吳娟 ,孫圣榮 ,袁靜萍*
(武漢大學(xué)人民醫(yī)院1病理科,2乳腺甲狀腺外科,武漢 430060)
基因和表觀遺傳的改變導(dǎo)致乳腺癌上皮細(xì)胞結(jié)構(gòu)和功能的改變,腫瘤微環(huán)境(tumor microenvironment,TME)為乳腺癌上皮細(xì)胞表觀遺傳的調(diào)控提供了物質(zhì)來(lái)源。TME包括間質(zhì)細(xì)胞、造血來(lái)源細(xì)胞、非細(xì)胞組分以及隱匿的惡性腫瘤細(xì)胞[1]。間質(zhì)細(xì)胞主要包括成纖維細(xì)胞、肌成纖維細(xì)胞、間充質(zhì)干細(xì)胞(mesenchymal stem cells, MSCs)、脂肪細(xì)胞和內(nèi)皮細(xì)胞。造血來(lái)源細(xì)胞則包括淋巴樣細(xì)胞(T細(xì)胞、B細(xì)胞和NK細(xì)胞)和骨髓細(xì)胞[巨噬細(xì)胞、中性粒細(xì)胞和髓源性抑制細(xì)胞(myeloid-derived suppressor cells, MDSCs)]。非細(xì)胞組分即基底膜和細(xì)胞間質(zhì)(包括膠原蛋白、蛋白多糖和糖蛋白)構(gòu)成的細(xì)胞外基質(zhì)。腫瘤微環(huán)境還具有重要的代謝環(huán)境(pH、PO2、葡萄糖、谷氨酰胺和乳酸)和化學(xué)環(huán)境(例如NO)[2]。TME中細(xì)胞間的相互作用可以促進(jìn)腫瘤的發(fā)生、發(fā)展、侵襲和轉(zhuǎn)移及影響腫瘤對(duì)治療的反應(yīng)。
成纖維細(xì)胞是TME中占比例最大的細(xì)胞成分,CAFs(cancer-associated fi broblasts)是它的一個(gè)亞型。CAFs可通過(guò)分泌生長(zhǎng)因子、細(xì)胞因子、趨化因子和降解細(xì)胞外基質(zhì)在腫瘤起始、發(fā)展、生存、轉(zhuǎn)移和侵襲中發(fā)揮關(guān)鍵作用。乳腺癌基質(zhì)中CAFs的來(lái)源多種多樣,絕大多數(shù)人認(rèn)為它起源于一般的成纖維細(xì)胞,乳腺癌細(xì)胞可以誘導(dǎo)一般的成纖維細(xì)胞轉(zhuǎn)變?yōu)镃AFs[3]。例如,Tyan等[4]發(fā)現(xiàn)乳腺癌細(xì)胞可以誘導(dǎo)CAFs分泌肝細(xì)胞生長(zhǎng)因子(hepatocyte growth factor,HGF)促進(jìn)腫瘤的發(fā)生,當(dāng)成纖維細(xì)胞與乳腺癌MDA-MB-231細(xì)胞共培養(yǎng)時(shí),成纖維細(xì)胞可以分泌HGF并轉(zhuǎn)化為CAFs。乳腺癌MCF-7細(xì)胞可以減少成纖維細(xì)胞中微囊蛋白(caveolin-1, Cav-1)的表達(dá),使之轉(zhuǎn)變?yōu)镃AFs,并促進(jìn)其相關(guān)標(biāo)記物的表達(dá)[5]。當(dāng)上皮細(xì)胞、骨髓干細(xì)胞和乳腺組織細(xì)胞(如周細(xì)胞、脂肪細(xì)胞和平滑肌細(xì)胞)發(fā)生上皮間質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT) 時(shí),CAFs也會(huì)增多。體外實(shí)驗(yàn)證實(shí)人骨髓源間充質(zhì)干細(xì)胞(bone marrow-derived mesenchymal stem cells,BM-MSCs)可以分化并表達(dá)CAFs的標(biāo)志物,骨髓移植案例證實(shí)BM-MSCs可以發(fā)展成為CAFs[6]。已經(jīng)發(fā)現(xiàn)胃癌或者腎癌女病人接受過(guò)男性捐贈(zèng)者骨髓移植后,會(huì)帶有Y染色體標(biāo)志物Y-CISH陽(yáng)性的CAFS,表明骨髓源細(xì)胞能刺激產(chǎn)生CAFs[7]。CAFs表達(dá)譜是由TME和乳腺癌的亞型所決定的??偟膩?lái)說(shuō),CAFs高度表達(dá)α-SMA、p53、腎小球足突細(xì)胞膜黏蛋白、CD10、纖維細(xì)胞活化蛋白( fi broblast activation protein,F(xiàn)AP)、基質(zhì)金屬蛋白酶(matrix metalloproteinases,MMPs)、肌腱蛋白-C和血小板源生長(zhǎng)因子(platelet-derived growth factor receptor,PDGFR),并且Cav-1表達(dá)缺失[8,9]。同時(shí),和三陰性乳腺癌相比,HER2陽(yáng)性乳腺癌中細(xì)胞骨架和整合素信號(hào)相關(guān)蛋白均上調(diào)[10]。與健康女性成纖維細(xì)胞基因表達(dá)譜相比,乳腺癌患者CAFs內(nèi)許多基因的表達(dá)都明顯上調(diào),且諸多基因都與腫瘤的侵襲和轉(zhuǎn)移相關(guān)[11]。
EMT過(guò)程賦予上皮細(xì)胞間質(zhì)特性,這與腫瘤干細(xì)胞(cancer stem cell,CSC)表型的侵襲性特征密切相關(guān)。進(jìn)一步研究發(fā)現(xiàn),這些CSC對(duì)標(biāo)準(zhǔn)療法產(chǎn)生耐受。有研究表明乳腺癌CAFs能誘導(dǎo)EMT,包括波形蛋白上調(diào)和E鈣蛋白下調(diào)[14]。ZEB1(一種EMT轉(zhuǎn)化的重要調(diào)節(jié)因子)啟動(dòng)子在人類乳腺基底上皮細(xì)胞來(lái)源的非CSC中維持兩種染色質(zhì)構(gòu)象。無(wú)信號(hào)時(shí)ZEB1主要以一種抑制狀態(tài)存在,但是當(dāng)信號(hào)傳導(dǎo)時(shí)迅速變?yōu)檗D(zhuǎn)錄激活狀態(tài),從而使細(xì)胞向干細(xì)胞樣轉(zhuǎn)化。ZEB1啟動(dòng)子以組蛋白H3K4m3的激活和H3K27m3的抑制為標(biāo)記。當(dāng)CAFs釋放TGF-β(一種重要的EMT誘導(dǎo)因子)后,ZEB1啟動(dòng)子迅速轉(zhuǎn)變?yōu)槿旧|(zhì)激活構(gòu)象,并隨著組蛋白H3K27m3的丟失, ZEB1轉(zhuǎn)錄增加,非CSC轉(zhuǎn)化為CSC。這些CSC能夠自我更新并且驅(qū)動(dòng)腫瘤形成。乳腺癌CSC以CD44+/CD24-表型為主要標(biāo)志,并能夠形成循環(huán)腫瘤細(xì)胞促進(jìn)腫瘤的侵襲轉(zhuǎn)移。腫瘤CAFs通過(guò)激活NOTCH1-STAT3,增加細(xì)胞因子CCL2的表達(dá),已經(jīng)有研究表明CCL2能夠刺激形成CSC表型,在乳腺癌動(dòng)物模型中,在成纖維細(xì)胞中抑制CCL2能夠抑制腫瘤的形成[15]。在炎癥因子IL-1β誘導(dǎo)的胃癌小鼠模型中,將小鼠的骨髓細(xì)胞標(biāo)記GFP,結(jié)果顯示大約20%的SMA陽(yáng)性的CAFs被發(fā)現(xiàn)GFP陽(yáng)性,提示至少20%的細(xì)胞來(lái)源于骨髓[16]。CAFs可通過(guò)分泌IL-1β到TME中介導(dǎo)腫瘤的惡性和侵襲性,在炎癥表型中IL-1通過(guò)ILIR1受體驅(qū)動(dòng)了腫瘤前形成,G蛋白雌激素受體引起了IL-1β和ILIR1的上調(diào)進(jìn)而促進(jìn)乳腺癌的遷移和侵襲[17]。EMT和CSCs之間的聯(lián)系表明EMT是一個(gè)危險(xiǎn)因素:EMT可以產(chǎn)生一些與惡性程度高的腫瘤相關(guān)的特征,包括運(yùn)動(dòng)性,侵襲性,耐藥型和腫瘤轉(zhuǎn)移等[14]。
CAFs可以介導(dǎo)TME中NF-κB等一系列促腫瘤炎癥因子釋放生長(zhǎng)因子(FGFs,HGF,TGF-β,SDF1)、細(xì)胞因子(CXCL12,IL-6)及激素(如雌激素)等[18]。 CAFs可以募集免疫抑制細(xì)胞(例如FOXP3 T細(xì)胞和髓源性抑制細(xì)胞)到TME,進(jìn)而抑制T細(xì)胞、適應(yīng)性免疫和自然殺傷細(xì)胞的功能。去除CAFs可以降低對(duì)腫瘤組織中腫瘤相關(guān)巨噬細(xì)胞和髓源性抑制細(xì)胞的招募[19]。CAFs 已經(jīng)被證實(shí)通過(guò)抑制Th1細(xì)胞因子和增強(qiáng)免疫抑制Th2細(xì)胞因子信號(hào)從而抑制Th1免疫反應(yīng),同時(shí)在體內(nèi)CAF敲除腫瘤轉(zhuǎn)移模型中也發(fā)現(xiàn)能抑制腫瘤增殖[20]。
TME中間質(zhì)源的其他細(xì)胞包括脂肪細(xì)胞和上皮細(xì)胞。脂肪細(xì)胞參與腫瘤發(fā)生,生長(zhǎng)和轉(zhuǎn)移,現(xiàn)在被稱為“adiponcosis”,是一個(gè)關(guān)于脂肪與癌癥關(guān)系的新名詞,例如脂肪細(xì)胞釋放的CCL5已經(jīng)被證實(shí)促進(jìn)三陰性乳腺癌的運(yùn)動(dòng)性和侵襲性[21]。釋放的瘦素和IL-6被證實(shí)在乳腺癌EMT和激活CSC信號(hào)通路中起著重要作用。進(jìn)一步研究表明,脂肪細(xì)胞參與一個(gè)高度復(fù)雜的循環(huán):乳腺癌細(xì)胞首先改變癌周脂肪細(xì)胞的表型,然后反過(guò)來(lái)再改變腫瘤細(xì)胞的表型,從而促進(jìn)腫瘤進(jìn)展[22]。腫瘤血管和淋巴管的作用除了公認(rèn)的血液供應(yīng)和腫瘤散播管道外,還被證實(shí)通過(guò)血管和淋巴管內(nèi)皮細(xì)胞分泌的分子在腫瘤細(xì)胞相互作用中扮演重要角色。血管內(nèi)皮細(xì)胞-腫瘤細(xì)胞的相互作用可以誘導(dǎo)干細(xì)胞樣特性和EMT(類似于CAFs)[23]。研究表明三陰性乳腺癌可以引發(fā)淋巴管內(nèi)皮細(xì)胞分泌CCL5,CCL5可以招募表達(dá)CCR-5的腫瘤細(xì)胞到淋巴系統(tǒng),進(jìn)而促進(jìn)淋巴結(jié)轉(zhuǎn)移[24]。
TME中的造血源細(xì)胞包括免疫細(xì)胞(T細(xì)胞,B細(xì)胞和自然殺傷細(xì)胞)和骨髓細(xì)胞(巨噬細(xì)胞,中性粒細(xì)胞和MDSCs)。MDSCs是骨髓來(lái)源的一群異質(zhì)性細(xì)胞,可以抑制先天性免疫和適應(yīng)性免疫,對(duì)多種免疫細(xì)胞如T細(xì)胞、樹(shù)突狀細(xì)胞和自然殺傷細(xì)胞具有抑制作用,并且激活多種免疫調(diào)節(jié)器。這些細(xì)胞可以通過(guò)不同方式影響乳腺癌,例如CD8+T細(xì)胞的聚集有利于乳腺癌患者的生存,而TME中的調(diào)節(jié)性T細(xì)胞能降低患者的總生存[25]。NK細(xì)胞是抗腫瘤免疫反應(yīng)的主要組分,并且參與腫瘤進(jìn)程和轉(zhuǎn)移。有研究表明NK細(xì)胞失調(diào)會(huì)加速乳腺癌進(jìn)展。乳腺癌細(xì)胞通過(guò)調(diào)節(jié)NK細(xì)胞的表面受體去改變功能,并且TGF-β1參與腫瘤細(xì)胞導(dǎo)致的NK細(xì)胞功能受損[26]。
細(xì)胞外基質(zhì)包括TME的非細(xì)胞組分、基底膜及細(xì)胞間基質(zhì)(膠原蛋白,蛋白多糖和糖蛋白),有大量證據(jù)表明蛋白多糖表達(dá)水平和精細(xì)結(jié)構(gòu)參與了乳腺癌增殖,侵襲和轉(zhuǎn)移。例如,多種蛋白多糖可以誘導(dǎo)EMT和促進(jìn)乳腺癌細(xì)胞增殖。DNA甲基化在癌癥中起著調(diào)節(jié)膠原蛋白的重要作用[27]。有研究表明在MCF-7乳腺癌細(xì)胞中,某些膠原基因被H3K27me3表觀抑制,從而改變細(xì)胞外基質(zhì)的組分向促進(jìn)侵襲的膠原蛋白富集基質(zhì)轉(zhuǎn)變[28]。
腫瘤轉(zhuǎn)移是一個(gè)低效能的過(guò)程。對(duì)于乳腺癌細(xì)胞來(lái)說(shuō)只有一小部分腫瘤細(xì)胞能夠成功擴(kuò)散,遷移,并且在遠(yuǎn)端種植。轉(zhuǎn)移依賴于轉(zhuǎn)移微環(huán)境,這是一種特殊的微環(huán)境,能夠促進(jìn)轉(zhuǎn)移事件的發(fā)生及遠(yuǎn)端轉(zhuǎn)移灶微環(huán)境的形成。轉(zhuǎn)移微環(huán)境模型提出了兩種造成轉(zhuǎn)移的重要機(jī)制:通過(guò)轉(zhuǎn)移前微環(huán)境或誘導(dǎo)的轉(zhuǎn)移微環(huán)境。轉(zhuǎn)移前微環(huán)境假說(shuō)認(rèn)為腫瘤轉(zhuǎn)移的發(fā)生并不是隨機(jī)的,不同來(lái)源的腫瘤有其好發(fā)的轉(zhuǎn)移器官,因此在腫瘤尚未發(fā)生轉(zhuǎn)移前,原發(fā)腫瘤分泌的某些物質(zhì)會(huì)誘導(dǎo)遠(yuǎn)端待轉(zhuǎn)移器官中微環(huán)境發(fā)生改變,形成一個(gè)適宜轉(zhuǎn)移的腫瘤細(xì)胞生長(zhǎng)的轉(zhuǎn)移前微環(huán)境,誘導(dǎo)腫瘤細(xì)胞在此處散播種植。與之相對(duì)應(yīng)的是,當(dāng)微環(huán)境的細(xì)胞外基質(zhì)和允許轉(zhuǎn)移細(xì)胞定植的組分細(xì)胞的性質(zhì)發(fā)生變化時(shí),就會(huì)產(chǎn)生一個(gè)誘導(dǎo)的微環(huán)境[29]。
癌細(xì)胞生長(zhǎng)的微環(huán)境是轉(zhuǎn)移過(guò)程中的重要一部分。腫瘤細(xì)胞若要具備遠(yuǎn)端轉(zhuǎn)移的能力,需要適應(yīng)新的以及時(shí)常動(dòng)態(tài)變化的微環(huán)境。研究證明在乳腺癌細(xì)胞模型中POSTN是原發(fā)性腫瘤間質(zhì)中重要的介導(dǎo)分子,CSCs遠(yuǎn)端轉(zhuǎn)移需要誘導(dǎo)基質(zhì)POSTN的表達(dá),從而使腫瘤細(xì)胞可以種植到新的位置。從某種意義上說(shuō),侵入的腫瘤細(xì)胞改變新的微環(huán)境從而使其更容易接受轉(zhuǎn)移性定植。最近有研究發(fā)現(xiàn)在腦轉(zhuǎn)移中,腫瘤細(xì)胞為了適應(yīng)新的TME,通常會(huì)伴隨PTEN的缺失。有報(bào)道顯示含有阻斷PTEN功能的microRNA的胞外囊泡(extracellular vesicles,EVs)可能介導(dǎo)該敲除效應(yīng)[29]。EVs包含大量的細(xì)胞組分結(jié)構(gòu)和外泌體、細(xì)胞微泡和大的致癌小體,這些均可以影響TME。EVs可以改變腫瘤細(xì)胞代謝,介導(dǎo)治療藥物的交叉反應(yīng),并且參與驅(qū)動(dòng)纖維細(xì)胞和其他的組成細(xì)胞轉(zhuǎn)化成CAF表型。EVs也可以反過(guò)來(lái)增強(qiáng)轉(zhuǎn)移潛能,例如在黑色素瘤中上調(diào)MMP-9,使腫瘤細(xì)胞獲得更強(qiáng)的轉(zhuǎn)移潛能[30]。
盡管在過(guò)去二十年乳腺癌的治療有顯著的提高,但是腫瘤復(fù)發(fā)和耐藥仍是兩大難題。許多抗癌策略如化療,靶向治療,放療和免疫治療都能使腫瘤縮小甚至治愈一部分腫瘤病人。然而,仍有腫瘤細(xì)胞能對(duì)這些療法產(chǎn)生耐受性,從而最終導(dǎo)致耐受細(xì)胞繼續(xù)增殖。CSC通常也叫做腫瘤起始細(xì)胞,基于其處于靜止期,因此天生對(duì)化療、放療不敏感。同時(shí),腫瘤基質(zhì)細(xì)胞組分多樣性也構(gòu)成了潛在對(duì)放化療不敏感的潛在因素。最近臨床研究數(shù)據(jù)表明:腫瘤組織里基質(zhì)細(xì)胞的比例是病人化療后預(yù)后的關(guān)鍵預(yù)測(cè)指標(biāo),同時(shí)強(qiáng)有力的證據(jù)顯示腫瘤基質(zhì)細(xì)胞占比和腫瘤增殖、侵襲呈正相關(guān),因此TME具有使腫瘤細(xì)胞抵抗化療和放療的能力[31]。
另一方面,TME也能夠形成生理屏障從而阻止化療藥滲透進(jìn)入腫瘤組織,促進(jìn)腫瘤增殖和對(duì)治療的反應(yīng)。體內(nèi)實(shí)驗(yàn)表明腫瘤相關(guān)間充質(zhì)干細(xì)胞(Tumor associated mesenchymal stem cells,TA-MSCs)和BM-MSCs可以導(dǎo)致腫瘤細(xì)胞對(duì)化療耐受[32]。在皮下成瘤模型中,經(jīng)靜脈給予BM-MSCs,抗癌效果出色的順鉑化療藥被完全排除在腫瘤之外[33]。另外,BM-MSCs分泌多種不飽和脂肪酸比如羥十七碳三烯酸和四雙鏈酸,四雙鏈酸已經(jīng)被證實(shí)在多種裸鼠模型中介導(dǎo)鉑類化合物的藥物耐受[33]。在乳腺癌中,有研究表明CAFs不僅通過(guò)激活PI3K/AKT和MAPK/ERK通路在他莫昔芬藥物耐受中發(fā)揮了重要作用,并且通過(guò)G蛋白偶聯(lián)ER(G protein-coupled ER,GPCER)誘導(dǎo)ER受體的表達(dá)從而促進(jìn)增殖和乳腺癌進(jìn)展[34]。Yuan等[35]進(jìn)一步發(fā)現(xiàn)GPCER/GFP/ERK通路上調(diào)β1-整合素表達(dá)從而增強(qiáng)CAFs相關(guān)的EMT,腫瘤侵襲和他莫昔芬藥物耐受。Mao等[36]最近證明了CAFs通過(guò)IL-6和激活NF-κb,JAK/STAT3和PI3K/AKT等多種信號(hào)通路導(dǎo)致HER2+乳腺癌對(duì)曲妥珠耐藥。Farmer等[37]證明在乳腺癌纖維間質(zhì)中基質(zhì)相關(guān)基因的表達(dá)變化可以用來(lái)預(yù)測(cè)術(shù)前化療藥物的耐受。
乳腺癌是全世界女性發(fā)病率最高的癌癥。長(zhǎng)期以來(lái),乳腺癌甚至腫瘤治療的重點(diǎn)都放在了腫瘤本身,如手術(shù)治療聯(lián)合術(shù)后放化療等綜合治療手段。根據(jù)乳腺癌分子分型的不同,內(nèi)分泌治療藥物如他莫西芬、芳香化酶抑制劑及弗維斯群,化療藥物如蒽環(huán)類、紫杉醇及鉑類,靶向治療藥物如赫賽汀及雷帕霉素靶蛋白抑制劑被選擇性用于乳腺癌的治療。雖然早期預(yù)防和治療方式的改善大大提高了乳腺癌患者的生存率,但對(duì)于實(shí)體瘤患者而言,對(duì)化療藥物發(fā)生耐藥幾乎是不可避免的。TME在局部耐藥、免疫逃逸和遠(yuǎn)處轉(zhuǎn)移等多個(gè)腫瘤發(fā)生發(fā)展的步驟中起關(guān)鍵作用,而腫瘤發(fā)生轉(zhuǎn)移也依賴與TME中的各種細(xì)胞及因子的相互作用,因此基于TME的特殊作用,針對(duì)不同個(gè)體TME的不同,選擇個(gè)體化綜合治療是至關(guān)重要的。相信在將來(lái),對(duì)于病理醫(yī)師而言,了解TME并在病理診斷中為臨床醫(yī)師提供證據(jù),來(lái)支持和幫助臨床治療策略的制定是非常重要的。
[1] Pattabiraman DR, Weinberg RA. Tackling the cancer stem cells-what challenges do they pose. Nat Rev Drug Discov,2014, 13(7): 497-512.
[2] Simmons A, Burrage PM, Nicolau DV Jr, et al. Environmental factors in breast cancer invasion: a mathematical modelling review. Pathology, 2017, 49(2): 172-180.
[3] Yamamura Y, Asai N, Enomoto A, et al. Akt-Girdin signaling in cancer-associated fibroblasts contributes to tumor progression. Cancer Res, 2015, 75(5): 813-823.
[4] Tyan SW, Kuo WH, Huang CK, et al. Breast cancer cells induce cancer-associated fibroblasts to secrete hepatocyte growth factor to enhance breast tumorigenesis. PLoS One,2011, 6(1): e15313.
[5] Martinez-Outschoorn UE, Pavlides S, Whitaker-Menezes D, et al. Tumor cells induce the cancer associated fi broblast phenotype via caveolin-1 degradation: implications for breast cancer and DCIS therapy with autophagy inhibitors.Cell Cycle, 2010, 9(2): 2423-2433.
[6] Mishra PJ, Mishra PJ, Humeniuk R, et al. Carcinoma-associated fi broblast-like differentiation of human mesenchymal stem cells. Cancer Res, 2008, 68(11):4331.
[7] Worthley DL, Ruszkiewicz A, Davies R, et al. Human gastrointestinal neoplasia-associated myo fi broblasts can develop from bone marrow-derived cells following allogeneic stem cell transplantation. Stem Cells, 2009, 27(6):1463-1468.
[8] Orimo A, Weinberg RA. Heterogeneity of stromal fi broblasts in tumors. Cancer BiolTher, 2007, 6(4): 618-619.
[9] Qiao A, Gu F, Guo X, et al. Breast cancer-associated fi broblasts: their roles in tumor initiation, progression and clinical applications. Front Med, 2016, 10(1): 33-40.
[10] Tchou J, Kossenkov AV, Chang L, et al. Human breast cancer associated fi broblasts exhibit subtype speci fi c gene expression pro fi les. BMC Med Genomics, 2012, 5: 39.
[11] Singer CF, Gschwantler-Kaulich D, Fink-Retter A, et al.Differential gene expression pro fi le in breast cancer-derived stromal fi broblasts. Br Cancer Res Treat, 2008, 110(2): 273-281.
[12] Hu M, Yao J, Cai L, et al. Distinct epigenetic changes in the stromal cells of breast cancers. Nat Genet, 2005, 37(8): 899-905.
[13] Tang X, Hou Y, Yang G, et al. Stromal miR-200s contributeto breast cancer cell invasion through CAF activation and ECM remodeling. Cell Death Differ, 2016, 23(1): 132-145.
[14] Scheel C, Weinberg RA. Cancer stem cells and epithelialmesenchymal transition: concepts and molecular links.Semin Cancer Biol, 2012, 22(5-6): 396-403.
[15] Chaffer CL, Marjanovic ND, Lee T, et al. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell, 2013, 154(1): 61-74.
[16] Quante M, Tu SP, Tomita H, et al. Bone marrow-derived myo fi broblastscontribute to the mesenchymalstem cell niche and promote tumor growth. Cancer Cell, 2011, 19(2): 257-272.
[17] De Marco P,Lappano R, Francesco EM, et al. GPER signalling in both cancer-associated fi broblasts and breast cancer cells mediates a feedforward IL1beta/IL1R1 response. Sci Rep, 2016, 6: 24354.
[18] Scherz-Shouval R, Santagata S, Mendillo ML, et al. The reprogramming of tumor stroma by HSF1 is a potent enabler of malignancy. Cell, 2014, 158(3): 564-578.
[19] Junttila MR, de Sauvage FJ. In fl uence of tumour micro-environment heterogeneity on therapeutic response. Nature,2013, 501(7467): 346-354.
[20] Liao D, Luo Y, Markowitz D, et al. Cancer associated fi broblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model. PLoS One, 2009, 4(11): e7965.
[21] D’Esposito V, Liguoro D, Ambrosio MR, et al. Adipose microenvironment promotes triple negative breast cancer cell invasiveness and dissemination by producing CCL5.Oncotarget, 2016, 7(17): 24495-24509.
[22] Wolfson B, Eades G, Zhou Q. Adipocyte activation of cancer stem cell signaling in breast cancer. World J BiolChem,2015, 6(2): 39-47.
[23] Lee E, Pandey NB, Popel AS. Crosstalk between cancer cells and blood endothelial and lymphatic endothelial cells in tumour and organ microenvironment. Exp Rev Mol Med,2015, 17: e3.
[24] Lee E, Fertig EJ, Jin K, et al. Breast cancer cells condition lymphatic endothelial cells within pre-metastatic niches to promote metastasis. Nat Commun, 2014, 5: 4715.
[25] Syed Khaja AS, Toor SM, EISalhat H, et al. Preferential accumulation of regulatory T cells with highly immunosuppressive characteristics in breast tumor microenvironment.Oncotarget, 2017, 8(20):33159-33171.
[26] Mamessier E, Sylvain A, Thibult ML, et al. Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. J Clin Invest, 2011,121(9): 3609-3622.
[27] Chernov AV,Strongin AY. Epigenetic regulation of matrix metalloproteinases and their collagen substrates in cancer.Biomol Concepts, 2011, 2(3): 135-147.
[28] Chernov AV, Baranovskaya S, Golubkov VS, et al. Microarray-based transcriptional and epigenetic pro fi ling of matrix metalloproteinases, collagens, and related genes in cancer. J Biol Chem, 2010, 285(25): 19647-19659.
[29] Ursini-Siegel J, Siegel PM. The in fl uence of the pre-metastatic niche on breast cancer metastasis. Cancer Lett, 2015,380(1): 281-288.
[30] Cai Z, Yang F, Yu L, et al. Activated T cell exosomes promote tumor invasion via Fas signaling pathway. J Immunol,2012, 188(12): 5954-5961.
[31] Cukierman E, Bassi DE. The mesenchymal tumor microenvironment: a drug-resistant niche. Cell Adhes Migr, 2012,6(3):285-296.
[32] Klemm F, Joyce JA. Microenvironmentalregulation of therapeutic response in cancer. Trends Cell Biol, 2015,25(4): 198-213.
[33] Roodhart JM, Daenen LG, Stigter EC, et al. Mesenchymal stem cells induce resistance to chemotherapy through the release of platinum-induced fatty acids. Cancer Cell, 2011,20(3):370-383.
[34] Luo H, Yang G, Yu T, et al. GPER-mediated proliferation and estradiol production in breast cancer-associated fi broblasts.Endocr Relat Cancer, 2014, 21(2): 355-369.
[35] Yuan J, Liu M, Yang L, et al. Acquisition of epithelial-mesenchymal transition phenotype in the tamoxifen-resistant breast cancer cell: a new role for G protein-coupled estrogen receptor in mediating tamoxifen resistance through cancer-associated fibroblast-derived fibronectin and beta1-integrin signaling pathway in tumor cells. Breast Cancer Res,2015, 17: 69.
[36] Mao Y, Zhang Y, Qu Q, et al. Cancer-associated fi broblasts induce trastuzumab resistance in HER2 positive breast cancer cells. Mol Biosyst, 2015, 11(4): 1029-1040.
[37] Farmer P, Bonnefoi H, Anderle P, et al. A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med, 2009, 15(1): 68-74.