亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        綿羊季節(jié)性繁殖的神經(jīng)內(nèi)分泌研究進(jìn)展

        2018-01-26 02:19:25賀小云胡文萍王翔宇劉秋月儲(chǔ)明星
        畜牧獸醫(yī)學(xué)報(bào) 2018年1期

        賀小云,狄 冉,胡文萍,王翔宇,劉秋月,儲(chǔ)明星

        (中國(guó)農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,農(nóng)業(yè)部動(dòng)物遺傳育種與繁殖重點(diǎn)實(shí)驗(yàn)室,北京 100193)

        季節(jié)性繁殖是指成年哺乳動(dòng)物隨著季節(jié)的變化而呈現(xiàn)可逆的繁殖和不繁殖的現(xiàn)象,被認(rèn)為是動(dòng)物適應(yīng)環(huán)境變化而形成的“自然避孕”措施[1]。當(dāng)環(huán)境條件有利于其泌乳和后代生存時(shí),它們就會(huì)打開(kāi)生殖開(kāi)關(guān)進(jìn)行繁殖。雖然同一區(qū)域內(nèi)的大多數(shù)哺乳動(dòng)物在一年中的繁殖運(yùn)轉(zhuǎn)基本一致,但對(duì)其神經(jīng)內(nèi)分泌規(guī)律的研究主要集中在綿羊、敘利亞倉(cāng)鼠和西伯利亞倉(cāng)鼠3個(gè)物種中[2-5]。綿羊由于具有個(gè)體大、靜脈血液易采集、腦部等器官組織易辨認(rèn)的特點(diǎn),是研究生殖激素的實(shí)時(shí)變化和下丘腦神經(jīng)元回路潛在變化的理想動(dòng)物。

        綿羊在一年中表現(xiàn)出不同的繁殖模式:對(duì)于母羊,有卵巢活動(dòng)和排卵的時(shí)期稱為繁殖季節(jié),卵巢靜止和無(wú)排卵交替則稱乏情,卵巢生殖活動(dòng)的季節(jié)性變化主要來(lái)源于腦部下丘腦功能的控制,尤其是對(duì)GnRH釋放的調(diào)控[6]。一方面,乏情期下丘腦GnRH對(duì)雌激素的負(fù)反饋?lái)憫?yīng)迅速增加,隨著繁殖季節(jié)的到來(lái)而逐漸降低;另一方面,科學(xué)家利用雙側(cè)卵巢摘除模型發(fā)現(xiàn)了類(lèi)固醇激素對(duì)GnRH的釋放具有非依賴性抑制作用[3,7-8]。目前,由于雌激素的負(fù)反饋引起動(dòng)物季節(jié)性繁殖的說(shuō)法被廣泛接受。本文通過(guò)總結(jié)外界環(huán)境改變導(dǎo)致綿羊季節(jié)性繁殖的傳入系統(tǒng)、GnRH分泌對(duì)雌激素負(fù)反饋的敏感度變化的神經(jīng)回路、綿羊與倉(cāng)鼠神經(jīng)內(nèi)分泌控制季節(jié)性繁殖的差異和相似點(diǎn),以揭示綿羊季節(jié)性繁殖的功能系統(tǒng)和該系統(tǒng)中特異的神經(jīng)遞質(zhì)和神經(jīng)肽。

        1 光照周期與綿羊季節(jié)性繁殖

        在哺乳動(dòng)物中,光周期或者日照長(zhǎng)短是影響動(dòng)物繁殖季節(jié)性轉(zhuǎn)變的關(guān)鍵因素。在秋季和冬季,母羊的生殖內(nèi)分泌軸受短日照的刺激,從而進(jìn)入排卵周期和繁殖狀態(tài);相反,在春季和夏季,長(zhǎng)日照阻斷了生殖內(nèi)分泌軸的活動(dòng),從而進(jìn)入休情狀態(tài)[9-10]。光周期信息通過(guò)這樣一個(gè)神經(jīng)-激素通路將信息傳遞給生殖內(nèi)分泌系統(tǒng):光經(jīng)視網(wǎng)膜投射到視交叉上核,然后通過(guò)一個(gè)多功能突觸回路,最終將信號(hào)傳遞到松果體,松果體分泌的褪黑激素作為一個(gè)重要媒介將光周期信號(hào)傳遞到下丘腦及其它腦室,褪黑激素通常在晚上由松果體合成和分泌,而在白天褪黑激素的含量幾乎降為零[3,11-12]。因此,褪黑激素成為研究動(dòng)物季節(jié)性發(fā)情的主要切入點(diǎn)。在綿羊中,外界日照時(shí)間縮短,褪黑激素升高持續(xù)時(shí)間延長(zhǎng),綿羊進(jìn)入發(fā)情周期;外界日照時(shí)間延長(zhǎng),褪黑激素升高持續(xù)時(shí)間縮短,綿羊不發(fā)情[13](圖1)。

        圖1 綿羊繁殖狀態(tài)在一年中隨日照長(zhǎng)短變化Fig.1 Changes in fertility with the variations of daylight throughout the year

        科學(xué)家利用摘除松果體的綿羊研究發(fā)現(xiàn),褪黑激素和內(nèi)源的周期節(jié)律同步作用引起動(dòng)物季節(jié)性繁殖[14-16]。目前,褪黑激素的生理作用已廣為人知,但其具體作用靶點(diǎn)還存在爭(zhēng)議。早期科學(xué)家通過(guò)體外植入褪黑激素的方法,發(fā)現(xiàn)褪黑激素的特異性靶點(diǎn)在下丘腦的乳頭體前部(Premammillary region, PMR)[10,15];而近期的研究發(fā)現(xiàn),綿羊褪黑激素受體在垂體結(jié)節(jié)部(Pars tuberalis, PT)濃度最高[9],暗示垂體結(jié)節(jié)部可能是褪黑激素作用的一個(gè)重要靶點(diǎn),至少對(duì)綿羊由發(fā)情周期轉(zhuǎn)向乏情十分關(guān)鍵。

        綿羊由發(fā)情周期轉(zhuǎn)變?yōu)榉η樽钤绲难芯恐饕性诩谞钕偌に?T3和T4),二者是綿羊從發(fā)情周期進(jìn)入乏情期必不可少的一部分,摘除甲狀腺的綿羊可以一直處于發(fā)情周期[16]。長(zhǎng)日照對(duì)腦部T4轉(zhuǎn)變成T3十分重要,且這種轉(zhuǎn)變主要是PT的褪黑激素活動(dòng)引起的[17-18]。針對(duì)這一發(fā)現(xiàn)科學(xué)家進(jìn)行了詳細(xì)描述:長(zhǎng)日照條件下,褪黑激素導(dǎo)致PT的視力缺失轉(zhuǎn)錄因子(Eyes absent 3, Eya3)表達(dá),Eya3是一個(gè)生物鐘基因,其表達(dá)在褪黑激素釋放12 h后達(dá)到峰值;如果褪黑激素的濃度降低,則Eya3表達(dá)下降,刺激促甲狀腺激素(Thyroid stimulating hormone, TSH)的合成,接著TSH分泌到存在其受體的臨近神經(jīng)組織,刺激二型脫碘酶(Type 2 deiodinase, DIO2)分泌,促使T4轉(zhuǎn)變成T3,T3可以誘導(dǎo)神經(jīng)系統(tǒng)改變,GnRH脈沖式分泌關(guān)閉[17,19-20];長(zhǎng)日照對(duì)三型脫碘酶(Type 3 deiodinase, DIO3)的分泌有著相反的作用,可使其濃度降低,但其降低的原因并不是由TSH分泌變化造成的[18]。綜上表明,T3在其中發(fā)揮著重要作用,但其具體作用位置和作用方式仍然有待于進(jìn)一步研究。由于T3在神經(jīng)元可塑性和神經(jīng)發(fā)育中扮演一個(gè)重要角色,科學(xué)家推斷,它可能改變了神經(jīng)回路中神經(jīng)元的形態(tài)特征,增加了綿羊在乏情期對(duì)雌激素負(fù)反饋的靈敏度,然后才將信號(hào)傳輸給GnRH神經(jīng)元[21]。

        2 綿羊季節(jié)性繁殖的神經(jīng)內(nèi)分泌研究

        大量的研究集中在雌二醇(E2)對(duì)乏情期綿羊下丘腦回路的負(fù)反饋?zhàn)饔?。乏情期下丘腦對(duì)E2的敏感性增加,即使低濃度的E2也能強(qiáng)烈抑制GnRH活動(dòng),防止LH濃度升高[22-23]。雖然乏情期由于E2的負(fù)反饋?zhàn)饔脤?dǎo)致排卵停止,但脈沖機(jī)制依然存在,科學(xué)家通過(guò)研究發(fā)現(xiàn)外源E2發(fā)揮正反饋?zhàn)饔?,誘導(dǎo)GnRH/LH峰[24]。因此,E2負(fù)反饋調(diào)節(jié)對(duì)下丘腦GnRH神經(jīng)元的影響是研究綿羊季節(jié)性繁殖神經(jīng)內(nèi)分泌調(diào)控機(jī)制的主要方向。

        雌激素α受體(Estrogen receptor alpha, ERα)是研究E2對(duì)GnRH負(fù)反饋調(diào)節(jié)的關(guān)鍵受體,但由于GnRH神經(jīng)元表面缺乏該受體,所以對(duì)E2發(fā)揮負(fù)反饋調(diào)節(jié)的傳入通路進(jìn)行鑒定至關(guān)重要。早期研究發(fā)現(xiàn),在乏情期綿羊中多巴胺(Dopamine, DA)D2受體拮抗劑受體,但由于GnRH神經(jīng)元表面缺乏該受體,所以對(duì)E2發(fā)揮負(fù)反饋調(diào)節(jié)的傳入通路進(jìn)行研究以阻止E2發(fā)揮抑制作用,并且在視交叉后區(qū)(Retrochiasmatic area, RCh)發(fā)現(xiàn)了許多關(guān)鍵性的多巴胺能神經(jīng)元,被稱為A15群,這些多巴胺能神經(jīng)元目前已被公認(rèn)在季節(jié)性繁殖調(diào)控中扮演著關(guān)鍵角色[25-27]。首先,在乏情期,研究者發(fā)現(xiàn)母羊A15神經(jīng)元受損阻止了E2負(fù)反饋,而無(wú)論在什么季節(jié),直接刺激A15神經(jīng)元都能阻止GnRH/LH脈沖;其次,在GnRH/LH脈沖釋放之前,A15群的多神經(jīng)元活動(dòng)降低,反之,當(dāng)E2負(fù)反饋?zhàn)饔么嬖跁r(shí),A15群的多神經(jīng)元活動(dòng)升高[28-29]。但和GnRH神經(jīng)元一樣,A15多巴胺神經(jīng)元也不表達(dá)ERα,E2通過(guò)間接作用調(diào)節(jié)A15多巴胺細(xì)胞,意味著雌激素應(yīng)答細(xì)胞是E2負(fù)反饋傳入回路中的關(guān)鍵一步??茖W(xué)家通過(guò)局部給藥試驗(yàn)鑒定了兩個(gè)主要的E2應(yīng)答細(xì)胞區(qū)域在E2負(fù)反饋過(guò)程中被激活,這兩個(gè)區(qū)域是腹內(nèi)側(cè)核視前區(qū)(Ventromedial preoptic area, vmPOA)和RCh,ERα陽(yáng)性神經(jīng)元在這兩個(gè)區(qū)域?qū)⑤斎胄盘?hào)傳遞給A15神經(jīng)元[21]。

        那么,A15神經(jīng)元是如何調(diào)控GnRH釋放的呢?在綿羊下丘腦視前區(qū)(Preoptic area, POA)有大量GnRH神經(jīng)元,少量位于下丘腦前部(Anterior hypothalamic area, AHA)及下丘腦內(nèi)側(cè)基底部(Mediobasal hypothalamus, MBH)??茖W(xué)家通過(guò)神經(jīng)通路研究發(fā)現(xiàn),A15神經(jīng)元的主要投射區(qū)在MBH[22]。在繁殖季節(jié),綿羊正中隆起(Median eminence, ME)的多巴胺能神經(jīng)元末梢通過(guò)軸-樹(shù)突觸與GnRH末端連接,A15神經(jīng)元釋放多巴胺可能作用于ME的GnRH神經(jīng)元軸突直接抑制其脈沖釋放,但它們?cè)贕nRH軸突和末端的傳遞和具體作用方式還不清楚[30-31]。最近研究發(fā)現(xiàn),A15可能通過(guò)另一個(gè)可選的多突觸通路在弓狀核(Arcuate nucleus, ARC)介導(dǎo)GnRH分泌調(diào)控,ARC上的神經(jīng)亞群kiss神經(jīng)元可以表達(dá)kisspeptin,與A15細(xì)胞分泌的多巴胺作用相反,kisspeptin也可以刺激GnRH分泌,相關(guān)研究已經(jīng)證明在綿羊及其它物種季節(jié)性發(fā)情中發(fā)揮重要作用[32-34]。ARC中kisspeptin細(xì)胞還表達(dá)神經(jīng)激肽B(Neurokinin B)和強(qiáng)啡肽(Dynorphin)兩種作用肽。因此,科學(xué)家將分泌這3種物質(zhì)(Kisspeptin、Neurokinin B和Dynorphin)的細(xì)胞群命名為KNDy細(xì)胞群,目前該細(xì)胞群是研究動(dòng)物繁殖神經(jīng)內(nèi)分泌調(diào)控的重點(diǎn)[35-37]。

        隨著研究的深入,大量研究表明,ARC中KNDy細(xì)胞在綿羊季節(jié)性繁殖調(diào)控中發(fā)揮重要作用。J.T.Smith等[27]發(fā)現(xiàn),由于E2的負(fù)反饋抑制,乏情期綿羊下丘腦ARC細(xì)胞中Kiss1 mRNA含量及kisspeptin神經(jīng)肽較低;同時(shí),由下丘腦MBH細(xì)胞分泌作用于GnRH神經(jīng)元的kisspeptin含量也明顯較低。研究者還發(fā)現(xiàn):KNDy細(xì)胞分泌的強(qiáng)啡肽和D2受體共表達(dá)時(shí),對(duì)GnRH的脈沖釋放有季節(jié)性抑制作用,共表達(dá)機(jī)制隨季節(jié)改變而發(fā)生變化,通過(guò)腦部注射kisspeptin拮抗劑可以完全阻斷D2受體拮抗劑的作用,使綿羊在非繁殖季節(jié)出現(xiàn)GnRH脈沖頻率[26]。由此推斷,A15多巴胺神經(jīng)元主要通過(guò)ARC影響乏情期的綿羊GnRH釋放。因此,E2負(fù)反饋影響乏情期母羊的神經(jīng)內(nèi)分泌回路,如圖2所示:在乏情期,E2作用于POA和RCh表達(dá)的ERα,進(jìn)而刺激A15,被激活的A15神經(jīng)細(xì)胞末梢投射到下丘腦MBH,然后釋放DA,DA通過(guò)兩種方式作用于GnRH神經(jīng)元。1)直接作用:在正中隆起通過(guò)軸-樹(shù)突觸連接作用于GnRH神經(jīng)元;2)間接作用:在下丘腦ARC通過(guò)下調(diào)kisspeptin的表達(dá)抑制GnRH的脈沖釋放。

        雖然大量研究表明,ARC中KNDy細(xì)胞在雌性綿羊季節(jié)性繁殖調(diào)控中發(fā)揮重要作用,但是仍有部分問(wèn)題尚待解決。綿羊乏情期下丘腦ARC中KNDy細(xì)胞群kisspeptin含量降低可能由于A15末端多巴胺釋放增加,也有可能是由于多巴胺受體增加,或者其它輸入信號(hào)的改變,目前還不清楚。雖然圖2展示了E2在乏情期發(fā)揮負(fù)反饋調(diào)節(jié)的神經(jīng)內(nèi)分泌回路,但仍然不能解釋乏情期下丘腦對(duì)E2的敏感性增加的原因,科學(xué)家推斷其可能與下丘腦神經(jīng)元的季節(jié)性重塑有關(guān)[25,38-39]。

        圖2 雌二醇負(fù)反饋對(duì)下丘腦中神經(jīng)回路的季節(jié)性調(diào)控Fig.2 Seasonal regulation of hypothalamus Neural circuitry by E2 negative feedback

        3 綿羊與倉(cāng)鼠季節(jié)性繁殖機(jī)制比較

        除了綿羊,科學(xué)家對(duì)倉(cāng)鼠季節(jié)性繁殖的神經(jīng)內(nèi)分泌機(jī)制也進(jìn)行了大量的研究[3, 40-43],二者在多個(gè)方面作用機(jī)制相似:1)光周期都是它們季節(jié)性繁殖的環(huán)境信號(hào);2)松果體分泌的褪黑激素對(duì)于連接外部光周期變化和性腺軸活動(dòng)至關(guān)重要,且光周期調(diào)控松果體褪黑激素釋放的神經(jīng)通路基本一致;3)類(lèi)固醇激素對(duì)促性腺激素釋放存在正負(fù)兩種反饋?zhàn)饔?。雖然它們之間存在諸多相似之處,但隨著研究的深入,一些細(xì)微的差異逐漸被發(fā)現(xiàn):如褪黑激素在下丘腦的作用位點(diǎn)不同,綿羊是乳頭體前區(qū)(Premammillary region, PMR)[10],敘利亞倉(cāng)鼠和西伯利亞倉(cāng)鼠分別在下視丘背內(nèi)側(cè)核(Dorsomedial hypothalamus, DMH)[44]和視交叉上核(Suprachiasmatic nucleus, SCN)[45];綿羊DIO2和DIO3含量都受日照長(zhǎng)短的影響[46],對(duì)于敘利亞倉(cāng)鼠,長(zhǎng)日照可以使其DIO2含量增加,而DIO3的表達(dá)無(wú)論是在什么日照條件下幾乎都是不可見(jiàn)的[41, 47],但DIO3的表達(dá)變化與西伯利亞倉(cāng)鼠的季節(jié)性繁殖密切相關(guān)[48]。此外,倉(cāng)鼠和綿羊在季節(jié)性繁殖活動(dòng)中存在許多差異,如倉(cāng)鼠是長(zhǎng)日照發(fā)情動(dòng)物,而綿羊是短日照發(fā)情動(dòng)物;倉(cāng)鼠的妊娠期僅有幾周,而綿羊卻長(zhǎng)達(dá)5個(gè)月。研究者認(rèn)為,充分了解綿羊與倉(cāng)鼠之間季節(jié)性繁殖的差異對(duì)于促進(jìn)綿羊繁殖性狀研究意義重大。

        通過(guò)綿羊和倉(cāng)鼠的比較,季節(jié)性繁殖神經(jīng)機(jī)制差異可能主要來(lái)源于A15多巴胺神經(jīng)元的作用。如前文所述,A15多巴胺神經(jīng)元在綿羊的季節(jié)性發(fā)情中發(fā)揮重要作用,而在倉(cāng)鼠季節(jié)性繁殖中的作用目前還未見(jiàn)報(bào)道,但Kiss1神經(jīng)元作為重要的中間環(huán)節(jié)被廣泛關(guān)注。然而,當(dāng)檢測(cè)kisspeptin的含量時(shí),西伯利亞倉(cāng)鼠和敘利亞倉(cāng)鼠之間也有明顯的差別,后者的作用機(jī)制更像綿羊[49]。kisspeptin在下丘腦ARC和POA都有表達(dá),但與綿羊不同的是,倉(cāng)鼠下丘腦前腹部室旁核(Anteroventral periventricular nucleus, AVPV)同樣也表達(dá)kisspeptin[34]。在敘利亞倉(cāng)鼠中,發(fā)情期ARC和AVPV的kisspeptin表達(dá)都會(huì)上升,但由于ARC中kisspeptin的表達(dá)受褪黑激素控制,其更可能是季節(jié)性繁殖調(diào)控的主要區(qū)域;相反,體外對(duì)雄鼠進(jìn)行睪酮處理發(fā)現(xiàn),下丘腦AVPV區(qū)域kisspeptin的表達(dá)受外源睪酮的影響發(fā)生顯著變化[50],表明其繁殖季節(jié)下丘腦AVPV中kisspeptin表達(dá)上升可能是下丘腦-垂體-性腺軸被激活的表現(xiàn)而不是誘因。在西比利亞倉(cāng)鼠中,kisspeptin的表達(dá)模式與敘利亞倉(cāng)鼠有所不同:長(zhǎng)日照條件下,ARC中kisspeptin表達(dá)降低,而AVPV中kisspeptin表達(dá)升高[51-52]。在短日照條件下,外源注射kisspeptin不能恢復(fù)西伯利亞倉(cāng)鼠的繁殖能力,這種現(xiàn)象可能反映出在西伯利亞倉(cāng)鼠中kisspeptin不是調(diào)節(jié)季節(jié)性變化的關(guān)鍵因子。

        最近研究發(fā)現(xiàn),長(zhǎng)日照條件下倉(cāng)鼠下丘腦DMH處RFRP-3的表達(dá)不管是mRNA水平還是蛋白水平都有顯著升高,這種變化可能是由褪黑激素引起的[49,53]。短日照條件下外源性RFRP-3在兩種倉(cāng)鼠中都能刺激LH釋放;而在長(zhǎng)日照條件下,外源性RFRP-3在敘利亞倉(cāng)鼠中對(duì)LH起抑制作用,在西伯利亞倉(cāng)鼠中起刺激作用[54]。由此可以推斷長(zhǎng)日照刺激了RFRP-3的釋放,從而影響了雄性倉(cāng)鼠下丘腦-垂體-性腺軸的活動(dòng)??茖W(xué)家還意外發(fā)現(xiàn),短日照刺激增加了西伯利亞倉(cāng)鼠ARC中kisspeptin陽(yáng)性神經(jīng)元的數(shù)量,暗示著RFRP-3可能通過(guò)kisspeptin神經(jīng)元發(fā)揮作用[55]。

        圖3 長(zhǎng)日照對(duì)綿羊、敘利亞倉(cāng)鼠、西伯利亞倉(cāng)鼠神經(jīng)調(diào)控GnRH釋放的影響Fig.3 The effects of long days on GnRH secretion in sheep, Syrian and Siberian hamsters

        綜上所述,不論是綿羊還是倉(cāng)鼠,其下丘腦ARC在光照調(diào)控GnRH分泌中都發(fā)揮著重要作用,并且長(zhǎng)光照在兩物種中具有相反的作用效果。如圖3所示:在母羊中,長(zhǎng)日照激活DA神經(jīng)元釋放DA,DA能夠降低ARC kisspeptin神經(jīng)元活性,從而抑制GnRH和LH釋放以及繁殖活動(dòng);在敘利亞倉(cāng)鼠中,長(zhǎng)日照刺激下丘腦DMH處神經(jīng)元釋放RFRP-3,RFRP-3通過(guò)某未知神經(jīng)元發(fā)揮抑制作用,間接促使下丘腦ARC kisspeptin神經(jīng)元的活性增強(qiáng),高表達(dá)的kisspeptin促使GnRH釋放,誘導(dǎo)性腺功能恢復(fù),從而引起下丘腦AVPV kisspeptin表達(dá)升高;在西伯利亞倉(cāng)鼠中,長(zhǎng)光照首先也是刺激下丘腦DMH處神經(jīng)元釋放RFRP-3,再通過(guò)某未知神經(jīng)元發(fā)揮抑制作用,不同的是,未知神經(jīng)元的作用先引起了GnRH的分泌發(fā)生變化,而不是kisspeptin神經(jīng)元的活動(dòng)。

        4 小 結(jié)

        雖然國(guó)內(nèi)外對(duì)綿羊季節(jié)性繁殖機(jī)制已進(jìn)行了多年探索,但由于對(duì)神經(jīng)回路中褪黑激素活動(dòng)如何介導(dǎo)E2的負(fù)反饋調(diào)節(jié)了解較少,致使光周期調(diào)節(jié)綿羊季節(jié)性發(fā)情神經(jīng)機(jī)制的研究還存在許多盲點(diǎn)??茖W(xué)家通過(guò)外源激素植入和人工控制光照等措施對(duì)季節(jié)性發(fā)情調(diào)控中的相關(guān)通路和基因變化進(jìn)行了大量研究[56],然而這些研究結(jié)果都沒(méi)有很好地把神經(jīng)調(diào)節(jié)與綿羊繁殖活動(dòng)進(jìn)行關(guān)聯(lián)。主要原因:1)綿羊的季節(jié)性繁殖是一個(gè)復(fù)雜的生殖生理過(guò)程,涉及環(huán)境、遺傳、內(nèi)分泌等多個(gè)方面,其機(jī)制很難在短期內(nèi)明晰;2)綿羊繁殖的季節(jié)性與光周期的變化關(guān)系巨大,并且還受氣候、海拔、營(yíng)養(yǎng)等因素的影響;3)綿羊季節(jié)性繁殖神經(jīng)通路中多種神經(jīng)元的功能還未完全闡述清楚,需要進(jìn)一步探究。雖然有許多問(wèn)題等待研究,但隨著分子遺傳學(xué)和表觀遺傳學(xué)的發(fā)展以及基因組學(xué)的興起,對(duì)綿羊季節(jié)性繁殖的分子機(jī)理以及內(nèi)分泌機(jī)制的研究會(huì)逐漸深入。目前,關(guān)于綿羊季節(jié)性繁殖的研究已經(jīng)有了成功的動(dòng)物模型,褪黑激素的功能和母羊季節(jié)性繁殖的大致神經(jīng)回路也已有了很多了解,這些技術(shù)和研究成果可以為進(jìn)一步闡明綿羊季節(jié)性繁殖的分子機(jī)制提供技術(shù)支持和理論基礎(chǔ)。

        [1] LINCOLN G A, SHORT R V. Seasonal breeding: nature’s contraceptive[J].RecentProgHormRes, 1980, 36: 1-52.

        [2] ALFONZO J. Estrogen receptors involved in the differential regulation of hypothalamic kisspeptin expression[D]. Corvallis: University of Oregon State, 2016.

        [3] KARSCH F J, BITTMAN E L, FOSTER D L, et al. Neuroendocrine basis of seasonal reproduction[J].RecentProgHormRes, 1984, 40: 185-232.

        [4] LYNCH E W J, COYLE C S, STEVENSON T J. Photoperiodic and ovarian steroid regulation of histone deacetylase 1, 2, and 3 in Siberian hamster (Phodopussungorus) reproductive tissues[J].GenCompEndocrinol, 2017, 246: 194-199.

        [5] HENNINGSEN J B, ANCEL C, MIKKELSEN J D, et al. Roles of RFRP-3 in the daily and seasonal regulation of reproductive activity in female Syrian hamsters[J].Endocrinology, 2017, 158(3): 652-663.

        [6] KARSCH F J, GOODMAN R L, LEGAN S J. Feedback basis of seasonal breeding: test of an hypothesis[J].JReprodFertil, 1980, 58(2): 521-535.

        [7] BITTMAN E L, KARSCH F J, HOPKINS J W. Role of the pineal gland in ovine photoperiodism: regulation of seasonal breeding and negative feedback effects of estradiol upon luteinizing hormone secretion[J].Endocrinology, 1983, 113(1): 329-336.

        [8] WOODFILL C J I, WAYNE N L, MOENTER S M, et al. Photoperiodic synchronization of a circannual reproductive rhythm in sheep: identification of season-specific time cues[J].BiolReprod, 1994, 50(4): 965-976.

        [9] THIERY J C, MALPAUX B. Seasonal regulation of reproductive activity in sheep: modulation of access of sex steroids to the brain[J].AnnNYAcadSci, 2003, 1007: 169-175.

        [10] WEAVER D R, RIVKEES S A, REPPERT S M. Localization and characterization of melatonin receptors in rodent brain byinvitroautoradiography[J].JNeurosci, 1989, 9(7): 2581-2590.

        [11] BITTMAN E L, DEMPSEY R J, KARSCH F J. Pineal melatonin secretion drives the reproductive response to daylength in the ewe[J].Endocrinology, 2013, 113(6): 2276-2283.

        [12] JOHNSTON J D, SKENE D J. 60 years of neuroendocrinology: regulation of mammalian neuroendocrine physiology and rhythms by melatonin[J].JEndocrinol, 2015, 226(2): T187-T198.

        [13] WEEMS P W, GOODMAN R L, LEHMAN M N. Neural mechanisms controlling seasonal reproduction: principles derived from the sheep model and its comparison with hamsters[J].FrontNeuroendocrinol, 2015, 37: 43-51.

        [14] MALPAUX B, MIGAUD M, TRICOIRE H, et al. Biology of mammalian photoperiodism and the critical role of the pineal gland and melatonin[J].JBiolRhythms, 2001, 16(4): 336-347.

        [15] MALPAUX B, DAVEAU A, MAURICE-MANDON F, et al. Evidence that melatonin acts in the premammillary hypothalamic area to control reproduction in the ewe: presence of binding sites and stimulation of luteinizing hormone secretion byinsitumicroimplant delivery[J].Endocrinology, 1998, 139(4): 1508-1516.

        [16] DAHL G E, EVANS N P, MOENTER S M, et al. The thyroid gland is required for reproductive neuroendocrine responses to photoperiod in the ewe[J].Endocrinology, 1994, 135(1): 10-15.

        [17] HANON E A, LINCOLN G A, FUSTIN J M, et al. Ancestral TSH mechanism signals summer in a photoperiodic mammal[J].CurrBiol, 2008, 18(15): 1147-1152.

        [18] EHRENKRANZ J, BACH P R, SNOW G L, et al. Circadian and circannual rhythms in thyroid hormones: determining the TSH and free T4 reference intervals based upon time of day, age, and sex[J].Thyroid, 2015, 25(8): 954-961.

        [19] DARDENTE H, WYSE C A, BIRNIE M J, et al. A molecular switch for photoperiod responsiveness in mammals[J].CurrBiol, 2010, 20(24): 2193-2198.

        [20] DUPRé S M, MIEDZINSKA K, DUVAL C V, et al. Identification ofEya3 andTAC1 as long-day signals in the sheep pituitary[J].CurrBiol, 2010, 20(9): 829-835.

        [21] LEHMAN M N, COOLEN L M, GOODMAN R L. Minireview: kisspeptin/neurokinin B/dynorphin (KNDy) cells of the arcuate nucleus: a central node in the control of gonadotropin-releasing hormone secretion[J].Endocrinology, 2010, 151(8): 3479-3489.

        [22] GOODMAN R L, JANSEN H T, BILLINGS H J, et al. Neural systems mediating seasonal breeding in the ewe[J].JNeuroendocrinol, 2010, 22(7): 674-681.

        [23] DARDENTE H, LOMET D, ROBERT V, et al. Seasonal breeding in mammals: from basic science to applications and back[J].Theriogenology, 2016, 86(1): 324-332.

        [24] WINTERMANTEL T M, CAMPBELL R E, PORTEOUS R, et al. Definition of estrogen receptor pathway critical for estrogen positive feedback to gonadotropin-releasing hormone neurons and fertility[J].Neuron, 2006, 52(2): 271-280.

        [25] SINGH S R, HILEMAN S M, CONNORS J M, et al. Estradiol negative feedback regulation by glutamatergic afferents to A15 dopaminergic neurons: variation with season[J].Endocrinology, 2009, 150(10): 4663-4671.

        [26] GOODMAN R L, MALTBY M J, MILLAR R P, et al. Evidence that dopamine acts via kisspeptin to hold GnRH pulse frequency in check in anestrous ewes[J].Endocrinology, 2012, 153(12): 5918-5927.

        [27] SMITH J T, COOLEN L M, KRIEGSFELD L J, et al. Variation in kisspeptin and RFamide-related peptide (RFRP) expression and terminal connections to gonadotropin-releasing hormone neurons in the brain: a novel medium for seasonal breeding in the sheep[J].Endocrinology, 2008, 149(11): 5770-5782.

        [28] GOODMAN R L, SINGH S R, VALENT M, et al. Glutamate input to A15 neurons may mediate estradiol negative feedback in anestrous ewes[J].FrontNeuroendocrinol, 2006, 27(1): 65.

        [29] GOODMAN R L, THIERY J C, DELALEU B, et al. Estradiol increases multiunit electrical activity in the A15 area of ewes exposed to inhibitory photoperiods[J].BiolReprod, 2000, 63(5): 1352-1357.

        [30] FORADORI C D, AMSTALDEN M, GOODMAN R L, et al. Colocalisation of dynorphin A and neurokinin B immunoreactivity in the arcuate nucleus and median eminence of the sheep[J].JNeuroendocrinol, 2006, 18(7): 534-541.

        [31] RIZZOTI K, LOVELL-BADGE R. Pivotal role of median eminence tanycytes for hypothalamic function and neurogenesis[J].MolCellEndocrinol, 2016, 445: 7-13.

        [32] UENOYAMA Y, PHENG V, TSUKAMURA H, et al. The roles of kisspeptin revisited: inside and outside the hypothalamus[J].JReprodDev, 2016, 62(6): 537-545.

        [33] PINILLA L, AGUILAR E, DIEGUEZ C, et al. Kisspeptins and reproduction: physiological roles and regulatory mechanisms[J].PhysiolRev, 2012, 92(3): 1235-1316.

        [34] OAKLEY A E, CLIFTON D K, STEINER R A. Kisspeptin signaling in the brain[J].EndocrRev, 2009, 30(6): 713-743.

        [35] WEEMS P, SMITH J, CLARKE I J, et al. Effects of season and estradiol on KNDy neuron peptides, colocalization with D2 dopamine receptors, and dopaminergic inputs, in the ewe[J].Endocrinology, 2017, 158(4): 831-841.

        [36] MERKLEY C M, COOLEN L M, GOODMAN R L, et al. Evidence for changes in numbers of synaptic inputs onto KNDy and GnRH neurones during the preovulatory LH surge in the ewe[J].JNeuroendocrinol, 2015, 27(7): 624-635.

        [37] MERKLEY C M, PORTER K L, COOLEN L M, et al. KNDy (kisspeptin/neurokinin B/dynorphin) neurons are activated during both pulsatile and surge secretion of LH in the ewe[J].Endocrinology, 2012, 153(11): 5406-5414.

        [38] LEHMAN M N, LADHA Z, COOLEN L M, et al. Neuronal plasticity and seasonal reproduction in sheep[J].EurJNeurosci, 2010, 32(12): 2152-2164.

        [39] KLOSEN P, SéBERT M E, RASRI K, et al. TSH restores a summer phenotype in photoinhibited mammals via the RF-amides RFRP3 and kisspeptin[J].FASEBJ, 2013, 27(7): 2677-2686.

        [40] SHINOMIYA A, SHIMMURA T, NISHIWAKI-OHKAWA T, et al. Regulation of seasonal reproduction by hypothalamic activation of thyroid hormone[J].FrontEndocrinol(Lausanne), 2014, 5: 12.

        [41] REVEL F G, MASSON-PéVET M, PéVET P, et al. Melatonin controls seasonal breeding by a network of hypothalamic targets[J].Neuroendocrinology, 2009, 90(1): 1-14.

        [42] STEVENSON T J, BALL G F. Information theory and the neuropeptidergic regulation of seasonal reproduction in mammals and birds[J].ProcRoySciB, 2011, 278(1717): 2477-2485.

        [43] NG L, LIU H, ST GERMAIN D L, et al. Deletion of the thyroid hormone-activating type 2 deiodinase rescues cone photoreceptor degeneration but not deafness in mice lacking type 3 deiodinase[J].Endocrinology, 2017, 158(6): 1999-2010.

        [44] MAYWOOD E S, BITTMAN E L, HASTINGS M H. Lesions of the melatonin- and androgen-responsive tissue of the dorsomedial nucleus of the hypothalamus block the gonadal response of male Syrian hamsters to programmed infusions of melatonin[J].BiolReprod, 1996, 54(2): 470-477.

        [45] SONG C K, BARTNESS T J. The effects of anterior hypothalamic lesions on short-day responses in Siberian hamsters given timed melatonin infusions[J].JBiolRhythms, 1996, 11(1): 14-26.

        [47] YASUO S, YOSHIMURA T, EBIHARA S, et al. Photoperiodic control ofTSH-βexpression in the mammalian pars tuberalis has different impacts on the induction and suppression of the hypothalamo-hypopysial gonadal axis[J].JNeuroendocrinol, 2010, 22(1): 43-50.

        [48] KAMPF-LASSIN A, PRENDERGAST B J. Acute downregulation of type II and type III iodothyronine deiodinases by photoperiod in peripubertal male and female Siberian hamsters[J].GenCompEndocrinol, 2013, 193: 72-78.

        [49] SIMONNEAUX V, ANCEL C, POIREL V J, et al. Kisspeptins and RFRP-3 act in concert to synchronize rodent reproduction with seasons[J].FrontNeurosci, 2013, 7: 22.

        [50] ANSEL L, BOLBOREA M, BENTSEN A H, et al. Differential regulation ofKiss1 expression by melatonin and gonadal hormones in male and female Syrian hamsters[J].JBiolRhythms, 2010, 25(2): 81-91.

        [51] GREIVES T J, LONG K L, BURNS C M B, et al. Response to exogenous kisspeptin varies according to sex and reproductive condition in Siberian hamsters (Phodopussungorus)[J].GenCompEndocrinol, 2011, 170(1): 172-179.

        [52] GREIVES T J, KRIEGSFELD L, DEMAS G E. Exogenous kisspeptin does not alter photoperiod-induced gonadal regression in Siberian hamsters (Phodopussungorus)[J].GenCompEndocrinol, 2008, 156(3): 552-558.

        [53] UBUKA T, INOUE K, FUKUDA Y, et al. Identification, expression, and physiological functions of Siberian hamster gonadotropin-inhibitory hormone[J].Endocrinology, 2012, 153(1): 373-385.

        [54] PERAGINE D E, POKAROWSKI M, MENDOZA V L, et al. RFamide-related peptide-3 (RFRP-3) suppresses sexual maturation in a eusocial mammal[J].ProcNatlAcadSciUSA, 2017, 114(5): 1207-1212.

        [55] ANCEL C, BENTSEN A H, SéBERT M E, et al. Stimulatory effect of RFRP-3 on the gonadotrophic axis in the male Syrian hamster: the exception proves the rule[J].Endocrinology, 2012, 153(3): 1352-1363.

        [56] BAILEY A M, LEGAN S J, DEMAS G E. Exogenous kisspeptin enhances seasonal reproductive function in male Siberian hamsters[J].FunctEcol, 2017, 31(6): 1220-1230. doi: 10.1111/1365-2435.12846.

        按摩师玩弄少妇到高潮hd| 色哟哟网站在线观看| 精品久久久久久久久免费午夜福利| 尤物yw午夜国产精品视频| 成人自拍三级在线观看| 丰满熟妇乱又伦精品| 久久人人爽天天玩人人妻精品| 少妇高潮流白浆在线观看| 欧美白人最猛性xxxxx| 亚洲AV无码成人精品区日韩密殿 | 白白色发布在线观看视频| 一色桃子中文字幕人妻熟女作品 | 美腿丝袜av在线播放| 国产精品亚洲精品国产| 中文字幕人妻中文| 人妻少妇精品中文字幕av蜜桃| 本道无码一区二区久久激情| 亚洲av手机在线一区| 91精品国产一区国产二区久久| 四虎影视成人永久免费观看视频| 欧美精品一区二区性色a+v| 揄拍成人国产精品视频肥熟女| 国产三级伦理视频在线| 91精品国产福利在线观看麻豆 | 女人色毛片女人色毛片18| 中文字幕无线码| 亚洲专区欧美| 亚洲中文字幕巨乳人妻| 久久影院最新国产精品| 国产让女高潮的av毛片| 闺蜜张开腿让我爽了一夜| 77777亚洲午夜久久多人| 杨幂国产精品一区二区| 国产精品一区二区三区成人| 亚洲小说区图片区色综合网| 丰满岳乱妇久久久| 久久久久久人妻一区精品| 亚洲av男人的天堂一区| 国产精品成人观看视频| 最新国产成人在线网站| 91九色极品探花内射|