亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        On the Coefficients of Several Classes of Bi-univalent Functions Defined by Convolution

        2018-01-19 02:41:18GUODONGANDLIZONGTAO

        GUO DONGAND LI ZONG-TAO

        (1.Foundation Department,Chuzhou Vocational and Technical College,Chuzhou,Anhui,239000)

        (2.Foundation Department,Guangzhou Civil Aviation College,Guangzhou,510403)

        Communicated by Ji You-qing

        1 Introduction

        LetAdenote the class of functions of the form

        thenfis in the class of starlike functionsS?(0)forαbe a real number and is in the class of convex functionsK(0)forα≥1.

        Further,We say thatf(z)∈Aisα-starlike inUiff(z)satisfies

        For suchα-starlike functions,Lewandowskiet al.[3]proved that allα-starlike functions are univalent and starlike for allα(α∈R).

        In[4],it was shown that if

        For 0≤α<1 andλ≥0,we letQλ(h,α)be the subclass ofAconsisting of functionsf(z)of the form(1.1)and functionsh(z)given by

        and satisfying the analytic criterion:

        It is easy to see thatQλ1(h,α)?Qλ2(h,α)forλ1>λ2≥0.Thus,forλ≥1,0≤α<1,Qλ(h,α)?Q1(h,α)={f,h∈A:Re(f?h)′(z)>α,0≤α<1}and henceQλ(h,α)is univalent class(see[5]–[7]).

        It is well known that every functionf∈Shas an inversef?1,defined by

        A functionf∈Ais said to be bi-univalent inUif bothf(z)andf?1(z)are univalent inU.

        The object of the present paper is to introduce several subclasses of the function classΣand find estimates on the coefficients|a2|and|a3|for functions in these new subclasses of the function classΣemploying the techniques used earlier by Penget al.[16]

        2 Coefficient Estimates

        In the sequel,it is assumed thatφis an analytic function with positive real part in the unit diskU,satisfyingφ(0)=1,φ′(0)>0,andφ(U)is symmetric with respect to the real axis.Such a function has a Taylor series of the form

        Suppose thatu(z)andv(z)are analytic in the unit diskUwithu(0)=v(0)=0,|u(z)|<1,|v(z)|<1,and

        It is well known that(see[18],P.172)

        By a simple calculation,we have

        Definition 2.1A function f∈Σ given by(1.1)is said to be in the class MΣ(h,α,φ),α≥0,if the following conditions are satisfied:

        where the function h(z)is given by(1.3)and(f?h)?1(ω)is defined by:

        Theorem 2.1Let f given by(1.1)be in the class MΣ(h,α,φ),α≥0.Then

        Proof.Letf∈MΣ(h,α,φ),α≥0.Then there are analytic functionsu,v:U?→Ugiven by(2.2)such that

        Now,equating the coefficients in(2.9)and(2.10),we get

        From(2.11)and(2.13)we get

        Adding(2.12)and(2.13),we have

        Substituting(2.15)and(2.16)into(2.17),we get

        Substituting(2.15)and(2.18)into(2.16),we get

        Then,in view of(2.3),we have

        From(2.11)and(2.20)we get

        Next,from(2.12)and(2.14)we have

        Then,in view of(2.3),we have

        Notice that

        This completes the proof of Theorem 2.1.

        Example 2.1(1)For

        this operator contains in turn many interesting operator(see[19]).Theorem 2.1 becomes

        Definition 2.2A function f∈Σ given by(1.1)is said to be in the class BΣ(h,λ,φ),λ≥0,if the following conditions are satisfied:

        where the function h(z)is given by(1.3)and(f?h)?1(ω)is given by(2.6).

        Theorem 2.2Let f given by(1.1)be in the class BΣ(h,λ,φ),λ≥0.Then

        Proof.Letf(z)∈BΣ(h,λ,φ),λ≥0.Then there are analytic functionsu,v:U?→Ugiven by(2.2)such that

        it follows from(2.4),(2.5),(2.26)and(2.27)that

        From(2.28)and(2.30)we get

        By adding(2.29)to(2.31),we have

        Substituting(2.32)and(2.33)into(2.34),we get

        Substituting(2.32)and(2.35)into(2.33),we get

        Then,in view of(2.3)and(2.32),we have

        From(2.28)and(2.37)we get

        By subtracting(2.29)from(2.31)and a computation using(2.32)finally leads to

        Then,in view of(2.3)and(2.32),we have

        It follows from(2.28)that

        Notice that(2.38),we have

        This completes the proof of Theorem 2.2.

        The bounds on|a2|and|a3|given in(2.40)and(2.41)are more accurate than that given by Theorem 1 in[17].

        The bounds on|a2|and|a3|given in(2.42)and(2.43)are more accurate than that given by Theorem 2 in[17].

        Definition 2.3A function f∈Σ given by(1.1)is said to be in the class CΣ(h,λ,φ),λ≥0,if the following conditions are satisfied:

        where the function h(z)is given by(1.3)and(f?h)?1(ω)is given by(2.6).

        By applying the method of the proof of Theorem 2.2,we can prove the following result.

        Theorem 2.3Let f given by(1.1)be in the class CΣ(h,λ,φ),λ≥0.Then

        Definition 2.4A function f∈Σ given by(1.1)is said to be in the class LΣ(h,α,φ),α≥0,if the following conditions are satisfied:

        By applying the method of the proof of Theorem 2.1,we can prove the following result.

        Theorem 2.4Let f given by(1.1)be in the class LΣ(h,α,φ),α≥0.Then

        Definition 2.5A function f∈Σ given by(1.1)is said to be in the class STΣ(h,α,φ),α≥0,if the following conditions are satisfied:

        By applying the method of the proof of Theorem 2.1,we can prove the following result.

        Theorem 2.5Let f given by(1.1)be in the class STΣ(h,α,φ),α≥0.Then

        Definition 2.6A function f∈Σ given by(1.1)is said to be in the class BΣ(h,λ,k),λ≥0,0<k≤1,if the following conditions are satisfied:

        where the function h(z)is given by(1.3)and(f?h)?1(ω)is given by(2.6).

        Theorem 2.6Let f given by(1.1)be in the class BΣ(h,λ,k),λ≥0,0<k≤1.Then

        Proof.Letf(z)∈BΣ(h,λ,k),λ≥0,0<k≤1.Then there are analytic functionsu,v:U?→Ugiven by(2.2)such that

        Now,equating the coefficients in(2.44)and(2.45),we get

        From(2.46)and(2.48)we get

        By adding(2.47)to(2.49),we have

        From(2.3)and(2.51)we have

        Subtracting(2.47)from(2.49)we have

        Then,in view of(2.3)and(2.53),we have

        It follows from(2.46)that

        Notice that(2.52),we have

        This completes the proof of Theorem 2.6.

        [1]Mocanu P T.Une propriete de convexite generalisee dans la theorie de la representation conforme.Mathematica(Cluj),1969,11:127–133.

        [2]Miller S S,Mocanu P T,Reade M O.Allα-convex functions are univalent and starlike.Proc.Amer.Math.Soc.,1973,37:553–554.

        [3]Lewandowski Z,Miller S,Zlotkiewicz E.Gamma-starlike functions.Annales Universitatis Mariae Curie Sklodowska Sect.A,1974,28:53–58.

        [4]Li J L,Owa S.Sufficient conditions for starlikness.Indian.J.Pure.Appl.Math.,2002,33:303–318.

        [6]Chichra P N.New subclasses of the class of close-to-convex functions.Proc.Amer.Math.Soc.,1977,62:37–43.

        [7]MacGregor T H.Functions whose derivative has a positive real part.Trans.Amer.Math.Soc.,1962,104:532–537.

        [8]Ding S S,Ling Y,Bao G J.Some properties of a class of analytic functions.J.Math.Anal.Appl.,1995,195(1):71–81.

        [9]Lewin M.On a coefficient problem for bi-univalent functions.Proc.Amer.Math.Soc.,1967,18(1):63–68.

        [10]Brannan D A,Clunie J G.Aspects of Contemporary Complex Analysis.Proceedings of the NATO Advanced Study Instute Held at the University of Durham,Durham,July 1-20,1979.New York:Academic Press,1980.

        [11]Netanyahu E.The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in|z|<1.Arch.Ration.Mech.Anal.,1969,32:100–112.

        [12]Lashin A Y.On certain subclasses of analytic and bi-univalent functions.J.Egyptian Math.Soc.,2016,24:220–225.

        [13]Ularu N.Coefficient estimates for bi-univalent Bazilevic functions.Anal.Thoery Appl.,2014,30(3):275–280.

        [14]Orhan H,Magesh N,Balaji V K.Fekete-Szeg¨o problem for certain class of Ma-Minda biunivalent functions.Afr.mat.,Publishing online:25 September,2015.

        [15]Srivastava H M,Murugusundaramoorthy G,Vijaya K.Coefficient estimates for some families of bi-bazilevic functions of the Ma-Minda type involving the Hohlov operator.J.Clssical Analysis,2013,2(2):167–181.

        [16]Peng Z G,Han Q Q.On the coefficients of several classes of bi-univalent functions.Acta Math.Sci.,2014,34B(1):228–240.

        [17]EI-Ashwah R M.Subclasses of bi-univalent functions defined by convolution.J.Egyptian Math.Soc.,2014,22:348–351.

        [18]Nehari Z.Conformal Mapping.New York:McGraw-Hill Book Co.,1952.

        [19]Catas A,Oros G I,Oros G.Differential subordinations associated with multiplier transformations.Abstr.Appl.Anal.,2008,ID 845724:1–11.

        [20]Dziok J,Srivastava H M.Classes of analytic functions associated with the generalized hypergeometric function.Appl.Math.Comput.,1999,103:1–13.

        亚洲中文字幕在线第二页 | 亚洲精品欧美二区三区中文字幕| 囯产精品无码va一区二区| 青青草免费高清视频在线观看 | 国产精品久久毛片av大全日韩| 97人人模人人爽人人喊网| 老师脱了内裤让我进去| 国产成人精品亚洲午夜| 色婷婷av一区二区三区不卡| 国语对白福利在线观看| 四虎影视免费永久在线观看| 国产91成人精品亚洲精品| 青青草免费高清视频在线观看| 亚洲国产中文字幕一区| 国产乱子伦农村xxxx| 波多野结衣视频网址| 日本高清一区二区在线观看| 亚洲中文字幕久久精品一区| 大肉大捧一进一出好爽视频| 日韩精品区欧美在线一区| 一区二区日本影院在线观看| 亚洲国产精品国自产拍久久蜜av| 亚洲精品国产av天美传媒| 亚洲av日韩aⅴ永久无码| 韩国女主播一区二区三区在线观看 | 视频一区二区在线播放| 国产av一区网址大全| 日韩精品专区在线观看| 麻豆精品久久久久久久99蜜桃| 四虎精品国产一区二区三区| 国产亚洲日本精品二区| 无码人妻h动漫中文字幕| 美女高潮无遮挡免费视频| 国产熟女自拍视频网站| 性感女教师在线免费观看| 熟女体下毛毛黑森林| 四虎精品国产一区二区三区 | 樱桃视频影视在线观看免费 | 性感人妻av在线播放| 亚洲av免费手机在线观看| 女性女同性aⅴ免费观女性恋|