亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        有機(jī)磷阻燃劑的環(huán)境暴露與動(dòng)物毒性效應(yīng)

        2018-01-29 08:57:07周啟星趙夢(mèng)陽(yáng)來(lái)子陽(yáng)李學(xué)彥
        生態(tài)毒理學(xué)報(bào) 2017年5期
        關(guān)鍵詞:斑馬魚(yú)阻燃劑有機(jī)磷

        周啟星, 趙夢(mèng)陽(yáng), 來(lái)子陽(yáng), 李學(xué)彥

        1. 南開(kāi)大學(xué)環(huán)境科學(xué)與工程學(xué)院, 環(huán)境污染過(guò)程與基準(zhǔn)教育部重點(diǎn)實(shí)驗(yàn)室, 天津 300071 2. 中國(guó)人民解放軍沈陽(yáng)軍區(qū)總醫(yī)院,沈陽(yáng)110016

        近年來(lái),有機(jī)磷阻燃劑(organophosphorus flame retardants, OPFRs)作為阻燃劑和增塑劑廣泛應(yīng)用于商業(yè)產(chǎn)品生產(chǎn)中,包括塑料、紡織品、繪畫(huà)顏料和家具等[1],世界范圍內(nèi)對(duì)OPFRs的需求量和生產(chǎn)量也在逐年增加。有機(jī)磷阻燃劑對(duì)于人類(lèi)生活來(lái)說(shuō)是必不可少的,但越來(lái)越多的OPFRs也隨之進(jìn)入到環(huán)境中,如大氣、土壤和水體[2-7]。一方面,空氣顆粒物、室內(nèi)灰塵、辦公設(shè)備、食物和飲用水中均含有微量的有機(jī)磷阻燃劑,這些有機(jī)磷阻燃劑可以通過(guò)不同的方式參與到人類(lèi)的生產(chǎn)和生活過(guò)程當(dāng)中,從而對(duì)人體健康產(chǎn)生潛在危害;另一方面,OPFRs也會(huì)進(jìn)入到生態(tài)系統(tǒng)中,進(jìn)而對(duì)生態(tài)系統(tǒng)產(chǎn)生一定的不良影響。因此,這種廣泛使用的阻燃劑的環(huán)境影響開(kāi)始受到有關(guān)方面的關(guān)注,尤其是其毒性效應(yīng)及生態(tài)風(fēng)險(xiǎn)。諸多研究表明,不同種類(lèi)的有機(jī)磷阻燃劑在不同濃度條件下對(duì)小鼠、雞、隼等生物有著不同程度的影響[8-10]。另外,也有綜述很好地總結(jié)了近年來(lái)有機(jī)磷阻燃劑在動(dòng)物體內(nèi)及人體內(nèi)的相關(guān)研究,包括吸收、生物積累、代謝以及體內(nèi)暴露研究等[11]。本文則主要針對(duì)有機(jī)磷阻燃劑的動(dòng)物毒性研究,綜述了近年來(lái)關(guān)于OPFRs的動(dòng)物毒性效應(yīng),包括OPFRs對(duì)生物體分子、細(xì)胞、器官和個(gè)體水平的影響,并針對(duì)有機(jī)磷阻燃劑的毒性效應(yīng)對(duì)未來(lái)研究重點(diǎn)進(jìn)行了展望。

        1 有機(jī)磷阻燃劑的環(huán)境暴露(Environmental exposure of OPFRs)

        1.1 有機(jī)磷阻燃劑在環(huán)境中的存在濃度

        各國(guó)研究人員對(duì)不同環(huán)境介質(zhì)中的OPFRs檢測(cè)結(jié)果表明,有機(jī)磷阻燃劑已廣泛存在于世界范圍內(nèi),且存在于各種非生物介質(zhì)中。有研究表明各國(guó)已在室內(nèi)大氣中檢測(cè)到OPFRs。Dodson等[12]對(duì)加利福尼亞50戶(hù)家庭室內(nèi)灰塵的成分進(jìn)行了定性定量檢測(cè),發(fā)現(xiàn)含有幾種有機(jī)磷阻燃劑且濃度在μg·g-1水平。Joyce等[13]檢測(cè)了西班牙巴塞羅那一些居住區(qū)、學(xué)校、劇院以及研究所的室內(nèi)OPFRs濃度,發(fā)現(xiàn)總濃度在2 053~72 090 ng·g-1,且磷酸三(二-氯)異丙酯(TCIPP, tris(2-chloroisopropyl) phosphate)的所占比例最高。由于人類(lèi)生產(chǎn)生活的原因,有機(jī)磷阻燃劑也隨之進(jìn)入到自然環(huán)境中(如圖1所示)。Guo等[14]對(duì)北美五大湖中的湖紅點(diǎn)鮭(Salvelinusnamaycush)、玻璃梭鱸(Sandervitreus)體內(nèi)的有機(jī)磷阻燃劑進(jìn)行了檢測(cè),總量為36.6 ng·g-1脂質(zhì)。Cao等[15]對(duì)五大湖區(qū)的蘇必利爾湖、密歇根湖以及安大略湖的底泥中有機(jī)磷阻燃劑進(jìn)行了檢測(cè),發(fā)現(xiàn)總含量分別為2.2,4.7,16.6 ng·g-1dw(干重)。甚至在極地地區(qū)也發(fā)現(xiàn)了有機(jī)磷阻燃劑的蹤跡,Esteban等[16]在南極半島北部地區(qū)的大陸水中檢測(cè)出有機(jī)磷阻燃劑,濃度為19.60~9 209 ng·L-1。

        圖1 有機(jī)磷阻燃劑在環(huán)境中的遷移Fig. 1 The migration of organophosphorus flame retardants (OPFRs) in the environment

        在我國(guó),科研人員對(duì)有機(jī)磷阻燃劑的環(huán)境水平也做了大量監(jiān)測(cè)工作。在華南地區(qū)的鄉(xiāng)村、城市居民區(qū)和大學(xué)宿舍內(nèi)都檢測(cè)到了OPFRs(7.48~11.0 μg·g-1)[17]。同時(shí),在飲用水[18-20]和食物[21]中(均在ng·g-1水平)也檢測(cè)到了含量較低的有機(jī)磷阻燃劑。Cao等[22]對(duì)我國(guó)太湖沉積物中的有機(jī)磷阻燃劑進(jìn)行了檢測(cè),結(jié)果顯示其濃度在3.38~14.25 mg·kg-1范圍內(nèi)。Wang等[23]2015年檢測(cè)了我國(guó)渤海入海口的41條河流中的有機(jī)磷阻燃劑,總濃度為9.6~1 549 ng·L-1。在我國(guó)南海區(qū)域的大氣中也檢測(cè)到了47.1~160.9 pg·m-3的有機(jī)磷阻燃劑[24]。Wan等[25]在塑料廢物處理區(qū)域內(nèi)土壤中檢測(cè)出有機(jī)磷酸酯,濃度為38~1 250 ng·g-1dw。Ren等[26]檢測(cè)了中國(guó)上海市懸浮顆粒物中的有機(jī)磷阻燃劑含量,郊區(qū)總含量均值為19.4 ng·m-3,市區(qū)為6.6 ng·m-3,且各種有機(jī)磷阻燃劑的比重為磷酸三氯丙酯(TCPP, tris(chloropropyl) phosphate)和磷酸三(2-氯)乙酯(TCEP, tris(2-chloroethyl) phosphate)>磷酸三(1,3-二氯)異丙酯(TDCIPP, tris(1,3-dichloroisopropyl) phosphate)>磷酸三丁酯(TBP, tributyl phosphate)>磷酸三(鄰甲苯酯)(TCP, tricresyl phosphate)。Ding等[27]對(duì)中國(guó)東部50個(gè)人體胎盤(pán)樣品進(jìn)行了12種有機(jī)磷阻燃劑的檢測(cè),發(fā)現(xiàn)總量在34.4~862 ng·g-1lipid weight (lw),中值為301 ng·g-1lw,TCEP含量最多,為142 ng·g-1lw,數(shù)據(jù)分析結(jié)果顯示:各種有機(jī)磷阻燃劑與胎盤(pán)的脂含量不相關(guān),且與飲食習(xí)慣也無(wú)明顯的相關(guān)性。Ma等[28]在2011年和2015年對(duì)山東一些居民血清內(nèi)的有機(jī)磷阻燃劑進(jìn)行了檢測(cè),發(fā)現(xiàn)這2年OPFRs總含量分別為680 ng·g-1脂質(zhì)和709 ng·g-1脂質(zhì),含量最多的為T(mén)CEP,占總含量的82%,研究還發(fā)現(xiàn)含氯的有機(jī)磷阻燃劑比不含氯的更容易在人體內(nèi)積累。

        1.2 有機(jī)磷阻燃劑的暴露水平

        既然在環(huán)境中發(fā)現(xiàn)了不同水平的有機(jī)磷阻燃劑,那么該物質(zhì)對(duì)人類(lèi)和其他生物的暴露水平也備受關(guān)注,且在不同生物體內(nèi)均可檢測(cè)到一定濃度的OPFRs。

        表1 有機(jī)磷阻燃劑對(duì)動(dòng)物個(gè)體的毒性效應(yīng)Table 1 The toxic effect of OPFRs on animals

        注: TPP為磷酸三苯酯, TCEP為磷酸三(2-氯)乙酯 , TDCIPP為磷酸三(1,3-二氯)異丙酯。

        Note: TPP stands for triphenyl phosphate; TCEP stands for tris(2-chloroethyl) phosphate; TDCIPP stands for tris(1,3-dichloroisopropyl) phosphate.

        Kate等[29]檢測(cè)了8位懷孕女性尿液中的OPFRs代謝產(chǎn)物水平,發(fā)現(xiàn)TDCIPP的代謝產(chǎn)物磷酸二(1,3-二氯)異丙酯(BDCPP, bis(1,3-dichloro-2-propyl) phosphate)和磷酸三苯酯(TPP, triphenyl phosphate)的代謝產(chǎn)物磷酸二苯酯(DPP, diphenyl phosphate)的濃度分別為1.3 ng·mL-1和1.9 ng·mL-1。Nele等[30]對(duì)溫莎和普林斯頓地區(qū)的女性及其孕育兒童尿液中的OPFRs進(jìn)行了檢測(cè),發(fā)現(xiàn)幾種有機(jī)磷酸酯的濃度在0.1~100 ng·mL-1水平,且兒童的暴露量高于母親。Ali等[31]對(duì)巴基斯坦幾處清真寺及居民區(qū)進(jìn)行了暴露評(píng)估,發(fā)現(xiàn)有機(jī)磷阻燃劑在成人體內(nèi)的暴露量為0.65 ng·kg-1bw·d-1,兒童體內(nèi)的暴露量為15.2 ng·kg-1bw·d-1。Mohamed等[32]進(jìn)行了人體表皮體外實(shí)驗(yàn),發(fā)現(xiàn)對(duì)TCEP、 TCIPP和TDCIPP的吸收率分別為28%、25%和13%,滲透率分別為16%、11%和9%,并用模型計(jì)算得出英國(guó)兒童的暴露量為36 ng·kg-1·d-1,成人為4 ng·kg-1·d-1。Courtney等[33]采集了29名辦公室工作人員的尿液進(jìn)行了代謝組分析,發(fā)現(xiàn)尿液中存在408 pg·mL-1的BDCPP,即TDCIPP的代謝產(chǎn)物。Fromme等[34]對(duì)德國(guó)63個(gè)托兒所的兒童尿液進(jìn)行了檢測(cè),發(fā)現(xiàn)尿液中磷酸三(2-丁氧基)乙酯(TBEP, tris(2-butoxyethyl) phosphate)、磷酸三(2-氯)丙酯(TCPP, tri(2-chloropropyl) phosphate)和磷酸三正丁酯(TnBP, tri-n-butyl phosphate)的代謝產(chǎn)物濃度在0.8~2.0 μg·L-1范圍內(nèi)。人們不僅暴露在室內(nèi)的OPFRs中,甚至在徒步旅行中也會(huì)有所暴露[35]。近期的研究表明在野生動(dòng)物體內(nèi)也檢測(cè)到了有機(jī)磷阻燃劑,例如北美雌性銀鷗的脂肪內(nèi)含量最高(32.3 ± 9.8 ng·g-1濕重(ww)),蛋黃 (14.8 ± 2.4 ng·g-1ww) ≈ 蛋清 (14.8 ± 5.9 ng·g-1ww) > 肌肉 (10.9 ± 5.1 ng·g-1ww) ≥血紅細(xì)胞(1.00 ±0.62 ng·g-1ww),然而在肝臟、血清以及大腦中并未檢測(cè)到有機(jī)磷阻燃劑[36]。

        綜上所述,現(xiàn)階段有機(jī)磷阻燃劑在環(huán)境中的暴露的特點(diǎn)為:全球性范圍廣泛分布;人類(lèi)活動(dòng)區(qū)域的濃度水平高于自然界;暴露水平較低。

        2 有機(jī)磷阻燃劑的動(dòng)物毒性效應(yīng)(Toxic effects of OPFRs on animals)

        2.1 對(duì)動(dòng)物個(gè)體的毒性效應(yīng)

        為了更加深入地研究有機(jī)磷阻燃劑的毒性效應(yīng),對(duì)各種模式生物進(jìn)行了研究,且大部分集中于魚(yú)類(lèi)、禽類(lèi)和鼠類(lèi)等(表1)。

        2.1.1 對(duì)魚(yú)類(lèi)的毒性效應(yīng)

        由于斑馬魚(yú)是一種很好的模式生物,且基因與人類(lèi)十分相似,因此對(duì)魚(yú)類(lèi)的研究以斑馬魚(yú)為主。成魚(yú)暴露于高濃度的有機(jī)磷阻燃劑會(huì)通過(guò)調(diào)節(jié)體內(nèi)的激素水平從而改變其行為。Liu等[37]將4個(gè)月大的斑馬魚(yú)成魚(yú)暴露于不同濃度的TDCIPP (0, 0.04, 0.2, 1 mg·L-1), TPP (0, 0.04, 0.2, 1 mg·L-1), TCP (0, 0.008, 0.04, 0.2 mg·L-1),14 d后檢測(cè)發(fā)現(xiàn)在雄魚(yú)體內(nèi),睪丸素和11-氧化睪丸素降低,而17β-雌二醇升高;在雌魚(yú)體內(nèi),CYP17和 CYP19a基因在2種性激素中顯著上調(diào),而卵黃蛋白原基因下調(diào),這些結(jié)果表明有機(jī)磷阻燃劑可以通過(guò)類(lèi)固醇生成或雌激素代謝而改變性激素的平衡。Liu等[38]發(fā)現(xiàn)長(zhǎng)期(120 d)暴露于高濃度(500 mg·L-1)的TPP會(huì)導(dǎo)致斑馬魚(yú)成魚(yú)通過(guò)改變激素平衡來(lái)提高求偶性。將TPP(0.050 mg·L-1和0.300 mg·L-1)暴露于斑馬魚(yú)7 d后,檢測(cè)發(fā)現(xiàn)葡萄糖、UDP-葡萄糖、乳酸、琥珀酸、延胡索酸酯、膽堿、乙?;鈮A和一些脂肪酸的水平均有顯著改變。轉(zhuǎn)錄組結(jié)果顯示:對(duì)相關(guān)通路均有顯著影響,包括鞘糖脂生物合成、PPAR信號(hào)通路和脂肪酸伸長(zhǎng)。這些結(jié)果表明TPP暴露會(huì)明顯擾亂斑馬魚(yú)肝臟糖類(lèi)和脂類(lèi)代謝。此外,DNA復(fù)制、細(xì)胞周期、非同源性末端接合、堿基切除修復(fù)也會(huì)受到嚴(yán)重影響,因此認(rèn)為這種有機(jī)磷阻燃劑阻礙了斑馬魚(yú)肝臟細(xì)胞的DNA損傷修復(fù)系統(tǒng)[39]。

        斑馬魚(yú)的胚胎和仔魚(yú)因?yàn)闆](méi)有完善的器官和系統(tǒng),其抵抗力不如成魚(yú),大量研究也表明低濃度的有機(jī)磷阻燃劑就會(huì)對(duì)胚胎或仔魚(yú)造成一定程度的損傷。對(duì)于1~5 dpf 的斑馬魚(yú)仔魚(yú),在磷酸三(2,3-二溴)丙酯(TDBPP, tris(2,3-dibromopropyl) phosphate)>1 μmol·L-1時(shí)有顯著毒性,TDCIPP>10 μmol·L-1時(shí)有顯著毒性效應(yīng),TCEP和TCPP在100 μmol·L-1濃度時(shí)也沒(méi)有明顯的毒性,均沒(méi)有顯著改變仔魚(yú)的游泳能力[40]。斑馬魚(yú)仔魚(yú)暴露于200 μg·L-1的磷酸三(2-丁氧基)乙酯(TBOEP, tris(2-butoxyethyl) phosphate)會(huì)引起激素的合成、阿黑皮素原和促卵泡激素相關(guān)基因的下調(diào),從而導(dǎo)致一些受體基因(thr,tshr,gr,mr,er,ar)的上調(diào),這些分子水平上的改變會(huì)導(dǎo)致斑馬魚(yú)的水腫、畸形以及最后的死亡[41]。Ma等[42]研究發(fā)現(xiàn)暴露于0.5 μmol·L-1的TBOEP可以顯著上調(diào)雌激素受體基因(ERs,er1,er2a,er2b)表達(dá)以及相關(guān)基因(vtg4,vtg5,pgr,ncor,ncoa3)的表達(dá),表明TBOEP可以影響雌激素受體的通路。

        不同的有機(jī)磷阻燃劑對(duì)斑馬魚(yú)胚胎的毒性不同,毒性由高到低可排序?yàn)榱姿崛锦?TPHP, triphenyl phosphate),四溴雙酚A(TBBPA, tetrabromobisphenol A),異苯丙基磷酸酯(IPP, isopropylated phenyl phosphate),TDCIPP,叔丁基苯基磷酸酯(BPDP, tert-butylphenyl diphenyl phosphate),(2-乙基己基)聯(lián)苯磷酸酯(EHDP, 2-ethylhexyl diphenyl phosphate),甲基苯基磷酸酯(TMPP, trimethyl phenyl phosphate),TCEP[43]。有機(jī)磷阻燃劑可以在斑馬魚(yú)胚胎形成期,通過(guò)干擾調(diào)節(jié)基因的轉(zhuǎn)錄和表達(dá)引起心臟毒性,Du等[44]發(fā)現(xiàn)暴露于0.10 mg·L-1TPHP 或者三磷酸甲苯酯(CDP, cresyl diphenyl phosphate)會(huì)阻礙心臟循環(huán)過(guò)程。在0.50,1.0 mg·L-1TPHP 暴露組以及 0.10, 0.50, 1.0 mg·L-1CDP暴露組均出現(xiàn)了心動(dòng)過(guò)緩及心肌減少的現(xiàn)象。0~48 hpf是斑馬魚(yú)胚胎最為脆弱的時(shí)期,TPHP 和 CDP會(huì)對(duì)其成長(zhǎng)造成較大影響。同時(shí)有研究表明有機(jī)磷阻燃劑可以通過(guò)調(diào)節(jié)基因造成激素的合成紊亂[45]。有機(jī)磷阻燃劑對(duì)胚胎的發(fā)育毒性也受到很多科研工作者的重視。Fu等[46]采用微列陣及同位素標(biāo)記相對(duì)和絕對(duì)定量(iTRAQ, isobaric tags for relative and absolute quantification)標(biāo)記定量蛋白質(zhì)組測(cè)定分析,結(jié)果顯示3 μmol·L-1的TDCIPP從0.75 hpf到4 hpf會(huì)抑制細(xì)胞的重新排列,使得延期至5.7和8.5 hpf,并且在14~45 hpf導(dǎo)致了反常發(fā)育(例如短尾、身長(zhǎng)縮短)和致死,可能與胚胎形成相關(guān)基因表達(dá)的改變有關(guān)。此外,暴露于1或3 μmol·L-1的 TDCIPP后,在96 hpf時(shí)觀測(cè)到軀干彎曲的表型。Noyes等[47]也發(fā)現(xiàn)斑馬魚(yú)胚胎的神經(jīng)發(fā)育對(duì)有機(jī)磷阻燃劑具有高度敏感性。雖然有機(jī)磷阻燃劑會(huì)對(duì)斑馬魚(yú)胚胎和仔魚(yú)造成一定的損傷,但是這種生物體內(nèi)的視黃酸受體可能會(huì)參與調(diào)節(jié)TPP引起的胚胎發(fā)育毒性,起到一定的抵抗作用[48]。

        針對(duì)斑馬魚(yú)的毒性實(shí)驗(yàn),不論是成魚(yú)、胚胎還是仔魚(yú),大都是短期暴露,而長(zhǎng)期暴露的研究較少。Wang等[49]將斑馬魚(yú)胚胎(2 hpf)暴露于TDCIPP (0~100 μg·L-1) 6個(gè)月,急性暴露結(jié)果顯示在受精后5 d的斑馬魚(yú)仔魚(yú)組織中檢測(cè)到TDCIPP和它的代謝產(chǎn)物BDCPP,長(zhǎng)期暴露實(shí)驗(yàn)結(jié)果表明任何暴露組對(duì)斑馬魚(yú)的運(yùn)動(dòng)、乙酰膽堿酯酶的活性、神經(jīng)遞質(zhì)多巴胺和5-羥色胺的水平、信使RNA和蛋白質(zhì)的表達(dá)與中樞神經(jīng)系統(tǒng)的發(fā)展均沒(méi)有產(chǎn)生影響。然而,在成年魚(yú)中,雌魚(yú)大腦中檢測(cè)出多巴胺及血清素水平的降低。在雄魚(yú)和雌魚(yú)大腦中均發(fā)現(xiàn)神經(jīng)系統(tǒng)發(fā)育基因的下調(diào)。在成魚(yú)組織中檢測(cè)出TDCIPP,并且在大腦組織中含量最高。雌魚(yú)對(duì)TDCIPP的刺激比雄魚(yú)更敏感,而且長(zhǎng)期暴露會(huì)導(dǎo)致神經(jīng)毒性。

        有機(jī)磷阻燃劑對(duì)其他魚(yú)類(lèi)也有一定程度的損傷。Yuan等[50]將中國(guó)稀有鮈鯽暴露于TCEP (1.25, 2.5, 5 mg·L-1), TDCIPP (0.75, 1.5, 3 mg·L-1), TPP(0.5, 1, 2 mg·L-1)中共21 d。結(jié)果顯示高濃度的TPP對(duì)乙酰膽堿酯酶和丁酰膽堿酯酶的活性均有顯著抑制作用,但另外2種有機(jī)磷阻燃劑并無(wú)發(fā)現(xiàn)此現(xiàn)象。此外,實(shí)驗(yàn)證明TDCIPP對(duì)于膽堿酯酶的活性以及神經(jīng)遞質(zhì)的水平無(wú)顯著影響。但是,這種有機(jī)磷阻燃劑對(duì)于神經(jīng)營(yíng)養(yǎng)因子及其受體(例如ntf3,ntrk1,ntrk2,ngfr,fgf2,fgf11,fgf22,fgfr4)表現(xiàn)出普遍的毒性效應(yīng),表明TDCIPP和其他的有機(jī)磷阻燃劑可能會(huì)通過(guò)影響神經(jīng)營(yíng)養(yǎng)因子及其受體而引起神經(jīng)毒性[50]。Arukwe等[51-52]研究了TBOEP和TCEP對(duì)幼年鮭魚(yú)的影響,發(fā)現(xiàn)這2種有機(jī)磷阻燃劑在高濃度下(1 mg·L-1)暴露7 d會(huì)導(dǎo)致脂質(zhì)過(guò)氧化的升高,而且對(duì)神經(jīng)的及原始的類(lèi)固醇生成均有一定影響。

        2.1.2 對(duì)禽類(lèi)的毒性效應(yīng)

        Bradley等[8]研究了2種有機(jī)磷阻燃劑(TMPP和TDCIPP)對(duì)來(lái)亨雞的毒性效應(yīng),對(duì)其注射不同濃度的TMPP (0, 10, 100, 1 000 ng·g-1)和TDCIPP (0, 10, 100, 1 000, 50 000 ng·g-1),實(shí)驗(yàn)周期為從出生截至第21天,結(jié)果表明TMPP對(duì)孵化沒(méi)有影響,而100 和50 000 ng·g-1TDCIPP處理組的雞有較高的早期致死率;通過(guò)翻正反射、平衡、步態(tài)模式、翼皮瓣反射以及開(kāi)放區(qū)域的移動(dòng)對(duì)第7~9 天的雞進(jìn)行行為評(píng)估,結(jié)果發(fā)現(xiàn)暴露于100 ng·g-1TDCIPP的雞比正常雞的最大速度低40%,然而暴露于1 000 ng·g-1TDCIPP比正常雞最快速度高20%。暴露于50 000 ng·g-1TDCIPP處理組的雞翻正反射成功率明顯降低,對(duì)其他幾項(xiàng)測(cè)試無(wú)影響。解剖10 d的雞大腦半球來(lái)測(cè)試神經(jīng)化學(xué)(乙酰膽堿酯酶活性、煙堿),解剖小腦測(cè)試組織病理學(xué),發(fā)現(xiàn)并無(wú)明顯損傷。

        Farhat等[53]對(duì)不同有機(jī)磷阻燃劑對(duì)雞胚的毒性效應(yīng)做了一系列研究,發(fā)現(xiàn)TCPP和TDCIPP(最大劑量分別為51 600和45 000 ng·g-1)這2種有機(jī)磷阻燃劑都不會(huì)降低破殼成功率,然而TCPP在劑量為9 240和51 600 ng·g-1時(shí)顯著延遲了破殼時(shí)間,并且在51 600 ng·g-1時(shí)降低了臉板長(zhǎng)度。TDCIPP(45 000 ng·g-1)的暴露顯著降低頭和喙的長(zhǎng)度、胚胎質(zhì)量、膽囊尺寸,并且在7 640 ng·g-1下降低了游離 T4的水平。TCPP顯著引起Ⅰ型脫碘酶、肝脂肪酸結(jié)合蛋白和細(xì)胞色素P450(CYP)3A37 mRNA水平的改變,然而TDCIPP引起了 CYP3A37 和 CYP2H1的改變。在出生后0, 5, 11, 18, 19 d時(shí)檢測(cè)出的體內(nèi)有機(jī)磷阻燃劑濃度,均大于注射劑量的92%,且第5 天時(shí)檢測(cè)值最高。他們[54]還發(fā)現(xiàn)TDCIPP可以擾亂雞胚免疫反應(yīng)相關(guān)基因的表達(dá)和類(lèi)固醇代謝,TDCIPP在低劑量(7.6 μg·g-1)時(shí)可以引起5個(gè)基因的顯著改變,在高劑量(45 μg·g-1)時(shí)可以引起47個(gè)基因的顯著改變,但肝臟膽汁酸和膽固醇水平?jīng)]有發(fā)生變化,這些結(jié)果表明TDCIPP針對(duì)脂質(zhì)代謝過(guò)程具有靶向性毒性效應(yīng)。TDCIPP在雞胚內(nèi)還可以引起其轉(zhuǎn)錄和表型的改變,然而它的主要代謝物BDCPP生物活性且毒性較低[55]。Crump等[56]發(fā)現(xiàn)高濃度(261 400 ng·g-1)的TMPP可導(dǎo)致胚胎畸形,增加肝體指數(shù)和血漿膽汁酸濃度,并且改變了異性生物質(zhì)、脂類(lèi)代謝和甲狀腺激素通路的基因表達(dá)水平。Caroline等[57]也發(fā)現(xiàn)TBOEP和磷酸三乙酯(TEP, triethyl phosphate)均可影響雞胚的正常發(fā)育,包括肝臟mRNA的表達(dá)和甲狀腺激素的水平,以及循環(huán)膽汁酸濃度的改變。

        2.1.3 對(duì)鼠類(lèi)的毒性效應(yīng)

        Chen等[9]將5周大的雄性小鼠經(jīng)口攝入100, 300 mg·kg-1的TPP和TCEP共35 d,結(jié)果發(fā)現(xiàn)濃度為300 mg·kg-1時(shí),2種有機(jī)磷阻燃劑均可導(dǎo)致體重和睪丸重量的下降;TPP處理組中肝臟內(nèi)的丙二醛含量顯著上升,而谷胱甘肽在300 mg·kg-1的TPP和TCEP處理組中均顯著下降。另外,抗氧化酶(谷胱甘肽過(guò)氧化物酶、過(guò)氧化氫酶和谷胱甘肽巰基轉(zhuǎn)移酶)活性的相關(guān)基因均受到一定影響。同時(shí),300 mg·kg-1的TPP和TCEP處理組導(dǎo)致了組織病理學(xué)損傷并且降低了睪丸睪酮水平。此外,睪丸素合成的主要相關(guān)基因(steroidogenicacute regulatory protein (StAR), low-density lipoprotein receptor (LDL-R), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc) and cytochrome P450 17α-hydroxysteroid dehydrogenase (P450-17α))的表達(dá)量在300 mg·kg-1的TPP和TCEP處理組中有所降低。綜上所述,雄性小鼠暴露于2種有機(jī)磷阻燃劑會(huì)導(dǎo)致氧化應(yīng)激以及內(nèi)分泌紊亂。

        Zhao等[58]也發(fā)現(xiàn)TDCIPP可以影響雌性大鼠的甲狀腺功能,暴露于250 mg·kg-1共21 d會(huì)明顯升高血清三碘甲狀腺氨酸,一些相關(guān)基因的表達(dá)和蛋白的水平也有明顯的劑量依賴(lài)效應(yīng)。Moser等[59]將懷孕的Long-Evans大鼠經(jīng)口攝入TDCIPP (15, 50, 150 mg·kg-1)或者TCEP (12, 40, 90 mg·kg-1),實(shí)驗(yàn)周期為受孕后10 d至幼鼠斷奶,結(jié)果表明母親體重或血清甲狀腺激素都無(wú)明顯變化,但在高濃度TDCIPP和TCEP暴露下肝臟相對(duì)重量會(huì)有所升高。在子代鼠中,2種有機(jī)磷酸酯對(duì)其活性、同胎生子數(shù)、出生體重都無(wú)影響。對(duì)于TDCIPP暴露組的大鼠,絕對(duì)肝臟重量在斷奶期較低,且高劑量暴露組的子代鼠體重增加較慢,直到2個(gè)月大后才恢復(fù)正常。子代鼠的甲狀腺激素和大腦重量都無(wú)變化,大腦和血漿中的乙酰膽堿酯酶也沒(méi)有受到有機(jī)磷酸酯的抑制作用。2種有機(jī)磷阻燃劑對(duì)子代鼠行為表現(xiàn)出的影響都是微小的??傊?,研究表明這2種有機(jī)磷阻燃劑不會(huì)引起明顯的毒性。

        2.1.4 對(duì)其他動(dòng)物的毒性效應(yīng)

        有研究人員發(fā)現(xiàn)有機(jī)磷阻燃劑對(duì)大型溞或者四膜蟲(chóng)都有一定程度的毒性效應(yīng)。Li等[60]發(fā)現(xiàn)出生時(shí)長(zhǎng)小于12 h的大型溞,在暴露于濃度為0, (65 ± 7.1), (550 ± 33), (6 500 ± 1 400) ng·L-1的TDCIPP后,會(huì)導(dǎo)致57個(gè)基因的明顯改變,而且蛋白合成、代謝、內(nèi)吞的相關(guān)通路也會(huì)受到較大影響。但是腐殖酸可以通過(guò)吸附有機(jī)磷阻燃劑而降低其對(duì)大型溞的毒性[61]。不同的OPFRs對(duì)大型溞產(chǎn)生毒性效應(yīng)的有效濃度是不同的,Cristale等[62]發(fā)現(xiàn)他們所測(cè)試的9種有機(jī)磷阻燃劑(TCEP,TCPP, TBEP,TBP,磷酸三(2-氯-1-氯甲基)甲酯(TDCP, tris[2-chloro-1-(chloromethyl)ethyl] phosphate),TPHP,磷酸三(2-乙基)己酯(TEHP, tris(2-ethylhexyl) phosphate),TCP,EHDP)對(duì)大型溞的半數(shù)效應(yīng)濃度相差超過(guò)3個(gè)數(shù)量級(jí)(0.31~381 mg·L-1)。

        有機(jī)磷阻燃劑還可以對(duì)纖毛原生動(dòng)物四膜蟲(chóng)造成一定的損傷。Li等[63]將四膜蟲(chóng)暴露于0.01,0.1,1 μmol·L-1的TDCIPP 共5 d,發(fā)現(xiàn)相對(duì)生物量顯著降低(細(xì)胞數(shù)目減少),且細(xì)胞尺寸和纖毛質(zhì)量都呈現(xiàn)劑量依賴(lài)效應(yīng)。另外,RNA序列分析表明21個(gè)核糖體蛋白質(zhì)基因下調(diào),這些基因被濃縮在“核糖體”KEGG通路中,結(jié)果表明暴露于TDCIPP會(huì)通過(guò)干擾核糖體影響四膜蟲(chóng)的生長(zhǎng)和繁殖。有研究表明,有機(jī)磷阻燃劑對(duì)四膜蟲(chóng)的長(zhǎng)期暴露也會(huì)有多代效應(yīng)[64],Li等[64]將四膜蟲(chóng)暴露于TDCIPP (0,300,3 000 ng·L-1) 共60 d(~372代),隨后進(jìn)行了60 d的恢復(fù)實(shí)驗(yàn)(期間不再進(jìn)行暴露)。結(jié)果表明300和3 000 ng·L-1實(shí)驗(yàn)組暴露60 d后顯著降低了個(gè)體數(shù)目、個(gè)體尺寸、纖毛數(shù)量、基體纖毛體的深度和半徑,并使得與纖毛裝配和維護(hù)的相關(guān)基因表達(dá)上調(diào)。后期恢復(fù)實(shí)驗(yàn)表明,四膜蟲(chóng)的整體或局部均有恢復(fù)現(xiàn)象,包括個(gè)體尺寸和基因表達(dá),但是有機(jī)磷阻燃劑對(duì)四膜蟲(chóng)的纖毛數(shù)量、基體纖毛體的深度和半徑的影響是不可逆的。

        2.2 對(duì)動(dòng)物細(xì)胞的毒性效應(yīng)

        為了模擬有機(jī)磷阻燃劑對(duì)人類(lèi)健康的影響,科研人員進(jìn)行了大量的體外實(shí)驗(yàn),運(yùn)用各種細(xì)胞(包括人體細(xì)胞、鼠類(lèi)細(xì)胞等)來(lái)測(cè)試不同水平有機(jī)磷阻燃劑的毒性效應(yīng)。

        Zhang等[65]將HepG2/C3A細(xì)胞和A549細(xì)胞于1,10,100 μmol·L-1的TDCIPP中暴露24 h和72 h,而后對(duì)比轉(zhuǎn)錄組和代謝組的改變。結(jié)果表明于10 μmol·L-1暴露24 h后,轉(zhuǎn)錄組發(fā)現(xiàn)應(yīng)激反應(yīng)(異型生物質(zhì)新陳代謝和ABC轉(zhuǎn)運(yùn)通路)。能量代謝相關(guān)的轉(zhuǎn)錄通路(氧化磷酸化)在100 μmol·L-1的TDCIPP暴露下下調(diào)較多,同時(shí)伴隨著細(xì)胞增殖的相關(guān)通路(細(xì)胞周期和DNA復(fù)制)受到抑制,然而毒性效應(yīng)的顯著性并不高。Liu等[37]將H295R細(xì)胞暴露于TDCIPP、TPP、TCP (0.001, 0.01, 0.1, 1, 10, 100 mg·L-1)中48 h后,發(fā)現(xiàn)在高濃度暴露下,細(xì)胞內(nèi)雌二醇和睪酮的濃度會(huì)升高;同時(shí)將MVLN細(xì)胞暴露于TDCIPP、TPP、TCP(0.001, 0.01, 0.1, 1, 10 mg·L-1) 中72 h后,發(fā)現(xiàn)沒(méi)有OPFRs作為雌激素受體興奮劑,然而TDCIPP、TPP、TCP可以作為拮抗劑來(lái)抑制E2與雌激素受體的結(jié)合。An等[66]發(fā)現(xiàn)細(xì)胞于高濃度(200 μmol·L-1)的TPP、TBP、TBEP、TCPP暴露24 h均可以抑制細(xì)胞活性,產(chǎn)生過(guò)量ROS,導(dǎo)致DNA損傷,提高乳酸脫氫酶釋放。

        Jin等[67]將小鼠Tm3睪丸間質(zhì)細(xì)胞于TBEP(30,100 μg·mL-1)中暴露6, 12, 24 h,發(fā)現(xiàn)在100 μg·mL-1濃度下暴露24 h后,谷胱甘肽的含量顯著降低,氧化型谷胱甘肽的含量顯著升高,抗氧化酶(例如超氧化物歧化酶、過(guò)氧化氫酶、谷胱甘肽過(guò)氧化物酶、谷胱甘肽巰基轉(zhuǎn)移酶)的活性也顯著升高,由此證明TBEP會(huì)引起Tm3睪丸間質(zhì)細(xì)胞的氧化應(yīng)激反應(yīng)。另外,于100 μg·mL-1暴露24 h后,與睪丸素合成的相關(guān)基因,包括細(xì)胞色素P450膽固醇側(cè)鏈裂解酶(P450scc)、細(xì)胞色素P450 17α-羥化類(lèi)固醇脫氫酶(P450-17α)、17β-羥化類(lèi)固醇脫氫酶(17β-HSD)以及睪丸素的水平均顯著下降。Ren等[68]發(fā)現(xiàn)依賴(lài)于甲狀腺激素的大鼠垂體腫瘤細(xì)胞的生長(zhǎng),在暴露于100 μmol·L-1的TDCIPP下會(huì)受到抑制,然而暴露于磷酸三甲酯(TMP, trimethyl phosphate)、TEP、TCEP則不會(huì)抑制生長(zhǎng)。Schang等[69]發(fā)現(xiàn)除了TPP外,有機(jī)磷阻燃劑均可作為內(nèi)分泌干擾物質(zhì)影響鼠睪丸間質(zhì)腫瘤細(xì)胞的激素水平。

        除了腫瘤細(xì)胞,人們還研究了有機(jī)磷阻燃劑對(duì)神經(jīng)細(xì)胞的毒性效應(yīng)。Crump等[70]發(fā)現(xiàn)高濃度(300 μmol·L-1)的TCPP對(duì)雞胚神經(jīng)細(xì)胞的存活率沒(méi)有明顯的影響,TDCIPP對(duì)這種細(xì)胞的LC50為(28.7 ± 19.1) μmol·L-1,這2種有機(jī)磷阻燃劑對(duì)神經(jīng)細(xì)胞的基因表達(dá)均無(wú)明顯影響。Na等[71]研究了TDCIPP和TCEP對(duì)神經(jīng)細(xì)胞PC12的形態(tài)、存活率、凋亡的影響,以及CAMKII、GAP43、tubulin 和 NF-H基因及蛋白的表達(dá)情況。結(jié)果表明2種有機(jī)磷阻燃劑在高濃度(200 μmol·L-1)下可以抑制細(xì)胞生長(zhǎng),促進(jìn)凋亡,改變基本形態(tài),顯著影響基因和蛋白的表達(dá)。Wang等[72]發(fā)現(xiàn)在非毒性濃度條件下,含有芳香基和氯代烷基的有機(jī)磷阻燃劑都對(duì)PC12細(xì)胞賴(lài)氨酸脫羧酶的活性表現(xiàn)出一定的抑制效應(yīng),并導(dǎo)致了尸胺含量的顯著下降。Laura等[73]也發(fā)現(xiàn)TDCIPP對(duì)PC12細(xì)胞的毒性效應(yīng)呈現(xiàn)濃度依賴(lài)性,可抑制DNA合成,減少細(xì)胞數(shù)目以及改變神經(jīng)分化。Li等[74 -75]對(duì)TDCIPP于SH-SY5Y神經(jīng)母細(xì)胞瘤細(xì)胞的影響做了較深入的研究,通過(guò)一系列基本細(xì)胞實(shí)驗(yàn)及基因蛋白測(cè)試(包括Bax和Bc 1-2基因以及細(xì)胞凋亡蛋白酶等),發(fā)現(xiàn)TDCIPP可以引起SH-SY5Y細(xì)胞的神經(jīng)毒性以及細(xì)胞自噬,并且證明了其機(jī)理,即TDCIPP通過(guò)影響細(xì)胞的ROS(包括內(nèi)質(zhì)網(wǎng)壓力以及線粒體凋亡通路,AlVIPK/mTOR/ULK1 pathways(細(xì)胞自噬通路))引起細(xì)胞的神經(jīng)毒性。此外,人們也通過(guò)分子對(duì)接和分子動(dòng)力學(xué)模擬,研究了OPFRs對(duì)中國(guó)倉(cāng)鼠卵巢細(xì)胞(CHO-K1)和人乳腺腺癌細(xì)胞(MCF-7)的毒性效應(yīng)。Zhang等[76]通過(guò)3種體外模型(熒光素酶報(bào)告基因檢測(cè)、酵母雙雜交檢測(cè)和E-screen檢測(cè)),檢測(cè)9種OPFRs的激動(dòng)/拮抗活性,并運(yùn)用分子對(duì)接進(jìn)一步解釋雌激素受體α(ER α)和OPFRs之間的關(guān)系。熒光素酶報(bào)告基因分析顯示,3種有機(jī)磷阻燃劑可以誘導(dǎo)雌激素效應(yīng),由高到低分別為T(mén)PP > TCP > TDCIPP,而TCEP和TEHP有顯著的抗雌激素性能。除了TBP在E-screen檢測(cè)中表現(xiàn)出促進(jìn)雌激素的活性外,熒光素酶報(bào)告基因檢測(cè)與其他模型的檢測(cè)結(jié)果呈現(xiàn)高度一致。

        3 研究展望(Prospect on future researches)

        綜上所述,全球范圍內(nèi)的環(huán)境中均可檢測(cè)到有機(jī)磷阻燃劑,從人類(lèi)工業(yè)區(qū)到人跡罕至的南極半島,且在各種生物體內(nèi)均可檢測(cè)到,不過(guò)暴露水平很低,影響很小。所有研究表明:高濃度的有機(jī)磷阻燃劑可以對(duì)動(dòng)物造成一定的損傷效應(yīng),而低濃度暴露則無(wú)顯著影響,OPFRs主要通過(guò)對(duì)基因的調(diào)節(jié)改變激素水平,從而使動(dòng)物出現(xiàn)不良效應(yīng)。隨著這種有機(jī)物越來(lái)越多地應(yīng)用于人類(lèi)生活的各個(gè)方面,由此越來(lái)越多的OPFRs也進(jìn)入到生態(tài)環(huán)境中,威脅動(dòng)物的健康以及生態(tài)平衡。對(duì)于新興的阻燃劑,今后針對(duì)其環(huán)境暴露及毒性的探索需對(duì)以下幾個(gè)方面進(jìn)行重點(diǎn)研究:

        (1)加強(qiáng)人類(lèi)生活環(huán)境中有機(jī)磷阻燃劑的監(jiān)測(cè)。例如,生活生產(chǎn)區(qū)域內(nèi)大氣、土壤、水體,以及工廠排放三廢中有機(jī)磷阻燃劑的含量。

        (2)加強(qiáng)對(duì)暴露量大的動(dòng)物及人類(lèi)體內(nèi)有機(jī)磷阻燃劑的監(jiān)測(cè)。例如,汗液、尿液等排泄物,以及人體血液中有機(jī)磷阻燃劑的含量檢測(cè),探索疾病與OPFRs的相關(guān)性。

        (3)開(kāi)展更多的有機(jī)磷阻燃劑毒性實(shí)驗(yàn)研究。一方面測(cè)試其他生物暴露于有機(jī)磷阻燃劑中的毒性效應(yīng),例如,其他哺乳動(dòng)物貓、狗和靈長(zhǎng)類(lèi)動(dòng)物等,以及對(duì)同種動(dòng)物不同性別及年齡的毒性效應(yīng);另一方面深入研究有機(jī)磷阻燃劑的在不同生物層面的致毒機(jī)理,以分子水平為主,重點(diǎn)研究OPFRs對(duì)基因蛋白的表達(dá)影響以及其他生物激素分泌的影響,進(jìn)而構(gòu)建分子層面與細(xì)胞水平、器官水平以及個(gè)體水平之間的影響機(jī)理。

        (4)加強(qiáng)有機(jī)磷阻燃劑對(duì)動(dòng)物的間接毒性研究。動(dòng)物攝入OPFRs后,會(huì)對(duì)所接觸到的細(xì)胞及組織造成一定的損傷,受損部位分泌的蛋白或激素是否對(duì)其他器官或組織有毒性效應(yīng)也需要深入研究;另一方面,要加強(qiáng)不同動(dòng)物個(gè)體間的間接影響研究。例如,產(chǎn)子后親代暴露對(duì)子代的影響,同一群落中暴露的動(dòng)物是否影響未暴露的動(dòng)物以及影響如何。

        (5)研究動(dòng)物對(duì)攝入體內(nèi)的有機(jī)磷阻燃劑的清除及機(jī)制,探索動(dòng)物的主要代謝器官對(duì)OPFRs的代謝途徑及代謝效率,探尋代謝器官對(duì)OPFRs的最大無(wú)損傷劑量(即OPFRs攝入與代謝的平衡)。

        (6)加強(qiáng)研究不同有機(jī)磷阻燃劑的動(dòng)物體內(nèi)復(fù)合毒性研究,探索不同的有機(jī)磷阻燃劑化合物在生物體內(nèi)的復(fù)合毒性,有無(wú)相互促進(jìn)或抑制毒性的作用。

        [1] Luo Y L, Guo W S, Ngo H H, et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment [J]. Science of the Total Environment, 2014, 473: 619-641

        [2] Castro-Jimenez J, Berrojalbiz N, Pizarro M, et al. Organophosphate ester (OPE) flame retardants and plasticizers in the Open Mediterranean and Black Seas atmosphere [J]. Environmental Science and Technology, 2014, 48(6): 3203-3209

        [3] Khan M U, Li J, Zhang G, et al. First insight into the levels and distribution of flame retardants in potable water in Pakistan: An underestimated problem with an associated health risk diagnosis [J]. Science of the Total Environment, 2016, 565: 346-359

        [4] Mihajlovic I, Fries E. Atmospheric deposition of chlorinated organophosphate flame retardants (OFR) onto soils [J]. Atmospheric Environment, 2012, 56: 177-183

        [5] Mihajlovic I, Miloradov M V, Fries E. Application of Twisselmann extraction, SPME, and GC-MS to assess input sources for organophosphate esters into soil [J]. Environmental Science and Technology, 2011, 45(6): 2264-2269

        [6] Postigo C, Barcelo D. Synthetic organic compounds and their transformation products in groundwater: Occurrence, fate and mitigation [J]. Science of the Total Environment, 2015, 503: 32-47

        [7] Venier M, Dove A, Romanak K, et al. Flame retardants and legacy chemicals in Great Lakes' water [J]. Environmental Science and Technology, 2014, 48(16): 9563-9572

        [8] Bradley M, Rutkiewicz J, Mittal K, et al. In ovo exposure to organophosphorous flame retardants: Survival, development, neurochemical, and behavioral changes in white leghorn chickens [J]. Neurotoxicology and Teratology, 2015, 52: 228-235

        [9] Chen G L, Jin Y X, Wu Y, et al. Exposure of male mice to two kinds of organophosphate flame retardants (OPFRs) induced oxidative stress and endocrine disruption [J]. Environmental Toxicology and Pharmacology, 2015, 40(1): 310-318

        [10] Fernie K J, Palace V, Peters L E, et al. Investigating endocrine and physiological parameters of captive American Kestrels exposed by diet to selected organophosphate flame retardants [J]. Environmental Science and Technology, 2015, 49(12): 7448-7455

        [11] Hou R, Xu Y P, Wang Z J. Review of OPFRs in animals and humans: Absorption, bioaccumulation, metabolism, and internal exposure research [J]. Chemosphere, 2016, 153: 78-90

        [12] Dodson R E, Perovich L J, Covaci A, et al. After the PBDE phase-out: A broad suite of flame retardants in repeat house dust samples from California [J]. Environmental Science and Technology, 2012, 46(24): 13056-13066

        [13] Cristale J, Hurtado A, Gomez-Canela C, et al. Occurrence and sources of brominated and organophosphorus flame retardants in dust from different indoor environments in Barcelona, Spain [J]. Environmental Research, 2016, 149: 66-76

        [14] Guo J H, Venier M, Salamova A, et al. Bioaccumulation of dechloranes, organophosphate esters, and other flame retardants in Great Lakes fish [J]. Science of the Total Environment, 2017, 583: 1-9

        [15] Cao D D, Guo J H, Wang Y W, et al. Organophosphate esters in sediment of the Great Lakes [J]. Environmental Science and Technology, 2017, 51(3): 1441-1449

        [16] Esteban S, Moreno-Merino L, Matellanes R, et al. Presence of endocrine disruptors in freshwater in the northern Antarctic Peninsula region [J]. Environmental Research, 2016, 147: 179-192

        [17] He C T, Zheng J, Qiao L, et al. Occurrence of organophosphorus flame retardants in indoor dust in multiple microenvironments of southern China and implications for human exposure [J]. Chemosphere, 2015, 133: 47-52

        [18] Ding J J, Shen X L, Liu W P, et al. Occurrence and risk assessment of organophosphate esters in drinking water from Eastern China [J]. Science of the Total Environment, 2015, 538: 959-965

        [19] Lee S, Jeong W, Kannan K, et al. Occurrence and exposure assessment of organophosphate flame retardants (OPFRs) through the consumption of drinking water in Korea [J]. Water Research, 2016, 103: 182-188

        [20] Li J, Yu N Y, Zhang B B, et al. Occurrence of organophosphate flame retardants in drinking water from China [J]. Water Research, 2014, 54: 53-61

        [21] Zhang X L, Zou W, Mu L, et al. Rice ingestion is a major pathway for human exposure to organophosphate flame retardants (OPFRs) in China [J]. Journal of Hazardous Materials, 2016, 318: 686-693

        [22] Cao S X, Zeng X Y, Song H, et al. Levels and distributions of organophosphate flame retardants and plasticizers in sediment from Taihu Lake, China [J]. Environmental Toxicology and Chemistry, 2012, 31(7): 1478-1484

        [23] Wang R M, Tang J H, Xie Z Y, et al. Occurrence and spatial distribution of organophosphate ester flame retardants and plasticizers in 40 rivers draining into the Bohai Sea, North China [J]. Environmental Pollution, 2015, 198: 172-178

        [24] Lai S C, Xie Z Y, Song T L, et al. Occurrence and dry deposition of organophosphate esters in atmospheric particles over the northern South China Sea [J]. Chemosphere, 2015, 127: 195-200

        [25] Wan W N, Zhang S Z, Huang H L, et al. Occurrence and distribution of organophosphorus esters in soils and wheat plants in a plastic waste treatment area in China [J]. Environmental Pollution, 2016, 214: 349-353

        [26] Ren G F, Chen Z, Feng J L, et al. Organophosphate esters in total suspended particulates of an urban city in East China [J]. Chemosphere, 2016, 164: 75-83

        [27] Ding J J, Xu Z M, Huang W, et al. Organophosphate ester flame retardants and plasticizers in human placenta in Eastern China [J]. Science of the Total Environment, 2016, 554: 211-217

        [28] Ma Y L, Jin J, Li P, et al. Organophosphate ester flame retardant concentrations and distributions in serum from inhabitants of Shandong, China, and changes between 2011 and 2015 [J]. Environmental Toxicology and Chemistry, 2017, 36(2): 414-421

        [29] Hoffman K, Daniels J L, Stapleton H M. Urinary metabolites of organophosphate flame retardants and their variability in pregnant women [J]. Environment International, 2014, 63: 169-172

        [30] Butt C M, Congleton J, Hoffman K, et al. Metabolites of organophosphate flame retardants and 2-ethylhexyl tetrabromobenzoate in urine from paired mothers and toddlers [J]. Environmental Science and Technology, 2014, 48(17): 10432-10438

        [31] Ali N, Van den Eede N, Dirtu A C, et al. Assessment of human exposure to indoor organic contaminants via dust ingestion in Pakistan [J]. Indoor Air, 2012, 22(3): 200-211

        [32] Abdallah M A, Pawar G, Harrad S. Human dermal absorption of chlorinated organophosphate flame retardants: Implications for human exposure [J]. Toxicology and Applied Pharmacology, 2016, 291: 28-37

        [33] Carignan C C, McClean M D, Cooper E M, et al. Predictors of tris(1,3-dichloro-2-propyl) phosphate metabolite in the urine of office workers [J]. Environment International, 2013, 55: 56-61

        [34] Fromme H, Lahrz T, Kraft M, et al. Organophosphate flame retardants and plasticizers in the air and dust in German daycare centers and human biomonitoring in visiting children (LUPE 3) [J]. Environment International, 2014, 71: 158-163

        [35] Gomes G, Ward P, Lorenzo A, et al. Characterizing flame retardant applications and potential human exposure in backpacking tents [J]. Environmental Science and Technology, 2016, 50(10): 5338-5345

        [36] Greaves A K, Letcher R J. Comparative body compartment composition and in ovo transfer of organophosphate flame retardants in North American Great Lake sherring gulls [J]. Environmental Science and Technology, 2014, 48(14): 7942-7950

        [37] Liu X, Ji K, Choi K. Endocrine disruption potentials of organophosphate flame retardants and related mechanisms in H295R and MVLN cell lines and in zebrafish [J]. Aquatic Toxicology, 2012, 114: 173-181

        [38] Liu X S, Jung D, Jo A, et al. Long-term exposure to triphenylphosphate alters hormone balance and HPG, HPI, and HPT gene expression in zebrafish (Daniorerio) [J]. Environmental Toxicology and Chemistry, 2016, 35(9): 2288-2296

        [39] Du Z K, Zhang Y, Wang G W, et al. TPhP exposure disturbs carbohydrate metabolism, lipid metabolism, and the DNA damage repair system in zebrafish liver [J]. Scientific Reports, 2016, 6: 21827

        [40] Dishaw L V, Hunter D L, Padnos B, et al. Developmental exposure to organophosphate flame retardants elicits overt toxicity and alters behavior in early life stage zebrafish (Daniorerio) [J]. Toxicological Sciences, 2014, 142(2): 445-454

        [41] Ma Z Y, Tang S, Su G Y, et al. Effects of tris (2-butoxyethyl) phosphate (TBOEP) on endocrine axes during development of early life stages of zebrafish (Daniorerio) [J]. Chemosphere, 2016, 144: 1920-1927

        [42] Ma Z Y, Yu Y J, Tang S, et al. Differential modulation of expression of nuclear receptor mediated genes by tris(2-butoxyethyl) phosphate (TBOEP) on early life stages of zebrafish (Daniorerio) [J]. Aquatic Toxicology, 2015, 169: 196-203

        [43] Behl M, Hsieh J H, Shafer T J, et al. Use of alternative assays to identify and prioritize organophosphorus flame retardants for potential developmental and neurotoxicity [J]. Neurotoxicology and Teratology, 2015, 52: 181-193

        [44] Du Z K, Wang G W, Gao S X, et al. Aryl organophosphate flame retardants induced cardiotoxicity during zebrafish embryogenesis: By disturbing expression of the transcriptional regulators [J]. Aquatic Toxicology, 2015, 161: 25-32

        [45] Kim S, Jung J, Lee I, et al. Thyroid disruption by triphenyl phosphate, an organophosphate flame retardant, in zebrafish (Daniorerio) embryos/larvae, and in GH3 and FRTL-5 cell lines [J]. Aquatic Toxicology, 2015, 160: 188-196

        [46] Fu J, Han J, Zhou B S, et al. Toxicogenomic responses of zebrafish embryos/larvae to tris(1,3-dichloro-2-propyl) phosphate (TDCPP) reveal possible molecular mechanisms of developmental toxicity [J]. Environmental Science and Technology, 2013, 47(18): 10574-10582

        [47] Noyes P D, Haggard D E, Gonnerman G D, et al. Advanced morphological - behavioral test platform reveals neurodevelopmental defects in embryonic zebrafish exposed to comprehensive suite of halogenated and organophosphate flame retardants [J]. Toxicological Sciences, 2015, 145(1): 177-195

        [48] Isales G M, Hipszer R A, Raftery T D, et al. Triphenyl phosphate-induced developmental toxicity in zebrafish: Potential role of the retinoic acid receptor [J]. Aquatic Toxicology, 2015, 161: 221-230

        [49] Wang Q W, Lam J C W, Man Y C, et al. Bioconcentration, metabolism and neurotoxicity of the organophorous flame retardant 1,3-dichloro 2-propyl phosphate (TDCPP) to zebrafish [J]. Aquatic Toxicology, 2015, 158: 108-115

        [50] Yuan L L, Li J S, Zha J M, et al. Targeting neurotrophic factors and their receptors, but not cholinesterase or neurotransmitter, in the neurotoxicity of TDCPP in Chinese rare minnow adults (Gobiocyprisrarus) [J]. Environmental Pollution, 2016, 208: 670-677

        [51] Arukwe A, Carteny C C, Eggen T. Lipid peroxidation and oxidative stress responses in juvenile salmon exposed to waterborne levels of the organophosphate compounds tris(2-butoxyethyl)- and tris(2-chloroethyl) phosphates [J]. Journal of Toxicology and Environmental Health-Part A-Current Issues, 2016, 79(13-15): 515-525

        [52] Arukwe A, Carteny C C, Moder M, et al. Differential modulation of neuro- and interrenal steroidogenesis of juvenile salmon by the organophosphates - tris(2-butoxyethyl)- and tris(2-cloroethyl) phosphate [J]. Environmental Research, 2016, 148: 63-71

        [53] Farhat A, Crump D, Chiu S, et al. In ovo effects of two organophosphate flame retardants-TCPP and TDCPP-on pipping success, development, mRNA expression, and thyroid hormone levels in chicken embryos [J]. Toxicological Sciences, 2013, 134(1): 92-102

        [54] Farhat A, Buick J K, Williams A, et al. Tris(1,3-dichloro-2-propyl) phosphate perturbs the expression of genes involved in immune response and lipid and steroid metabolism in chicken embryos [J]. Toxicology and Applied Pharmacology, 2014, 275(2): 104-112

        [55] Farhat A, Crump D, Porter E, et al. Time-dependent effects of the flame retardant tris(1,3-dichloro-2-propyl) phosphate (TDCPP) on mRNA expression,invitroandinovo, reveal optimal sampling times for rapidly metabolized compounds [J]. Environmental Toxicology and Chemistry, 2014, 33(12): 2842-2849

        [56] Crump D, Porter E, Egloff C, et al. 1,2-Dibromo-4-(1,2-dibromoethyl)-cyclohexane and tris(methylphenyl) phosphate cause significant effects on development, mRNA expression, and circulating bile acid concentrations in chicken embryos [J]. Toxicology and Applied Pharmacology, 2014, 277(3): 279-287

        [57] Egloff C, Crump D, Porter E, et al. Tris(2-butoxyethyl)phosphate and triethyl phosphate alter embryonic development, hepatic mRNA expression, thyroid hormone levels, and circulating bile acid concentrations in chicken embryos [J]. Toxicology and Applied Pharmacology, 2014, 279(3): 303-310

        [58] Zhao F, Wang J, Fang Y J, et al. Effects of tris(1,3-dichloro-2-propyl) phosphate on pathomorphology and gene/protein expression related to thyroid disruption in rats [J]. Toxicology Research, 2016, 5(3): 921-930

        [59] Moser V C, Phillips P M, Hedge J M, et al. Neurotoxicological and thyroid evaluations of rats developmentally exposed to tris(1,3-dichloro-2-propyl)phosphate (TDCIPP) and tris(2-chloro-2-ethyl)phosphate (TCEP) [J]. Neurotoxicology and Teratology, 2015, 52: 236-247

        [60] Li J H, Su G Y, Zou M, et al. Effects of tris(1,3-dichloro-2-propyl) phosphate on growth, reproduction, and gene transcription ofDaphniamagnaat environmentally relevant concentrations [J]. Environmental Science and Technology, 2015, 49(21): 12975-12983

        [61] Pang L, Liu J F, Yin Y G, et al. Evaluating the sorption of organophosphate esters to different sourced humic acids and its effects on the toxicity toDaphniamagna[J]. Environmental Toxicology and Chemistry, 2013, 32(12): 2755-2761

        [62] Cristale J, Vazquez A G, Barata C, et al. Priority and emerging flame retardants in rivers: Occurrence in water and sediment,Daphniamagnatoxicity and risk assessment [J]. Environment International, 2013, 59: 232-243

        [63] Li J, Giesy J P, Yu L Q, et al. Effects of tris(1,3-dichloro-2-propyl) phosphate (TDCPP) inTetrahymenathermophila: Targeting the ribosome [J]. Scientific Reports, 2015, 5: 10562

        [64] Li J, Ma X F, Su G Y, et al. Multigenerational effects of tris(1,3-dichloro-2-propyl) phosphate on the free-living ciliate protozoaTetrahymenathermophilaexposed to environmentally relevant concentrations and after subsequent recovery [J]. Environmental Pollution, 2016, 218: 50-58

        [65] Zhang J K, Williams T D, Chipman J K, et al. Defensive and adverse energy-related molecular responses precede tris (1,3-dichloro-2-propyl) phosphate cytotoxicity [J]. Journal of Applied Toxicology, 2016, 36(5): 649-658

        [66] An J, Hu J W, Shang Y, et al. The cytotoxicity of organophosphate flame retardants on HepG2, A549 and Caco-2 cells [J]. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances and Environmental Engineering, 2016, 51(11): 980-988

        [67] Jin Y X, Chen G L, Fu Z W. Effects of TBEP on the induction of oxidative stress and endocrine disruption in Tm3 Leydig cells [J]. Environmental Toxicology, 2016, 31(10): 1276-1286

        [68] Ren X M, Cao L Y, Yang Y, et al.Invitroassessment of thyroid hormone receptor activity of four organophosphate esters [J]. Journal of Environmental Sciences, 2016, 45: 185-190

        [69] Schang G, Robaire B, Hales B F. Organophosphate flame retardants act as endocrine-disrupting chemicals in MA-10 mouse tumor Leydig cells [J]. Toxicological Sciences, 2016, 150(2): 499-509

        [70] Crump D, Chiu S, Kennedy S W. Effects of tris(1,3-dichloro-2-propyl) phosphate and tris(1-chloropropyl) phosphate on cytotoxicity and mRNA expression in primary cultures of avian hepatocytes and neuronal cells [J]. Toxicological Sciences, 2012, 126(1): 140-148

        [71] Ta N, Li C N, Fang Y J, et al. Toxicity of TDCPP and TCEP on PC12 cell: Changes in CAMKII, GAP43, tubulin and NF-H gene and protein levels [J]. Toxicology Letters, 2014, 227(3): 164-171

        [72] Wang S F, Wan B, Zhang L Y, et al.Invitroinhibition of lysine decarboxylase activity by organophosphate esters [J]. Biochemical Pharmacology, 2014, 92(3): 506-516

        [73] Dishaw L V, Powers C M, Ryde I T, et al. Is the Penta BDE replacement, tris (1,3-dichloropropyl) phosphate (TDCPP), a developmental neurotoxicant? Studies in PC12 cells [J]. Toxicology and Applied Pharmacology, 2011, 256(3): 281-289

        [74] Li R, Zhou P, Guo Y, et al. Tris (1,3-dichloro-2-propyl) phosphate -induced apoptotic signaling pathways in SH-SY5Y neuroblastoma cells [J]. Neurotoxicology, 2017, 58: 1-10

        [75] Li R, Zhou P, Guo Y, et al. Tris (1, 3-dichloro-2-propyl) phosphate induces apoptosis and autophagy in SH-SY5Y cells: Involvement of ROS-mediated AMPK/mTOR/ULK1 pathways [J]. Food and Chemical Toxicology, 2017, 100: 183-196

        [76] Zhang Q, Lu M Y, Dong X W, et al. Potential estrogenic effects of phosphorus-containing flame retardants [J]. Environmental Science and Technology, 2014, 48(12): 6995-7001

        猜你喜歡
        斑馬魚(yú)阻燃劑有機(jī)磷
        斑馬魚(yú)天生就能辨別數(shù)量
        小斑馬魚(yú)歷險(xiǎn)記
        有機(jī)磷化工廢水治理方法探討
        瓜蔞不同部位對(duì)斑馬魚(yú)促血管生成及心臟保護(hù)作用
        中成藥(2017年6期)2017-06-13 07:30:35
        有機(jī)磷改性納米SiO2及其在PP中的應(yīng)用
        氮-磷-硫膨脹型阻燃劑在聚碳酸酯中的應(yīng)用研究
        有機(jī)磷中毒致周?chē)窠?jīng)損害的電生理研究
        氫氧化鎂阻燃劑的制備及其應(yīng)用
        膨脹型阻燃劑APP/MA/PEPB的制備及其在ABS中的應(yīng)用
        三聚氰胺基阻燃劑的研究進(jìn)展
        国产乱老熟视频乱老熟女1| 激情综合丁香五月| 国产精品爽黄69天堂a | 久久婷婷综合激情五月| 国产一区二区三区久久精品| 丁香六月久久婷婷开心| 国产精品视频一区二区三区四 | 国产精品欧美一区二区三区不卡| 丰满爆乳无码一区二区三区| 亚洲日本无码一区二区在线观看| 亚洲av日韩av天堂久久不卡| 永久免费视频网站在线| 久久久久无码国产精品一区| 亚洲av无码日韩精品影片| 亚洲熟女av超清一区二区三区| 在线视频亚洲一区二区三区| 极品一区二区在线视频| 久久久亚洲成年中文字幕| 国产亚洲精品97在线视频一| 国产白嫩护士被弄高潮| 法国啄木乌av片在线播放| 人妻中文字幕av有码在线| 国产成人精品久久二区二区91 | 亚洲一区精品在线中文字幕| 337p日本欧洲亚洲大胆| 久久午夜伦鲁片免费无码| 亚洲色www无码| 少妇被躁到高潮和人狍大战| av网站免费线看精品| 少妇久久久久久被弄到高潮| 精品亚洲欧美高清不卡高清| 激情在线视频一区二区三区| 国产一级二级三级在线观看视频| 国产精品成人aaaaa网站| 久久亚洲国产中v天仙www| 亚洲人成精品久久久久| 91久久精品一区二区喷水喷白浆 | 国产黄污网站在线观看| 一区二区三区国产| 加勒比无码专区中文字幕| 精品蜜桃在线观看一区二区三区|