黃珊+杜慶治
摘要:
盲源分離也稱盲信號(hào)分離,是指在源信號(hào)和傳遞信道的參數(shù)均未知的情況下,僅根據(jù)輸入源信號(hào)的統(tǒng)計(jì)特性,通過觀測(cè)信號(hào)恢復(fù)各個(gè)源信號(hào)的過程。語音信號(hào)的盲分離技術(shù)在計(jì)算機(jī)聽覺、語音識(shí)別、語音增強(qiáng)等領(lǐng)域具有重大的研究意義?,F(xiàn)有的有關(guān)語音信號(hào)盲分離研究基本不考慮噪聲的影響,然而在現(xiàn)實(shí)生活中,接收到的語音信號(hào)不可避免地混有各種噪聲。因此,對(duì)于帶噪聲混疊語音的盲分離方法研究具有十分重要的現(xiàn)實(shí)意義。針對(duì)帶噪聲混疊語音信號(hào),提出一種基于稀疏編碼和EFICA的分離方法。首先用稀疏編碼去噪方法消除帶噪混疊語音信號(hào)中的噪聲,然后將經(jīng)過去噪處理后的觀測(cè)信號(hào)用EFICA方法進(jìn)行盲分離。Matlab仿真實(shí)驗(yàn)結(jié)果表明,該算法對(duì)帶噪聲混疊的語音進(jìn)行盲分離效果良好。
關(guān)鍵詞:
混疊信號(hào);語音信號(hào);盲源分離;稀疏編碼;EFICA
DOIDOI:10.11907/rjdk.172151
中圖分類號(hào):TP312
文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào)文章編號(hào):16727800(2018)001007403
Abstract:BSS is refers to the process of recovery each source signal only by the statistical characteristics of each input observation signal under the condition of the original signal and parameters of transmission channel is unknown, which is also called the separation of blind source signal. The BSS of speech signal is of great significance to the study of computer hearing, speech recognition and speech enhancement. At present, most studies of the BSS of speech signal without considering the impact of noise, while in real life environment, the speech signals are mixed with all kinds of noise inevitably. So, there is of great practical significance to study the blind separation of noisy speech mixtures.Aimed at the noisy speech mixtures, a BSS method based on sparse coding and EFICA is proposed in this paper.First, the noisy speech mixtures is eliminated noise by the method of sparse coding, and then to blind separate the speech mixtures with EFICA. The simulation result shows that this method can achieve good effect in BSS of noisy speech mixtures.
Key Words:BSS; speech signals; blind source separation; sparse coding; EFICA
0引言
盲源分離(BBS)也稱盲信號(hào)分離,指在不知道源信號(hào)分布和混疊方式的情況下,根據(jù)輸入源信號(hào)的統(tǒng)計(jì)特性,僅由觀測(cè)信號(hào)恢復(fù)出各個(gè)獨(dú)立原始信號(hào)的過程[1]。盲源分離技術(shù)由B Widrow等[2]于1975年首先提出,并將其應(yīng)用于自適應(yīng)噪聲抵消器。目前,在語音信號(hào)處理、模式識(shí)別、特征提取、數(shù)據(jù)壓縮、圖像處理和電子通信等方面該技術(shù)應(yīng)用十分廣泛[3]。
語音信號(hào)是一種復(fù)雜的非線性信號(hào),如何從各種混合語音信號(hào)中分離出所需的語音信號(hào),是語音信號(hào)處理研究領(lǐng)域的一個(gè)重要課題。語音信號(hào)盲分離技術(shù)使噪聲和語音的分離成為可能,對(duì)計(jì)算機(jī)聽覺、語音識(shí)別、語音增強(qiáng)等研究具有非常重要的意義。
本文結(jié)合語音信號(hào)的非平穩(wěn)性和各個(gè)源信號(hào)之間的相互獨(dú)立性,將信號(hào)噪聲考慮為加性的白噪聲,首先對(duì)帶噪聲的混疊語音信號(hào)進(jìn)行稀疏編碼消噪[4]處理,然后用EFICA[5]盲源分離方法對(duì)消噪后的混疊語音進(jìn)行分離,最終實(shí)現(xiàn)對(duì)帶噪聲的混疊語音信號(hào)盲分離。
4結(jié)語
本文針對(duì)帶噪混疊語音信號(hào),提出了一種基于稀疏編碼和EFICA的盲分離方法。首先對(duì)觀測(cè)信號(hào)用稀疏編碼方法進(jìn)行去噪處理,然后對(duì)去噪后的混疊信號(hào)用EFICA方法進(jìn)行盲分離。在Matlab平臺(tái)上對(duì)含有噪聲混疊的語音進(jìn)行盲分離實(shí)驗(yàn),結(jié)果分析表明,本文方法在不同的信噪比情況下,分離信號(hào)的信噪比均高于小波去噪方法,且分離后的值接近于0,可見本文算法分離效果良好,能有效將帶噪聲的混疊語音信號(hào)進(jìn)行盲分離。
參考文獻(xiàn):
[1]張雪英.數(shù)字語音處理及Matlab仿真[M].北京:電子工業(yè)出版社,2010.
[2]劉琚,孫建德,許宏吉.盲信號(hào)處理理論與應(yīng)用[M].北京:科學(xué)出版社,2013.
[3]SANTORO R,JUCKER T,PRISCO I,et al. Blind separation of speech mixtures via timefrequency masking[J]. IEEE Transactions on Signal Processing,2004,52(7):18301847.
[4]TICHAVSKY P, KOLDOVSKY Z, OJA E. Asymptotic performance analysis of the fixedpoint algorithm for independent component analysis[J].IEEE Statistical Signal Processing Workshop,2005(2):15711590.
[5]陶玉福,劉慶華,黃斌.基于EFICA的混合語音盲分離時(shí)域算法[J].聲學(xué)與電子工程,2009(2):2427.
[6]趙彥平.基于稀疏表示的語音增強(qiáng)方法研究[D].長(zhǎng)春:吉林大學(xué),2014.
[7]王杏. 帶噪混疊語音信號(hào)盲分離方法研究[D].北京:北京交通大學(xué),2014.
[8]KOLDOVSKY Z,TICHAVSKY P,OJA E. Efficient variant of algorithm FastICA for independent component analysis attaining the CramerRao lower bound[J].IEEE Transactions on Neural Networks,2006,17(5):12651277.
[9]王丁一,徐先峰,李詩然.混合語音信號(hào)盲分離算法研究與應(yīng)用[J].通信電源技術(shù),2016(11):3335.
[10]熊杰,康榮雷.盲信號(hào)分離自適應(yīng)算法研究[J].長(zhǎng)沙大學(xué)學(xué)報(bào),2016(9):4952.
(責(zé)任編輯:杜能鋼)endprint