亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        環(huán)Fq[v]/上循環(huán)碼的跡碼與子環(huán)子碼

        2018-01-16 03:32:21山東理工大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院山東淄博255049
        關(guān)鍵詞:子域鏈環(huán)生成元

        李 娟( 山東理工大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,山東 淄博 255049)

        在編碼理論中,子域子碼是一類重要的線性碼.常見的子域子碼有:Hamming 碼,Goppa 碼等. Delsarte[1]給出有限域上子域子碼與跡碼的關(guān)系. 然而, 對于一般線性碼,子域子碼與跡碼的計(jì)算較復(fù)雜.Gao 等人[2]利用線性遞歸序列與循環(huán)碼的關(guān)系,給出有限域上循環(huán)碼的子域子碼與跡碼的生成多項(xiàng)式. 編碼學(xué)家Hammons 等人[3]發(fā)現(xiàn)一些性能良好的非線性碼可以看做四元環(huán)Z4上一些循環(huán)碼的二元Gray象. 近幾年,有限非鏈環(huán)上的糾錯碼理論的研究也吸引了編碼學(xué)者的關(guān)注. Jitman 等人[4]給出有限非鏈環(huán)Fpk+uFpk+…+um-1Fpk上碼長為ps的常循環(huán)碼的結(jié)構(gòu). Yildiz 和Karadenniz[5]研究了環(huán)F2+uF2+vF2+uvF2上的線性碼和循環(huán)碼. 高健等人[6]中給出環(huán)Fp[v]/上線性碼的Gray 映射及其應(yīng)用. 本文給出有限非鏈環(huán)R=Fq[v]/上循環(huán)碼的跡碼與子環(huán)子碼的生成元.

        1 環(huán)Fq[v]/上的線性碼

        設(shè)R=Fq[v]/,其中q=pl,p是素?cái)?shù)且正整數(shù)m-1整除p-1, 則

        R={a0+a1v+…+am-1vm-1|ai∈Fq,i=0,1,…,m-1}.

        另外,由于m-1|(p-1),則多項(xiàng)式vm-v=(v-k0)(v-k1)…(v-km-1),其中k0,k1,…,km-1∈Fq,k0=0.

        R=e0R⊕e1R⊕…⊕em-1R=e0Fq⊕e1Fq⊕…⊕em-1Fq,

        R?Fq[v]/×Fq[v]/×…×Fq[v]/?Fq×Fq×…×Fq.

        因此,環(huán)R中任意元素r可唯一表示為

        r=e0r0+e1r1+…+em-1rm-1.

        其中ri∈Fq,i=0,1,…,m-1.

        令R=Fp[v]/, 顯然,R是R的一個子環(huán).而且R是R的l次伽羅瓦擴(kuò)張,等價于R=R[x]/,其中f(x)是有限域Fp上l次不可約多項(xiàng)式. 下面定義環(huán)R到其自身的Frobenius 映射:

        因?yàn)閝=pl,則|f|=l, 且={1,f,…,fl-1}是環(huán)R在R上的伽羅群,R的自同構(gòu)群的一個子群. 因此,下面給出環(huán)R在R上的跡映射

        易證,該映射是滿射.

        定義1設(shè)Rn={(c0,c1,…,cn-1)|ci∈R,0≤i≤n-1},Rn上的任意一個非空子集C稱為R上長度為n的碼.特別地,如果C是Rn的R-子模,則稱C是R上碼長為n的線性碼.

        定義2對線性碼C中任意一個碼字(c0,c1,…,cn-1),如果有(cn-1,c0,…,cn-2)仍是C中碼字,則稱C是R上碼長為n的循環(huán)碼.

        設(shè)R[x]為R上以x為變量的多項(xiàng)式環(huán),且碼字(c0,c1,…,cn-1)的多項(xiàng)式表示為c0+c1x+…+cn-1xn-1,則Rn與商環(huán) R[x]/在這種多項(xiàng)式表示的關(guān)系下是一個R-模同構(gòu),且R上碼長為n的循環(huán)碼可看成商環(huán)Rn的一個理想.

        對任意的i=0,1,…,m-1,定義集合

        則有:1)集合Ci是有限域Fq上碼長為n的線性碼.

        2)線性碼C可唯一表示為

        C=e0C0+e1C1+…+em-1Cm-1.

        3)設(shè)G是C的生成矩陣,則C作為Rn的Fq-子空間,矩陣G可表示為

        其中G0,G1,…,Gm-1分別是C0,C1,…,Cm-1在有限域Fq上的生成矩陣.

        引理1[6]線性碼C=e0C0⊕e1C1⊕…⊕em-1Cm-1是環(huán)R上的循環(huán)碼,當(dāng)且僅當(dāng)對任意的i=0,1,…,m-1,Ci是有限域Fq上的循環(huán)碼.

        由引理1,有以下結(jié)果:

        2 環(huán)Fp[v]/上的跡碼

        令{α0,α1,…,αl-1}是Fpl在Fp上的一組基,則{α0,α1,…,αl-1}也是R在R上的一組基.定義映射

        其中i=0,1,…,l-1,且cj∈Rn.顯然hi是環(huán)R上的線性映射.

        引理3令C是環(huán)R上碼長為n的線性碼,則對任意i=0,1,…,l-1,hi(C)=Tr(C).

        故,hi(C)=Tr(C).

        定理1令C是環(huán)R上碼長為n的循環(huán)碼,{s1,s2,…,sk}是循環(huán)碼C的極小生成元集,則{hi(sj),0≤i≤l-1,1≤j≤k}生成跡碼Tr(C).

        其中ρtri∈R.于是,

        從而,對任意的0≤i≤l-1,有下面等式成立

        由引理3知該定理成立.

        通過定理1,可得出環(huán)R上循環(huán)碼的跡碼.

        則循環(huán)碼C的跡碼

        Tr(C)=.

        證明令C=. 其中deg(gi(x))=ti,0≤i≤m-1. 則循環(huán)碼C的極小生成元集為

        S1∪S2∪…∪Sm-1.

        其中

        顯然,

        其中0≤j≤l-1,0≤i≤m-1.

        因此,由定理1, 可得出Tr(C)的生成元集為

        下面令

        則,

        例1令R=F5+vF5+v2F5,其中v3=v.令f(x)=x2+4x+2是F5上的二次本原多項(xiàng)式,則R=R[x]/=F52+vF52+v2F52.令ω=x+是f(x)在F52中的一個根,設(shè)C=是環(huán)R上碼長為24的循環(huán)碼,且g(x)=(1-v2)(x3+x2+3x+3)+3(v2+v)(x+2)+3(v2-v)(x3+2x2+2x+1), 則由推論1,得

        Tr(C)=<(1-v2)(x2+2)+3(v2+v)+3(v2-v)(x2+x+1)>.

        3 子環(huán)子碼

        令C是環(huán)R上碼長為n的線性碼,C的子環(huán)子碼用C|R表示,即C|R=C∩Rn. 若環(huán)R上碼長為n的線性碼C是循環(huán)碼,易證其子環(huán)子碼也是循環(huán)碼. Martinez-Moro 等人[1]給出Delsarte Lemma, 即有限鏈環(huán)上線性碼的跡碼與子環(huán)子碼的關(guān)系,下面給出有限非鏈環(huán)R上兩者的聯(lián)系.

        類似于文獻(xiàn)[1],可以給出有限非鏈環(huán)上的Delsarte引理。證明過程類似于文獻(xiàn)[1]中的證明過程.

        引理4[Delsarte 引理]

        令C是環(huán)R上碼長為n的線性碼, 則

        (C|R)⊥=Tr(C⊥).

        根據(jù)引理4,給出有限非鏈環(huán)R上,循環(huán)碼的子環(huán)子碼的生成元.

        推論2令C是環(huán)R上碼長為n的循環(huán)碼,其中

        C=.

        證明由C=,得

        由推論1,可得出

        Tr(C⊥)=

        em-1gcd(g0,m-1(x)*,g1,m-1(x)*,…,gl-1,m-1(x)*)>.

        再由引理4,C|R=(Tr(C⊥))⊥, 從而

        例2令R=F3+vF3+v2F3,其中v3=v.令f(x)=x2+2x+2是F3上的二次本原多項(xiàng)式,則R=R[x]/=F32+vF32+v2F32.令ω=x+是h(x)在F52中的一個根,設(shè)C=是環(huán)R上碼長為8的循環(huán)碼,且g(x)=(1-v2)(x3+x2+x+1)+2(v2+v)(x3+2x2+2)+2(v2-v)(x3+x+2), 則由推論1,得

        Tr(C)=<(1-v2)(x2+1)+2(v2+v)(x2+x+2)+2(v2-v)(x2+2x+2)>.

        由引理4得

        [1]DELSARTE P. On subfield subcodes of modified Reed-Solomon codes [J]. IEEE Transactions on Information Theory, 1975, 21(5):575-576.

        [2]GAO Z H, FU F W. Linear recurring sequences and subfield subcodes of cyclic codes[J]. Science China Mathematics, 2013, 56(7):1 413-1 420.

        [3]HAMMONS A R, KUMAR P V,CALDERBANK A R, et al. The-linearity of kerdock, preparata, goethals, and related codes [J]. IEEE Transactions on Information Theory, 1994, 40(2): 301-319.

        [4]JITMANA S,UDOMKAVANICHB P. On the structure of constacyclic codes of lengthps overFpk+uFpk+…+um-1Fpk[J]. International Journal of Algebra, 2010, 4(11): 507-516.

        [5]YILDIZ B, KARADENIZ S. Self-dual codes overF2+uF2+vF2+uvF2[J]. Journal of the Franklin Institute,2010,347(10):1 888-1 894.

        [6]高健, 王現(xiàn)方, 施敏加, 等. 環(huán)Fp[v]/上線性碼的Gray映射及其應(yīng)用[J]. 中國科學(xué):數(shù)學(xué), 2016, 46(9): 1 329-1 336.

        猜你喜歡
        子域鏈環(huán)生成元
        兩個奇質(zhì)數(shù)乘積長度的二元二次剩余碼的冪等生成元
        簡單拓?fù)鋱D及幾乎交錯鏈環(huán)補(bǔ)中的閉曲面
        基于鏡像選擇序優(yōu)化的MART算法
        基于子域解析元素法的煤礦疏降水量預(yù)測研究
        煤炭工程(2021年7期)2021-07-27 09:34:20
        構(gòu)造多維阿基米德Copula生成元的方法
        圈-雙交叉多面體鏈環(huán)的Kauffman括號多項(xiàng)式和束多項(xiàng)式
        兩類構(gòu)造阿基米德Copula 生成元的方法
        一種基于壓縮感知的三維導(dǎo)體目標(biāo)電磁散射問題的快速求解方法
        環(huán)F4+νF4上的二次剩余碼
        關(guān)于33·42格圖的鏈環(huán)分支數(shù)計(jì)數(shù)的幾個結(jié)論
        国产精品亚洲最新地址| 少妇高潮惨叫久久久久久| 音影先锋中文字幕在线| 黑人老外3p爽粗大免费看视频| 国产成人精品999视频| 把女的下面扒开添视频| 国产日产欧产精品精品| 久久国产精品久久久久久| 少妇被猛男粗大的猛进出 | 另类内射国产在线| 亚洲熟妇无码av另类vr影视| 午夜亚洲www湿好大| 亚洲a级片在线观看| 欧美日韩高清一本大道免费| 国产杨幂AV在线播放| 中文字幕日本韩国精品免费观看 | 久久亚洲道色综合久久| 最新中文字幕一区二区| 国产日产欧产精品精品蜜芽| 国产成人精品2021| 亚洲av无码不卡| 98在线视频噜噜噜国产| 狠狠丁香激情久久综合| 极品粉嫩小仙女高潮喷水视频| 日韩av天堂综合网久久| 亚洲熟女一区二区三区250p| 精品国产亚洲亚洲国产| 国产亚洲日韩在线一区二区三区| 乱人伦视频中文字幕| 国产精品一区二区韩国AV| 日本高清在线播放一区二区三区| 日本一区不卡高清在线观看 | av一区二区不卡久久| 亚洲综合有码中文字幕| 一区视频免费观看播放| 新中文字幕一区二区三区| 色一情一乱一伦| 8ⅹ8x擦拨擦拨成人免费视频| 欧美激情国产一区在线不卡| 亚洲高清激情一区二区三区| 亚洲国产精品久久婷婷|