A.,2017.Econom ic analysis of biogas adoption technology by rural farmers:the case of Faisalabad district in Pakistan.Renew.Energy 107,431-439.

        [2]Abila,N.,2014.Managing municipal wastes for energy generation in N igeria.Renew.Sustain.Energy Rev.37,182-190.

        [3]Abu-Qudais,M.D.,Abu-Qdais,H.A.,2000.Energy content of municipal solid waste in Jordan and its potential utilization.Energy Convers.M anage.41(9),983-991.

        [4]Achillas,C.,Vlachokostas,C.,M oussiopoulos,N.,Banias,G.,Kafetzopoulos,G.,Karagiannidis,A.,2011.Social acceptance for the development of a waste-to-energy plant in an urban area.Resour.Conserv.Recycl.55(9),857-863.

        [5]Ahsan,N.,1999.Solid waste management plan for Indian megacities.Indian J.Environ.Prot.19,90-95.

        [6]Aleluia,J.,Ferr?o,P.,2016.Characterization of urban waste management practices in developing Asian countries:a new analytical framework based on waste characteristicsand urban dimension.W aste M anage.58,415-429.

        [7]Ali,G.,Bashir,M.K.,Ali,H.,Bashir,M.H.,2016.U tilization of rice husk and poultry wastes for renewable energy potential in Pakistan:an economic perspective.Renew.Sustain.Energy Rev.61,25-29.

        [8]Ali,G.,Abbas,S.,Qamer,F.M.,2013a.How effectively low carbon society development modelscontribute to climate change m itigation and adaptation action plans in Asia.Renew.Sustain.Energy Rev.26,632-638.

        [9]Ali,G.,Abbas,S.,Tanikawa,H.,Ahmed,S.,M ollah,N.A.,Qamer,F.M.,2013b.Comparative cost analysisof waste recycling for best energy alternative.J.Biodivers.Environ.Sci.3(8),111-120.

        [10]Ali,G.,N itivattananon,V.,Abbas,S.,Sabir,M.,2012.Green waste to biogas:Renewableenergy possibili ties for Thailand’s green markets.Renew.Sustain.Energy Rev.16(7),5423-5429.

        [11]Ali,G.,N itivattananon,V.,Molla,N.,Hussain,A.,2010.Selection of appropriate technology for solid waste management:a case of Thammasat hospital,Thailand.W orld Acad.Sci.Eng.Technol.40,251-254.

        [12]Allegrini,E.,Maresca,A.,O lsson,M.E.,Holtze,M.S.,Boldrin,A.,Astrup,T.F.,2014.Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes.W aste Manage.34(9),1627-1636.

        [13]American Society of Mechanical Engineers(ASME),2008.Waste-to-Energy:A Renewable Energy Source from Municipal Solid W aste;W hite Paper Subm itted to Congress;New York,NY.

        [14]Annepu,R.K.,2012.Sustainable solid waste management in I ndia.Columbia University,New York.

        [15]Appels,L.,Baeyens,J.,Degrève,J.,Dew il,R.,2008.Principlesand potential of the anaerobic digestion of waste-activated sludge.Prog.Energy Combust.Sci.34(6),755-781.

        [16]Appels,L.,Lauwers,J.,Degrève,J.,Helsen,L.,Lievens,B.,W illems,K.,Dew il,R.,2011.

        [17]Anaerobic digestion in global bio-energy production:potential and research challenges.Renew.Sustain.Energy Rev.15(9),4295-4301.

        [18]Aracil,C.,Haro,P.,Giuntoli,J.,O llero,P.,2017.Proving the climate benefit in the production of biofuels from municipal solid waste refuse in Europe.J.Clean.Prod.142,2887-2900.

        [19]Arafat,H.A.,Jijakli,K.,Ahsan,A.,2015.Environmental performance and energy recovery potential of five processes for municipal solid waste treatment.J.Clean.Prod.105,233-240.

        [20]Arafat,H.A.,Jijakli,K.,2013.Modeling and comparative assessment of municipal solid waste gasification for energy production.W aste M anage.33(8),1704-1713.

        [21]Baggio,P.,Baratieri,M.,Gasparella,A.,Longo,G.A.,2008.Energy and environmental analysisof an inno vative system based on municipal solid waste(MSW)pyrolysisand combined cycle.Appl.Therm.Eng.28,136-144.

        [22]Bajic′,B.Z.,Dodic′,S.N.,Vuc ˇurovic′,D.G.,Dodic′,J.M.,Grahovac,J.A.,2015.W aste-to-energy status in Serbia.Renew.Sustain.Energy Rev.50,1437-1444.

        [23]Baran,B.,M am is,M.S.,Alagoz,B.B.,2016.U tilization of energy from waste potential in Turkey as distributed secondary renewable energy source.Renew.Energy 90,493-500.

        [24]Branchini,L.,2015.W aste-to-Energy:Advanced Cycles and New Design Concepts for Efficient Power Plants.Springer,Italy.

        [25]Browne,J.D.,Allen,E.,Murphy,J.D.,2014.Assessing the variability in biomethane production from the organic fraction of municipal solid waste in batch and continuous operation.Appl.Energy 128,307-314.

        [26]Brunner,P.H.,Rechberger,H.,2015.W aste to energy-key element for sustainable waste management.W aste Manage.37,3-12.

        [27]Charters,W.W.S.,2001.Developing markets for renewable energy technologies.Renew.Energy 22(1),217-222.

        [28]Chen,D.,Christensen,T.H.,2010.Life-cycleassessment(EASEWASTE)of two municipal solid waste incineration technologies in China.W aste Manage.Res.28(6),508-519.

        [29]Chen,Y.,Cheng,J.J.,Creamer,K.S.,2008.Inhibition of anaerobic digestion process:a review.Biores.Technol.99(10),4044-4064.

        [30]Cheng,H.,Hu,Y.,2010.Municipal solid waste(MSW)as a renewable source of energy:Current and future practices in China.Biores.Technol.101(11),3816-3824.

        [31]Cheng,H.,Zhang,Y.,M eng,A.,Li,Q.,2007.M unicipal solid waste fuelled power generation in China:a case study of waste-to-energy in Changchun city.Environ.Sci.Technol.41(21),7509-7515.

        [32]Cherubini,F.,Bargigli,S.,U lgiati,S.,2009.Life cycle assessment(LCA)of waste management strategies:landfilling,sorting plant and incineration.Energy 34(12),2116-2123.

        [33]Cristancho,D.E.,Arellano,A.V.,2006.Study of the operational conditions for anaerobic digestion of urban solid wastes.W aste M anage.26(5),546-556.

        [34]Curry,N.,Pillay,P.,2012.Biogasprediction and design of a food waste to energy system for the urban environment.Renew.Energy 41,200-209.

        [35]Damgaard,A.,Riber,C.,Fruergaard,T.,Hulgaard,T.,Christensen,T.H.,2010.Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration.W aste Manage.30(7),1244-1250.

        [36]Defra,2013.Incineration of M unicipal Solid W aste.Department for Environment,Food and Rural Affairs.(accessed 20.01.2017).

        [37]Eddine,B.T.,Salah,M.M.,2012.Solid waste as renew able sourceof energy:current and future possibility in Algeria.Int.J.Energy Environ.Eng.3(1),1-12.

        [38]Emery,A.,Davies,A.,Griffiths,A.,W illiams,K.,2007.Environmental and econom ic modelling:a case study of municipal solid waste management scenarios in W ales.Resour.Conserv.Recycl.49(3),244-263.

        [39]ERC,2014.The 2014 ERC Directory of W aste-To-Energy Facilities. (accessed 05.03.2016).

        [40]FAO Statistics,2013.Food and Agriculture Organi sation of the United Nations.(accessed 19.08.2016).

        [41]Fazeli,A.,Bakhtvar,F.,Jahanshaloo,L.,Sidik,N.A.C.,Bayat,A.E.,2016.Malaysia’s stand on municipal solid waste conversion to energy:a review.Renew.Sustain.Energy Rev.58,1007-1016.

        [42]Fountoulakis,M.S.,Drakopoulou,S.,Terzakis,S.,Georgaki,E.,Manios,T.,2008.Potential for methane production from typical Mediterranean agro-industrial by-products.Biomass Bioenerg.32(2),155-161.

        [43]Fruergaard,T.,Astrup,T.,2011.Optimal utilization of waste-to-energy in an LCA perspective.W aste M anage.31(3),572-582.

        [44]Giusti,L.,2009.A review of waste management practices and their impact on human health.W aste M anage.29(8),2227-2239.

        [45]Gohlke,O.,M artin,J.,2007.Drivers for innovation in waste-to-energy technology.W aste Manage.Res.25(3),214-219.

        [46]Gomez,X.,Cuetos,M.J.,Cara,J.,Moran,A.,Garcia,A.I.,2006.Anaerobic co-digestion of primary sludge and the fruit and vegetable fraction of the municipal solid wastes:conditions for m ixing and evaluation of the organic loading rate.Renew.Energy 31(12),2017-2024.

        [47]González,J.F.,Encinar,J.M.,Canito,J.L.,Rodr?′guez,J.J.,2001.Pyrolysis of automobile tyre waste.Influence of operating variablesand kineticsstudy.J.Anal.Appl.Pyrol.58,667-683.

        [48]Gregory,R.G.,Attenborough,G.M.,Hall,D.H.,Deed,C.,2003.The validation and development of an integrated landfill gas risk assessment model GasSim.Sardinia Proc.

        [49]Haider,M.R.,Yousaf,S.,M alik,R.N.,Visvanathan,C.,2015.Effect of m ixing ratio of food waste and rice husk co-digestion and substrate to inoculum ratio on biogas production.Biores.Technol.190,451-457.

        [50]H la,S.S.,Roberts,D.,2015.Characterisa tion of chem ical composition and energy content of green waste and municipal solid waste from Greater Brisbane,Australia.W aste Manage.41,12-19.

        [51]Hoornweg,D.,Bhada-Tata,P.,2012.W hat a W aste:A Global Review of Solid W aste Management.U rban Development Series Know ledge Papers,W orld Bank,W ashington DC.

        [52]Hossain,H.Z.,Hossain,Q.H.,Monir,M.M.U.,Ahmed,M.T.,2014.M unicipal solid waste(MSW)as a source of renewable energy in Bangladesh:revisit ed.Renew.Sustain.Energy Rev.39,35-41.

        [53]Intergovernmental Panel on Climate Change(IPCC),2006.2006 IPCC Guidelines for National Greenhouse Gas Inventories.Japan,IGES.

        [54]Intergovernmental Panel on Climate Change(IPPC),2007.Climate Change 2007:Synthesis Report.UNEP,WMO:2007.(accessed 20.12.2016).

        [55]International Renewable Energy Agency(IRENA),2016.Renewable Energy Statistics. (accessed 21.03.2017).

        [56]Ionescu,G.,Rada,E.C.,Ragazzi,M.,M a?rculescu,C.,Badea,A.,Apostol,T.,2013.Integrated municipal solid waste scenario model using advanced pre-treatment and waste to energy processes.Energy Con vers.Manage.76,1083-1092.

        [57]ISWA,2012.W aste-to-energy State-of-the-art-report.International Solid W aste Association,p.2012.Jamasb,T.,Nepal,R.,2010.Issues and options in waste management:a social cost-benefit analysis of waste-to-energy in the UK.Resour.Conserv.Recycl.54 (12),1341-1352.

        [58]Jeswani,H.K.,Azapagic,A.,2016.Assessing the envi ronmental sustainability of energy recovery from municipal solid waste in the UK.W aste M anage.50,346-363.

        [59]Johari,A.,Ahmed,S.I.,Hashim,H.,Alkali,H.,Ram li,M.,2012.Econom ic and environmental benefits of landfill gas from municipal solid waste in M alaysia.Renew.Sustain.Energy Rev.16(5),2907-2912.

        [60]Kalyani,K.A.,Pandey,K.K.,2014.W aste to energy statusin India:ashort review.Renew.Sustain.Energy Rev.31,113-120.

        [61]Karagiannidis,A.,Perkoulidis,G.,2009.A multi-cri teria ranking of different technologies for the anaerobic digestion for energy recovery of the organic fraction of municipal solid wastes.Biores.Technol.100(8),2355-2360.

        [62]Kasturirangan,K.,2014.Report of the Task Force on W aste to Energy,vol.I.(accessed 17.03.2016).

        [63]Kathiravale,S.,Yunus,M.N.M.,Sopian,K.,Samsuddin,A.H.,Rahman,R.A.,2003.M odeling the heating value of municipal solid waste.Fuel 82(9),1119-1125.

        [64]Kathirvale,S.,Yunus,M.N.M.,Sopian,K.,Samsuddin,A.H.,2004.Energy potential from municipal solid waste in M alaysia.Renew.Energy 29(4),559-567.

        [65]Khan,D.,Kumar,A.,Samadder,S.R.,2016.Impact of socioeconom ic status on municipal solid waste generation rate.W aste M anage.49,15-25.

        [66]Kikuchi,R.,Gerardo,R.,2009.More than a decade of conflict between hazardous waste management and public resistance:a case study of NIMBY syndrome in Souselas(Portugal).J.Hazard.Mater.172(2),1681-1685.

        [67]Komemoto,K.,Lim,Y.G.,Nagao,N.,Onoue,Y.,Niwa,C.,Toda,T.,2009.Effect of temperature on VFA’sand biogasproduction in anaerobic solubilization of food waste.W aste M anage.29(12),2950-2955.

        [68]Komilis,D.,Evangelou,A.,Giannakis,G.,Lymperis,C.,2012.Revisiting the elemental composition and the calorific value of the organic fraction of municipal solid wastes.W aste M anage.32(3),372-381.

        [69]Kom ilis,D.,Kissas,K.,Symeonidis,A.,2014.Effect of organic matter and moisture on the calorific value of solid wastes:an update of the Tanner diagram.W aste M anage.34(2),249-255.

        [70]Korai,M.S.,M ahar,R.B.,Uqaili,M.A.,2016.Optim ization of waste to energy routes through biochem ical and thermochem ical treatment optionsof municipal solid waste in Hyderabad,Pakistan.Energy Convers.Manage.124,333-343.

        [71]Kothari,R.,Tyagi,V.V.,Pathak,A.,2010.W aste-to-energy:A way from renewable energy sourcesto sustainable development.Renew.Sustain.Energy Rev.14(9),3164-3170.

        [72]Kumar,A.,Samadder,S.R.,in press.An empirical model for prediction of household solid waste generation rate-a case study of Dhanbad India.W aste M anage.(in press)

        [73]Kumar,S.,Chakrabarti,T.,2010.Effective Municipal Solid Waste Management in India.INTECH Open Access Publisher.

        [74]Lee,V.K.C.,Kwok,K.C.M.,Cheung,W.H.,M cKay,G.,2007.Operation of a municipal solid waste co-combustion pilot plant.Asia-Pac.J.Chem.Eng.2(6),631-639.

        [75]Leme,M.M.V.,Rocha,M.H.,Lora,E.E.S.,Venturini,O.J.,Lopes,B.M.,Ferreira,C.H.,2014.Techno-eco nom ic analysis and environmental impact assessment of energy recovery from Municipal Solid W aste(MSW)in Brazil.Resour.Conserv.Recycl.87,8-20.

        [76]Li,Y.,Zhao,X.,Li,Y.,Li,X.,2015.W aste incineration industry and development policies in China.W aste M anage.46,234-241.

        [77]Liamsanguan,C.,Gheewala,S.H.,2007.Environmental assessment of energy production from munic ipal solid waste incineration.Int.J.Life Cycle Assess.12(7),529-536.

        [78]Lianghu,S.,Huang,S.,Dongjie,N.,Xiaoli,C.,Yongfeng,N.,Youcai,Z.,2014.M unicipal solid waste management in China.In:Pariatamby,A.,Tanaka,M.(Eds.),Municipal Solid W aste M anagement in Asia and the Pacific Islands:Challengesand Strategic Solutions.Springer-Verlag,Singapore,pp.95-112.

        [79]Liu,Z.,Liu,Z.,Li,X.,2006.Statusand prospect of the application of municipal solid waste incineration in China.Appl.Therm.Eng.26(11),1193-1197.

        [80]Lombardi,L.,Carnevale,E.,Corti,A.,2015.A review of technologiesand performancesof thermal treatment systems for energy recovery from waste.Waste Manage.37,26-44.

        [81]Lu,J.W.,Zhang,S.,Hai,J.,Lei,M.,in press.Status and perspectives of municipal solid waste incineration in China:a comparison w ith developed regions.W aste M anage.(in press)

        [82]Luning,L.,Van Zundert,E.H.M.,Brinkmann,A.J.F.,2003.Comparison of dry and wet digestion for solid waste.W ater Sci.Technol.48(4),15-20.

        [83]Luz,F.C.,Rocha,M.H.,Lora,E.E.S.,Venturini,O.J.,Andrade,R.V.,Leme,M.M.V.,del O lmo,O.A.,2015.Techno-econom ic analysisof municipal solid waste gasification for electricity generation in Brazil.Energy Convers.Manage.103,321-337.

        [84]Ma,J.,Duong,T.H.,Sm its,M.,Verstraete,W.,Carballa,M.,2011.Enhanced biomethanation of kitchen waste by different pre-treatments.Biores.Technol.102(2),592-599.

        [85]Marchettini,N.,Ridolfi,R.,Rustici,M.,2007.An environmental analysis for comparing waste manage ment options and strategies.W aste Manage.27(4),562-571.

        [86]Macias-Corral,M.,Samani,Z.,Hanson,A.,Sm ith,G.,Funk,P.,Yu,H.,Longworth,J.,2008.Anaerobic diges tion of municipal solid waste and agricultural waste and the effect of co-digestion w ith dairy cow manure.Biores.Technol.99(17),8288-8293.

        [87]Medina,M.,1997.Theeffect of incomeon municipal solid waste generation rates for countries of varying levelsof economic development:amodel.J.Solid W aste Technol.M anage.24(3),149-155.

        [88]Melikoglu,M.,2013.Vision 2023:assessing the feasi bility of electricity and biogas production from municipal solid waste in Turkey.Renew.Sustain.Energy Rev.19,52-63.

        [89]Meylan,G.,Spoerri,A.,2014.Eco-efficiency assessment of options for metal recovery from incineration residues:a conceptual framework.W aste M anage.34(1),93-100.

        [90]Mohee,R.,Mudhoo,A.,2012.Energy from Biomass in M auritius:Overview of Research and Applications.In:W aste to Energy.Springer,London,pp.297-321.

        [91]Montejo,C.,Costa,C.,Ramos,P.,del Car men Márquez,M.,2011.Analysis and comparison of municipal solid wasteand reject fraction as fuels for incineration plants.Appl.Therm.Eng.31 (13),2135-2140.

        [92]Morf,L.S.,Gloor,R.,Haag,O.,Haupt,M.,Skutan,S.,Di Lorenzo,F.,B?ni,D.,2013.Precious metals and rare earth elements in municipal solid wastesourcesand fate in a Sw issincineration plant.W aste M anage.33(3),634-644.

        [93]Müller,G.T.,Giacobbo,A.,dos Santos Chiaramonte,E.A.,Rodrigues,M.A.S.,Meneguzzi,A.,Bernardes,A.M.,2015.The effect of sanitary landfill leachateaging on the biological treatment and assessment of photoelectrooxidation as a pre-treatment process.W aste Manage.36,177-183.

        [94]M urphy,J.D.,M cKeogh,E.,2004.Technical,econom ic and environmental analysis of energy produc tion from municipal solid waste.Renew.Energy 29(7),1043-1057.[96]Murphy,J.D.,M cKeogh,E.,Kiely,G.,2004.Technical/econom ic/environmental analysis of biogasutilisation.Appl.Energy 77(4),407-427.

        [95]Ngoc,U.N.,Schnitzer,H.,2009.Sustainable solutions for solid waste management in Southeast Asian countries.W aste Manage.29,1982-1995.

        [96]Nguyen,H.H.,Heaven,S.,Banks,C.,2014.Energy potential from the anaerobic digestion of food waste in municipal solid waste stream of urban areas in Vietnam.Int.J.Energy Environ.Eng.5(4),365-374.

        [97]Nixon,J.D.,Dey,P.K.,Ghosh,S.K.,Davies,P.A.,2013a.Evaluation of options for energy recovery from municipal solid waste in Indiausing thehierarchical analytical network process.Energy 59,215-223.

        [98]Nixon,J.D.,W right,D.G.,Dey,P.K.,Ghosh,S.K.,Davies,P.A.,2013b.A comparative as sessment of waste incinerators in the UK.W aste Manage.33(11),2234-2244.

        [99]Noor,Z.Z.,Yusuf,R.O.,Abba,A.H.,Hassan,M.A.A.,Din,M.F.M.,2013.An overview for energy recovery from municipal solid wastes(MSW)in M alaysia scenario.Renew.Sustain.Energy Rev.20,378-384.

        [100]Oonk,J.,Boom,A.,1995.Landfill Gas Formation,Recovery and Em issions.TNO Inst.of Environmetal and Energy Technology,The Hague,pp.95-203.

        [101]Ouda,O.K.M.,Raza,S.A.,Nizam i,A.S.,Rehan,M.,Al-W aked,R.,Korres,N.E.,2016.W aste to energy potential:a case study of Saudi Arabia.Renew.Sustain.Energy Rev.61,328-340.

        [102]Paleologos,E.K.,Caratelli,P.,El Am rousi,M.,2016.W aste-to-energy:an opportunity for a new industrial typology in Abu Dhabi.Renew.Sustain.Energy Rev.55,1260-1266.

        [103]Panepinto,D.,Tedesco,V.,Brizio,E.,Genon,G.,2014.Environmental performances and energy efficiency for MSW gasification treatment.W aste Biomass Valorizat.6(1),123-135.

        [104]Pant,D.,Van Bogaert,G.,Diels,L.,Vanbroekhoven,K.,2010.A review of the substrates used in m icrobial fuel cells(MFCs)for sustainable energy production.Biores.Technol.101(6),1533-1543.

        [105]Pantaleo,A.,De Gennaro,B.,Shah,N.,2013.Assess ment of optimal size of anaerobic co-digestion plants:an application to cattle farms in the province of Bari(Italy).Renew.Sustain.Energy Rev.20,57-70.

        [106]Patumsawad,S.,Cliffe,K.R.,2002.Experimental study on fluidised bed combustion of high moisture municipal solid waste.Energy Convers.Manage.43(17),2329-2340.

        [107]Perkoulidis,G.,Papageorgiou,A.,Karagiannidis,A.,Kalogirou,S.,2010.Integrated assessment of a new W aste-to-Energy facility in Central Greece in the context of regional perspectives.W aste M anage.30(7),1395-1406.

        [108]Pham,T.P.T.,Kaushik,R.,Parshetti,G.K.,Mahmood,R.,Balasubramanian,R.,2015.Food waste-to-energy conversion technologies:current status and future directions.W aste Manage.38,399-408.

        [109]Pivato,A.,Vanin,S.,Raga,R.,Lavagnolo,M.C.,Barausse,A.,Rieple,A.,Laurent,A.,Cos su,R.,2016.Use of digestate from a decentralized on-farm biogasplant as fertilizer in soils:an ecotoxicological study for future indicatorsin risk and life cycle assessment.Waste Manage.49,378-389.

        [110]Psomopoulos,C.S.,Bourka,A.,Themelis,N.J.,2009.W aste-to-energy:a review of the statusand benefits in USA.W aste M anage.29 (5),1718-1724.

        [111]Qu,X.Y.,Li,Z.S.,Xie,X.Y.,Sui,Y.M.,Yang,L.,Chen,Y.,2009.Survey of composition and generation rate of household wastes in Beijing,China.W aste M anage.29(10),2618-2624.

        [112]Reddy,P.J.,2011.M unicipal Solid W aste M anage ment:Processing,Energy Recovery,Global Examples.CRC Press,Taylor&Francis group,New Jersey.

        [113]Ren,X.,Che,Y.,Yang,K.,Tao,Y.,2016.Risk percep tion and public acceptance toward a highly protested W aste-to-Energy facility.W aste M anage.48,528-539.

        [114]Saxena,R.C.,Adhikari,D.K.,Goyal,H.B.,2009.Biomass-based energy fuel through biochem ical routes:a review.Renew.Sustain.Energy Rev.13(1),167-178.

        [115]Scano,E.A.,Asquer,C.,Pistis,A.,Ortu,L.,Demontis,V.,Cocco,D.,2014.Biogas from anaerobic digestion of fruit and vegetable wastes:experimental results on pilot-scale and prelim inary performan ceevalua tion of a full-scale power plant.Energy Convers.Manage.77,22-30.

        [116]Scarlat,N.,M otola,V.,Dallemand,J.F.,Monforti-Ferrario,F.,M ofor,L.,2015.Evaluation of energy potential of municipal solid waste from African urban areas.Renew.Sustain.Energy Rev.50,1269-1286.

        [117]Scharff,H.,Jacobs,J.,2006.Applying guidance for methane em ission estimation for landfills.W aste M anage.26(4),417-429.

        [118]Shafiee,S.,Topal,E.,2009.W hen w ill fossil fuel reserves be dim inished?Energy Policy 37(1),181-189.

        [119]Shekdar,A.,2009.Sustainable solid waste management:an integrated approach for Asian Countries.W aste M anage.29,1438-1448.

        [120]Shi,H.,Mahinpey,N.,Aqsha,A.,Silbermann,R.,2016.Characterization,thermochem ical conversion studies,and heating value modeling of municipal solid waste.Waste Manage.48,34-47.

        [121]Singh,R.P.,Tyagi,V.V.,Allen,T.,Ibrahim,M.H.,Kothari,R.,2011.An overview for exploring the possibilities of energy generation from municipal solid waste(MSW)in Indian scenario.Renew.Sustain.Energy Rev.15(9),4797-4808.

        [122]Stehlik,P.,2009.Contribution to advances in waste-to-energy technologies.J.Clean.Prod.17(10),919-931.

        [123]Surendra,K.C.,Takara,D.,Hashimoto,A.G.,Khanal,S.K.,2014.Biogas as a sustainable energy source for developing countries:opportunitiesand challenges.Renew.Sustain.Energy Rev.31,846-859.

        [124]Tabasová,A.,Kropác ˇ,J.,Kermes,V.,Nemet,A.,Stehlík,P.,2012.W aste-to-energy technologies:Impact on environment.Energy 44(1),146-155.

        [125]Talyan,V.,Dahiya,R.P.,Sreekrishnan,T.R.,2008.State of municipal solid waste management in Delhi,the capital of India.W aste M anage.28(7),1276-1287.

        [126]Tambone,F.,Genevini,P.,D’Imporzano,G.,Adani,F.,2009.Assessing amendment propertiesof digestate by studying the organic matter composi tion and the degree of biological stability during the anaerobic digestion of the organicfraction of MSW.Biores.Technol.100(12),3140-3142.

        [127]Tan,S.T.,Hashim,H.,Lim,J.S.,Ho,W.S.,Lee,C.T.,Yan,J.,2014.Energy and em issionsbenefitsof renewable energy derived from municipal solid waste:analysis of a low carbon scenario in Malaysia.Appl.Energy 136,797-804.

        [128]Tanaka,M.,2014.Sustainable society and municipal solid waste management.In:Pariatamby,A.,Tanaka,M.(Eds.),M unicipal Solid W aste Management in Asiaand the Pacific Islands:Challenges and Strategic Solutions.Springer-Verlag,Singapore,pp.157-172.

        [129]The W orld Bank,2012.W hat a W aste:A Global Review of Solid W aste M anagement.W ashington,DC.

        [130]Thitame,S.N.,Pondhe,G.M.,Meshram,D.C.,2010.Characterisation and composition of municipal solid waste(MSW)generated in Sangamner City,District Ahmednagar,M aharashtra,India.Environ.M onit.Assess.170(1),1-5.

        [131]Tolis,A.,Rentizelas,A.,Aravossis,K.,Tatsiopoulos,I.,2010.Electricity and combined heat and power from municipal solid waste;theoretically optimal investment decision time and em issions trading implications.W aste M anage.Res.28(11),985-995.

        [132]Troschinetz,A.M.,M ihelcic,J.R.,2009.Sustainable recycling of municipal solid waste in developing countries.W aste M anage.29(2),915-923.

        [133]Turconi,R.,Butera,S.,Boldrin,A.,Grosso,M.,Riga monti,L.,Astrup,T.,2011.Life cycle assessment of waste incineration in Den mark and Italy using two LCA models.W aste M anage.Res.29(10),S78-S90.

        [134]UNEP,2010.W aste and Climate Change:Global trends and strategy framework.United Nations Environmental Programme.(ac cessed 26.06.2017).

        [135]Unnikrishnan,S.,Singh,A.,2010.Energy recovery in solid waste management through CDM in India and other countries.Resour.Conserv.Recycl.54(10),630-640.

        [136]US-EPA (2001).Landfill Volume III.(accessed 23.08.2016).

        [137]Velis,C.,W ilson,D.C.,Rocca,O.,Sm ith,S.R.,M avropoulos,A.,Cheeseman,C.R.,2012.An analytical framework and tool(‘InteRa’)for integrat ing the informal recycling sector in waste and resource management systems in developing countries.Waste Manage.Res.30,43-66.

        [138]W ang,Z.,Geng,L.,2015.Carbon em issions calcula tion from municipal solid waste and the influencing factors analysis in China.J.Clean.Prod.104,177-184.W aste Atlas,2016.D-W aste. (accessed08.08.2016)

        [139]W hiting,A.,Azapagic,A.,2014.Life cycle environmental impacts of generating electricit y and heat from biogasproduced by anaerobic digestion.Energy 70,181-193.

        [140]W ilson,D.C.,Blakey,N.C.,Hansen,J.A.,2010.W aste prevention:its time hascome.W aste M anage.Res.28(3),191-192.

        [141]W orldBank,1999.M unicipalsolidwasteincineration.In:TechnicalGuidanceReport.World Bank,Washington,DC,USA,1999.(accessed24.02.2016).

        [142]W orld Energy Resources,2016.W orld Energy Council,W aste to Energy.(accessed 21.03.2017).

        [143]Yay,A.S.E.,2015.Application of life cycle assessment(LCA)for municipal solid waste management:a case study of Sakarya.J.Clean.Prod.94,284-293.

        [144]Yadav,P.,Samadder,S.R.,2017.A global prospective of income distribution and its effect on life cycle assessment of municipal solid waste management:a review.Environ.Sci.Pollut.Res.10(24),9123-9141.

        [145]Yap,H.Y.,Nixon,J.D.,2015.A multi-criteria analysisof options for energy recovery from municipal solid waste in India and the UK.W aste Manage.46,265-277.

        [146]Yi,S.,Yoo,K.Y.,Hanaki,K.,2011.Characteristicsof MSW and heat energy recovery between residen tial and commercial areas in Seoul.W aste Manage.31(3),595-602.

        [147]Yong,Z.,Dong,Y.,Zhang,X.,Tan,T.,2015.Anaerobic co-digestion of food waste and straw for biogas production.Renew.Energy 78,527-530.

        [148]Zaman,A.U.,2010.Comparative study of municipal solid waste treatment technologies using life cycle assessment method.Int.J.Environ.Sci.Technol.7(2),225-234.

        [149]Zhang,D.Q.,Tan,S.K.,Gersberg,R.M.,2010.M unic ipal solid waste management in China:status,problemsand challenges.J.Environ.Manage.91(8),1623-1633.

        [150]Zhang,R.,El-M ashad,H.M.,Hartman,K.,W ang,F.,Liu,G.,Choate,C.,Gamble,P.,2007.Characterization of food waste as feedstock for anaerobic digestion.Biores.Technol.98(4),929-935.

        [151]Zhao,X.G.,Jiang,G.W.,Li,A.,W ang,L.,2016.Econom ic analysis of waste-to-energy industry in China.W aste Manage.48,604-618.

        [152]Zheng,L.,Song,J.,Li,C.,Gao,Y.,Geng,P.,Qu,B.,Lin,L.,2014.Preferential policiespromote municipal solid waste(MSW)to energy in China:current status and prospects.Renew.Sustain.Energy Rev.36,135-148.

        [153]Zhou,H.,M eng,A.,Long,Y.,Li,Q.,Zhang,Y.,2014.An overview of characteristicsof municipal solid waste fuel in China:physical,chem ical composi tion and heating value.Renew.Sustain.Energy Rev.36,107-122.

        猜你喜歡
        填埋場甲烷廢棄物
        制造了全世界三分之一廢棄物的產(chǎn)業(yè)
        英語文摘(2022年6期)2022-07-23 05:46:26
        多功能區(qū)固廢填埋場建設(shè)案例分析
        新型醫(yī)療廢棄物焚化艙
        液氧甲烷發(fā)動機
        電子廢棄物
        世界博覽(2020年19期)2020-10-30 10:02:46
        新型GCL復(fù)合垂直防滲技術(shù)及其在填埋場的應(yīng)用
        論煤炭運輸之甲烷爆炸
        水上消防(2020年1期)2020-07-24 09:26:02
        Gas from human waste
        “廢棄物”中有孩子的快樂
        基于VB6.0的紅外甲烷檢測儀串行通信的實現(xiàn)
        青青草国内视频在线观看| 尤物网址在线观看| 国产露脸精品产三级国产av | 无色码中文字幕一本久道久| 成人a级视频在线播放| 久久久久亚洲av无码专区网站| 亚洲国产精品久久九色| 麻豆成年人视频在线观看| 国产欧美日韩一区二区加勒比 | 亚洲欧美日韩中文天堂| 91在线无码精品秘 入口九色十| 国产午夜免费一区二区三区视频| 鲁丝片一区二区三区免费| 无码AV高潮喷水无码专区线| 精品少妇后入一区二区三区| 久久人妻一区二区三区免费| 狠狠色狠狠色综合| 日韩成人免费一级毛片| 日本高清免费播放一区二区| 青青草成人在线免费视频| 中文字幕在线亚洲日韩6页| 国产艳妇av在线出轨| 亚洲偷自拍国综合第一页国模| 乱色欧美激惰| 国产小受呻吟gv视频在线观看| 激情综合五月天开心久久| 就爱射视频在线视频在线| 极品成人影院| 久久狠色噜噜狠狠狠狠97| 精品人妻av中文字幕乱| 国产成人精品999视频| y111111少妇影院无码| 亚洲老女人区一区二视频| 中文字幕亚洲综合久久天堂av| 久久精品国产www456c0m| 99久久99久久精品免观看| 精品极品一区二区三区| 风流老熟女一区二区三区| 国产精品久久1024| 日本av一区二区在线| 亚洲女同一区二区|