亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Extensions of Modules with ACC on d-annihilators

        2018-01-19 02:41:10OUYANGLUNQUNZHOUQIONGLIUJINWANGANDXIANGYUEMING
        關鍵詞:命令編程高中生

        OUYANG LUN-QUN,ZHOU QIONG,LIU JIN-WANG AND XIANG YUE-MING

        (1.School of Mathematics,Hunan University of Science and Technology,Xiangtan,Hunan,411201)

        (2.Department of Mathematics and Applied Mathematics,Huaihua University,Huaihua,Hunan,418000)

        Communicated by Du Xian-kun

        1 Introduction

        Throughout this paper all ringsRare associative with identity and all modulesMRare unitary rightR-modules.The set of all positive integers is denoted byN+.Letαbe an endomorphism andδanα-derivation of a ringR.We denote byR[x;α,δ]the Ore extension whose elements are the polynomials overR,the addition is defined as usual and the multiplication is subject to the relationxa=α(a)x+δ(a)for anya∈R.Clearly,polynomial ringsR[x],skew polynomial ringsR[x;α]and differential polynomial ringsR[x;δ]are specialOre extension rings.Given a rightR-moduleMR,we can makeM[x]into a rightR[x;α,δ]-module by allowing polynomials fromR[x;α,δ]to act on polynomials inM[x]in the obvious way,and apply the above twist whenever necessary.The verification that this defines a validR[x;α,δ]-module structure onM[x]is almost identical to the verification thatR[x;α,δ]is a ring and it is straightforward(see[1]).

        For an elementa∈R,AnnM(a)={m∈MR|ma=0}denotes the annihilator ofainMR.Following Frohn[2],a moduleMRis said to satisfy acc ond-annihilators if for every sequence(an)nof elements ofR,the ascending chain AnnM(a1)?AnnM(a1a2)?···of submodules ofMRstabilizes.IfRRsatisfies acc ond-annihilators,then we say that the ringRis a ring satisfying acc ond-annihilators.Clearly,strongly Laskerian modules satisfy acc ond-annihilators,and ifMRsatisfies acc ond-annihilators,so is every submodule ofMR(see[2]).Visweswaran[3]showed that the zero-dimension rings with acc ond-annihilators are exactly the perfect rings.So in order to characterize the perfect ringsR,it is important to consider the modulesRRwith acc ond-annihilators.Hence find more examples of modules with acc ond-annihilators is meaningful in module theory.It is well known that,in the module theory literature,many surprising examples and counterexamples have been produced via the triangular matrix extensions.So in this paper we first investigate the relationship between the acc ond-annihilators property ofMRand that of the various triangular matrix extension modules overMR,and then obtain more examples of modules with acc ond-annihilators.

        Polynomial extension of modules with acc ond-annihilators was studied by Frohn.He proved in[2]that ifRis reduced and satisfies acc ond-annihilators,then the polynomial ringR[X]for any setXof indeterminates also has acc ond-annihilators.We generalize this result.In Section 3,we consider the acc ond-annihilators property of the Ore extension modulesM[x]R[x;α,δ]over the Ore extension ringsR[x;α,δ].We show that ifMRis an(α,δ)-compatible reduced module,then the Ore extension moduleM[x]R[x;α,δ]satisfies acc ond-annihilators if and only ifMRsatisfies acc ond-annihilators.So the Frohn’s recent work(see[2],Corollary 2.4])is extended to a more generally setting.

        2 Triangular Matrix Extension Modules

        LetRbe a ring andMRa rightR-module.Let

        ThenUn(M)is a rightUn(R)-module under usual matrix operations.

        Proposition 2.1Let R be a ring and MRa right R-module.Then the following statements are equivalent:

        (1)MRsatisfies acc on d-annihilators;

        (2)Un(M)Un(R)satisfies acc on d-annihilators.

        Proof.(1)?(2).Suppose thatMRsatisfies acc ond-annihilators.We proceed by induction onnto show that the rightUn(R)-moduleUn(M)also satisfies acc ond-annihilators.Letn=2.Put

        be a sequence of elements ofU2(R).SinceMRsatisfies acc ond-annihilators,there exists ak∈N+such that for any positive integerl>k,

        Consider the sequence(ck+m)mof elements ofR.By the condition thatMRsatisfies acc ond-annihilators,we can find a positive integerp∈N+such that for anyq>p,

        Now we show that for any positive integerv∈N+,

        By a routine computations,we obtain

        Similarly,we can show that for any positive integerv∈N+,

        ThereforeU2(M)satisfies acc ond-annihilators.

        Next we assume that the result is true forn?1,and let

        be a sequence of elements ofUn(R).In the following we show that

        stabilizes.Put

        By the induction hypothesis,we can find a positive integerm∈N+such that for anys>m,

        and a positive integeru∈N+such that for anyv>u,

        Then by using the same way as above,we can show that for any positive integerw∈N+,

        stabilizes.ThereforeUn(M)Un(R)satisfies acc ond-annihilators by induction.

        (2)?(1).It is trivial.

        The proof is completed.

        LetLn(R)denote the lower triangular matrix ring overR,and let

        ThenLn(M)is a rightLn(R)-module under usual matrix operations.

        Corollary 2.1The following statements are equivalent:

        (1)MRsatisfies acc on d-annihilators;

        (2)Ln(M)Ln(R)satisfies acc on d-annihilators.

        Proof.It is similar to the proof as given in the Proposition 2.1.

        LetRbe a ring andMRa rightR-module.Let

        The following two corollaries give more examples of modules satisfying acc ond-annihilators.

        Corollary 2.2The following statements are equivalent:

        (1)The right R-module MRsatisfies acc on d-annihilators;

        (2)The right Sn(R)-module Sn(M)satisfies acc on d-annihilators;

        (3)The right Gn(R)-module Gn(M)satisfies acc on d-annihilators.

        Proof.Employing the same method in the proof of Proposition 2.1,we complete the proof.

        Corollary 2.3The following statements are equivalent:

        (1)R satisfies acc on d-annihilators;

        (2)Un(R)satisfies acc on d-annihilators;

        (3)Ln(R)satisfies acc on d-annihilators;

        (4)Sn(R)satisfies acc on d-annihilators;

        (5)Gn(R)satisfies acc on d-annihilators;

        (7)R[x]/(xn)satisfies acc on d-annihilators.

        Proof.The equivalence(1)?(2)follows by Proposition 2.1.The equivalence(1)?(3)follows by Corollary 2.1.The equivalence(1)?(4),(1)?(5)and(1)?(6)follow by Corollary 2.2.The equivalence(1)?(7)follows by Corollary 2.2 and the fact thatR[x]/(xn)~=Gn(R).

        LetRbe a ring andMRa rightR-module.Let

        ThenW(M)is a rightW(R)-module under usual matrix operations.In fact,W(M)possesses the similar form of both the lower triangular matrix module and the upper triangular matrix module.A natural problem asks if the acc ond-annihilators property of such a module coincides with that ofMR.This inspire us to consider the acc ond-annihilators property ofW(M)W(R).

        Proposition 2.2Let R be a ring and MRa right R-module.Then the following statements are equivalent:

        在高中機器人編程學習課堂上,高中生不僅要學習基于硬件的編程,更是要注重基于任務的編程學習,基于任務的編程學習主要是以執(zhí)行任務為學習中心,并且要以完成任務為學習目的,所以學生在判斷應該選用那個傳感器進行接受信息,應該選用哪個傳感器來進行命令的下達,都要以任務本身為依據(jù),要給于任務來開展機器人的編程。所以在進行基于任務的編程學習,要注意以下幾點內(nèi)容:

        (1)MRsatisfies acc on d-annihilators;

        (2)W(M)W(R)satisfies acc on d-annihilators.

        Proof.It suffices to show that(1)?(2).Let

        be a sequence of elements ofW(R).SinceMRsatisfies acc ond-annihilators,there exists somek∈N+such that for all positive integerl>k,

        Consider the sequences(ak+n)n,(bk+n)nand(ck+n)nof elements ofR,there exists ap∈N+such that for allq>p,

        Now we show that for any positive integerv∈N+,

        which implies that AnnW(M)(A1)?AnnW(M)(A1A2)?···stabilizes.First,we show that

        By using the same way as the proof of Proposition 2.1,we also have

        Then by a routine computations,we can show that

        Similarly,we can show that

        ThereforeW(M)satisfies acc ond-annihilators.

        LetRbe a ring andMRa rightR-module.Then under usual matrix operations,we

        Proposition 2.3Let R be a ring and MRa right R-module.Then the following statements are equivalent:

        (1)The right R-module MRsatisfies acc on d-annihilators;

        (2)The right W1(R)-module W1(M)satisfies acc on d-annihilators;

        (3)The right W2(R)-module W2(M)satisfies acc on d-annihilators;

        (4)The right W3(R)-module W3(M)satisfies acc on d-annihilators;

        (5)The right W4(R)-module W4(M)satisfies acc on d-annihilators.

        Proof.By analogy with the proof of Proposition 2.2,we complete the proof.

        Corollary 2.4Let R be a ring.Then the following statements are equivalent:

        (1)R satisfies acc on d-annihilators;

        (2)W(R)satisfies acc on d-annihilators;

        (3)W1(R)satisfies acc on d-annihilators;

        (4)W2(R)satisfies acc on d-annihilators;

        (5)W3(R)satisfies acc on d-annihilators;

        (6)W4(R)satisfies acc on d-annihilators.

        are all rings satisfying acc ond-annihilators.

        Following Hamimouet al.[4],a ringRis right strongly Hopfian if the chain of right annihilators AnnR(a)?AnnR(a2)?···stabilizes for eacha∈R.Based on Corollaries 2.3 and 2.4,we can derive the following:

        Corollary 2.5Let R be a ring.If R satisfies acc on d-annihilators,then the following hold:

        (1)Un(R)is a right strongly Hopfian ring;

        (2)Ln(R)is a right strongly Hopfian ring;

        (3)W(R)is a right strongly Hopfian ring;

        (4)Wi(R)(i=1,2,3,4)is a right strongly Hopfian ring;

        (5)Sn(R)is a right strongly Hopfian ring;

        (6)Gn(R)is a right strongly Hopfian ring;

        (7)The trivial extension R??R of R by R is a right strongly Hopfian ring;

        (8)R[x]/(xn)is a right strongly Hopfian ring.

        3 Ore Extension Modules

        In the Ore extensionR[x;α,δ],we have

        The following definition appears in[1].

        Definition 3.1Given a module MR,an endomorphism α:R?→R and an α-derivation δ:R?→R,we say that MRis α-compatible if for each m∈MRand r∈R,one has mr=0?mα(r)=0.Moreover,we say that MRis δ-compatible if for each m∈MRand r∈R,one has mr=0?mδ(r)=0.If MRis both α-compatible and δ-compatible,we say that MRis(α,δ)-compatible.

        Note that ifMRisα-compatible(resp.δ-compatible),thenMRisαi-compatible(resp.δi-compatible)for alli≥1.It is clear that ifMRisα-compatible(resp.δ-compatible),then so is any submodule ofMR.The following definition appears in[6].

        Definition 3.2Let MRbe a right R-module.We say that MRis reduced,if,for any m∈MRand any a∈R,ma=0implies mR∩Ma=0.

        Clearly,ifMRis reduced,then for allm∈MRanda∈R,ma=0 impliesmRa=0 andma2=0 impliesma=0.

        As a immediate consequence of Definitions 3.1 and 3.2,we obtain the following lemma.

        Lemma 3.1Let MRbe an(α,δ)-compatible reduced module.Then the following hold:

        (1)ma=0if and only if mαn(a)=0,where n is a positive integer;

        (2)mab=0implies mfji(a)fts(b)=0;

        (3)mab=0implies mba=0and mRaRb=0.

        The next lemma is known and very useful,we leave the proof for the reader.

        Lemma 3.2Let MRbe a reduced module and X={a1,a2,···,an}?R be a finite subset of R.Then for any m∈MR,mX=0if and only if m(Ra1R+Ra2R+···+RanR)=0,where Ra1R+Ra2R+···+RanR denotes the ideal of R generated by a1,a2,···,an.

        Lemma 3.3Let R be a ring and MRa reduced module satisfying acc on d-annihilators.Then for every sequence(An)nof finitely generated ideals of R,the ascending chainAnnM(A1)?AnnM(A1A2)?···stabilizes.

        Proof.SinceMRis reduced,for anym∈MRand anya,b∈R,by Lemma 3.1,mab=0 impliesmba=0 andmRaRb=MRbRa=0.Then similar to the proof of Theorem 2.3(b)in[2],we complete the proof.

        Proposition 3.1Let α be an endomorphism and δ an α-derivation of a ring R.If MR is an(α,δ)-compatible reduced module,then the following statements are equivalent:

        (1)MRsatisfies acc on d-annihilators;

        (2)The right R[x;α,δ]-module M[x]satisfies acc on d-annihilators.

        Ifr∈AnnM(AfAg),then

        SinceMRis(α,δ)-compatible,by Lemma 3.1,we have

        Hence by Lemma 3.2,we obtainr∈AnnM(Afg)and so AnnM(AfAg)?AnnM(Afg).We now turn our attention to proving AnnM(AfAg)?AnnM(Afg).Letr∈AnnM(Afg).Then we have the following system of equations:

        Fork=m+n,we have

        Then by Lemma 3.1,we obtain

        Fork=m+n?1,we have

        Multiplying(3.1)on the right side byam,then by Lemma 3.1,we obtain

        SinceMRis reduced,we have

        Then by Lemma 3.1,we have

        Fork=m+n?2,we have

        Multiplying(3.2)on the right side byamand using Lemma 3.1,we obtain

        SinceMRis reduced,we have

        Multiplying(3.3)on the right side byam?1,then by Lemma 3.1,we can show that

        Hence(3.3)becomes

        Continuing this procedure yields that

        Hencer∈AnnM(AfAg)and so

        Thus we obtain a system of equations:

        By using the same way as above,we can show that

        Then by Lemma 3.2,we obtain

        Then by a routine computations we can show that

        Hencem(x)∈AnnM[x](f(x))and so

        ThereforeM[x]satisfies acc ond-annihilators.

        (2)?(1).Note that for anya∈R,AnnM(a)=AnnM[x](a)∩M.Hence the proof of(2)?(1)is trivial.

        Corollary 3.1Let R be a ring and MRa reduced right R-module.Then we have the following results:

        (1)Let α be an endomorphism of R.If MRis α-compatible,then the skew polynomial module M[x]over the skew polynomial ring R[x;α]satisfies acc on d-annihilators if and only if MRsatisfies acc on d-annihilators;

        (2)Let δ be a derivation of R.If MRis δ-compatible,then the differential polynomial module M[x]over the differential ring R[x;δ]satisfies acc on d-annihilators if and only if MRsatisfies acc on d-annihilators.

        Corollary 3.2Let R be a ring.If R is an(α,δ)-compatible reduced ring,then the Ore extension ring R[x;α,δ]satisfies acc on d-annihilators if and only if R satisfies acc on d-annihilators.

        The following corollary is a generalization of Corollary 2.4(iii)in[2].

        Corollary 3.3Let R be a reduced ring.Then the polynomial ring R[x]satisfies acc on d-annihilators if and only if R satisfies acc on d-annihilators.

        We show that ifMRis(α,δ)-compatible and reduced,then the rightR[x;α,δ]-moduleM[x]satisfies acc ond-annihilators if and only ifMRsatisfies acc ond-annihilators(see Proposition 3.1).LetMRbe a module with acc ond-annihilators.IfMRdoes not be(α,δ)-compatible or not be reduced,can one provide a counterexample that the Ore extension moduleM[x]R[x;α,δ]does not has acc ond-annihilators?We do not know the answer and thus conclude with the following open problem:

        Question 3.1LetMRbe a module with acc ond-annihilators.IfMRis not(α,δ)-compatible or not reduced,does there exist an Ore extension moduleM[x]over the Ore extension ringR[x;α,δ]that does not has acc ond-annihilators?

        [1]Annin S.Associated primes over Ore extension rings.J.Algebra Appl.,2004,3(2):2511–2528.

        [2]Frohn D.Modules withn-acc and the acc on certain types of annihilators.J.Algebra,2002,256(2):467–483.

        [3]Visweswaran S.Some results on modules satisfying(C).J.Ramanujan Math.Soc.,1996,11(2):161–174.

        [4]Hmaimou A,Kaidi A,Sanchez Campos E.Generalized fitting modules and rings.J.Algebra,2007,308(1):199–214.

        [5]Lam T Y,Leroy A,Matczuk,J.Primeness,semiprimeness and prime radical of Ore extensions.Comm.Algebra,1997,25(80):2459–2506.

        [6]Lee T K,Zhou Y.Reduced modules,rings,modules,algebras and abelian groups,365–377,Lecture Notes in Pure and Appl.Math.,236,Dekker,New York,2004.

        猜你喜歡
        命令編程高中生
        我家有只編程貓
        我家有只編程貓
        我家有只編程貓
        我家有只編程貓
        《發(fā)明與創(chuàng)新》(高中生)征稿啦
        只聽主人的命令
        移防命令下達后
        高中生應如何適應高中數(shù)學的學習
        高中生是否應該熬夜學習?
        這是人民的命令
        一色桃子中文字幕人妻熟女作品| 中文字幕一区二区人妻痴汉电车| 国产久视频国内精品999| 国产精品亚洲综合色区丝瓜| 亚洲一区二区三区在线视频| 一色桃子中文字幕人妻熟女作品| 全免费a级毛片| 久久99久久99精品免观看女同 | 亚洲永久国产中文字幕| 国产香蕉视频在线播放| 粗壮挺进人妻水蜜桃成熟漫画| 99国产小视频| 亚洲AV无码乱码一区二区三区| 日本岛国视频在线观看一区二区 | 免费在线观看视频播放| 天堂中文а√在线| 亚洲国产精品久久久久秋霞影院| 精品久久久久久久久免费午夜福利| 国产女主播强伦视频网站| 日韩午夜免费视频精品一区| 色翁荡熄又大又硬又粗又动态图 | 精品久久久少妇一区二区| 无码h黄肉3d动漫在线观看| 一本色道久久综合无码人妻| chinesefreexxxx国产麻豆| 99热国产在线| 亚洲精品二区三区在线观看| 丝袜美腿av免费在线观看| 免费在线观看视频播放| 无遮挡又爽又刺激的视频| 99爱这里只有精品| 亚洲一级av大片在线观看| 国产免费成人自拍视频| 艳z门照片无码av| 99精品电影一区二区免费看| 日本午夜一区二区视频| 国产一品二品三品精品在线| 国产成人无码一区二区在线观看| 久久精品国产99精品九九| 一级a免费高清免在线| 日韩人妖视频一区二区|