李曉彤,秦宇,趙江月,張勁松
(中國醫(yī)科大學(xué)附屬第四醫(yī)院眼科,中國醫(yī)科大學(xué)眼科醫(yī)院,遼寧省晶狀體學(xué)重點實驗室,沈陽 110005)
線粒體是細(xì)胞能量產(chǎn)生的主要部位。此外,線粒體還對維持細(xì)胞的完整性和生存發(fā)揮著關(guān)鍵性的作用,如活性物質(zhì)的產(chǎn)生和清除,鈣的調(diào)節(jié),類固醇的生物合成,核苷酸的代謝,以及細(xì)胞凋亡的啟動[1]。越來越多的證據(jù)表明,線粒體功能障礙與年齡相關(guān)性疾病有關(guān),可導(dǎo)致多種慢性疾病的發(fā)生,如神經(jīng)變性[2-3]、心肌?。?-5]、糖尿?。?-7]。
日常生活中,眼部不斷暴露于可見光 (特別是藍(lán)色區(qū)域,波長475~510 nm) 、紫外線 (UVA波長320~400 nm和UVB波長280~400 nm) 等多種線粒體損傷劑中,這種潛在的破壞性微環(huán)境增加了線粒體損傷及眼部功能障礙的風(fēng)險[8-9]。線粒體來源的活性氧 (reactive oxygen species,ROS) 含量的升高與眼前、后段的疾病密切相關(guān)[10-11]。此外,編碼線粒體蛋白的線粒體基因或核基因的遺傳突變能夠引起呼吸鏈功能障礙、線粒體DNA (mitochondrial deoxyribonucleic acid,mtDNA) 復(fù)制異常及消耗增加,從而導(dǎo)致線粒體功能障礙有關(guān)的眼部疾病的發(fā)生發(fā)展[12]。本綜述總結(jié)了與線粒體功能障礙有關(guān)的年齡相關(guān)性眼部疾病的生物學(xué)特點以及兩者之間的關(guān)系,并探討了針對線粒體功能障礙采取的治療方法。
線粒體由內(nèi)膜和外膜構(gòu)成[13],這2層脂質(zhì)膜控制著線粒體的分裂與融合。線粒體通過不斷的融合、分裂活動來維持其形態(tài)和功能,并參與細(xì)胞分裂、增殖、分化和凋亡等眾多生物學(xué)過程[14-15]。線粒體內(nèi)膜含有多種蛋白質(zhì),承擔(dān)著復(fù)雜的生化反應(yīng),參與氧化磷酸化的氧化還原反應(yīng)及三磷酸腺苷(adenosine triphosphate,ATP)的合成。此外,線粒體基質(zhì)內(nèi)含有細(xì)胞的遺傳物質(zhì)核糖體、tRNA及tRNA合成酶、多拷貝的mtDNA及其復(fù)制所需的酶。
線粒體是1個含有多拷貝的16 569 bp環(huán)狀mtDNA的半自發(fā)細(xì)胞器。線粒體基因組編碼37個基因,其中,13個基因編碼氧化呼吸鏈中的蛋白質(zhì),24個基因編碼蛋白質(zhì)合成中所需的tRNA和核糖體RNA[16]。此外,線粒體基因組還包含調(diào)節(jié)轉(zhuǎn)錄開始和DNA合成所需要的非編碼區(qū),該區(qū)有2個高多態(tài)性的高變區(qū) (HVS-Ⅰ和HVS-Ⅱ)[17-18]。mtDNA極容易受到氧化損傷的影響[19],部分原因在于它與生成ROS的內(nèi)線粒體膜緊密相連,且不包含被認(rèn)為是ROS物理屏障的組蛋白。此外,mtDNA的復(fù)制及修復(fù)與核基因組DNA (nuclear deoxyribonucleic acid,nDNA) 不同,在有絲分裂后期的細(xì)胞 (如視網(wǎng)膜色素上皮細(xì)胞和光感受器細(xì)胞) 中仍繼續(xù)進(jìn)行。mtDNA的修復(fù)依賴于nDNA轉(zhuǎn)錄的蛋白質(zhì),且不存在核苷酸切除修復(fù)途徑和重組修復(fù)途徑。mtDNA、nDNA突變導(dǎo)致的mtDNA穩(wěn)定性喪失均能導(dǎo)致線粒體功能異常和疾病發(fā)生[20-21]。雖然一些研究[22-23]也發(fā)現(xiàn)線粒體具有多種替代DNA修復(fù)的途徑,如雙鏈斷裂修復(fù)、錯配修復(fù)、烷基化堿基修復(fù),但線粒體基因組的復(fù)制及修復(fù)遠(yuǎn)不及核基因組穩(wěn)定。因此,通常認(rèn)為與nDNA相比mtDNA更敏感。
單個線粒體可能含有0~21個mtDNA分子。在正常的細(xì)胞中,mtDNA分子是相同的,稱為同質(zhì)性。通常同質(zhì)堿基的替代是非致病性的,但某些同質(zhì)mtDNA的突變也可致病,如ND4基因中的G11778A的突變是眼部疾病的致病因素[24]。由于線粒體基因組的多倍體性質(zhì),野生型和突變型的mtDNA可能在單個線粒體中共存,稱為異質(zhì)性。在轉(zhuǎn)錄的線粒體基因內(nèi),異質(zhì)的mtDNA可影響基因產(chǎn)物的表達(dá)和(或) 活性,但通常需要突變mtDNA達(dá)到80%~90%才能產(chǎn)生臨床表型。在異質(zhì)譜系中,具有較大量的突變mtDNA的個體有較高的視力喪失風(fēng)險。由于與nDNA編碼的線粒體蛋白及環(huán)境因子的相互作用,特定于mtDNA突變的致病作用更加復(fù)雜化。這些突變經(jīng)歷有絲分裂后,正常和突變的mtDNA可以同時存在于相同的組織細(xì)胞內(nèi)。mtDNA異質(zhì)性產(chǎn)生了隨時間積累蛋白質(zhì)變化的現(xiàn)象[25],最終導(dǎo)致眼部疾病的發(fā)生。
眾所周知,線粒體是細(xì)胞的能量來源,可以通過氧化磷酸化過程產(chǎn)生大量的ATP。線粒體內(nèi)膜上含有1個復(fù)雜的氧化磷酸化系統(tǒng),氧化呼吸鏈由移動電子的載體輔酶Q、細(xì)胞色素c和4種呼吸復(fù)合物(復(fù)合體Ⅰ~Ⅳ) 組成,能夠進(jìn)行底物氧化并驅(qū)動質(zhì)子從線粒體基質(zhì)移動至膜間隙。線粒體能通過ATP合成酶利用內(nèi)膜上的質(zhì)子電化學(xué)電勢差 (ΔP) 驅(qū)動ATP合成,將質(zhì)子轉(zhuǎn)運與ATP生成相耦合[26]。呼吸鏈中合成ATP的復(fù)合體Ⅰ、Ⅲ和Ⅳ是雙重遺傳控制的。mtDNA編碼的13個蛋白質(zhì)都是氧化磷酸化系統(tǒng)的組成部分,其余的線粒體呼吸蛋白質(zhì)由nDNA編碼[27]。眼作為高能量需求的器官,特別容易受到線粒體損傷及ATP/ADP異常的影響。最常見的眼部線粒體疾病Leber遺傳性視神經(jīng)病 (Leber hereditary optic neuropathy,LHON)是一種青少年時期發(fā)展的雙側(cè)、無痛、亞急性中央視力喪失的遺傳性疾病,是由于編碼呼吸鏈中復(fù)合物的mtDNA突變導(dǎo)致。超過90%的LHON譜系攜帶3個mtDNA點突變中的1個(m.3460G:A,m.11778G:A,m.14484T:C) ,所有這些突變影響的都是編碼呼吸系統(tǒng)復(fù)合物Ⅰ的基因[28]。目前已經(jīng)利用LHON鑒定了其他幾種mtDNA突變,其中大多數(shù)也發(fā)生在呼吸鏈中。
線粒體結(jié)構(gòu)是高度動態(tài)的,通過不斷的融合和分裂以滿足細(xì)胞不同狀態(tài)下的能量需求[29]。線粒體融合除了依賴GTP、內(nèi)膜的膜電位 (ΔΨ) 等能量代謝改變外[30],還需要3種融合蛋白,包括位于線粒體外膜的Mfn1/2及位于線粒體內(nèi)膜的Opa1。而線粒體膜電位對視神經(jīng)萎縮相關(guān)蛋白1 (optic atrophy 1,OPA1) 的加工和水解有調(diào)節(jié)作用。線粒體代謝作用和線粒體融合之間存在相互依賴性,正是由于這種調(diào)控機制的復(fù)雜性,當(dāng)線粒體中的某一環(huán)節(jié)發(fā)生異常,編碼線粒體蛋白的線粒體基因或核基因異常引起呼吸鏈功能障礙,線粒體損傷逐步累積,將導(dǎo)致疾病的發(fā)生發(fā)展[31]。
細(xì)胞內(nèi)部形成的ROS絕大多數(shù)由線粒體產(chǎn)生。在呼吸鏈中,復(fù)合物Ⅰ和Ⅲ不可避免地形成超氧化物。盡管ROS是細(xì)胞信號傳導(dǎo)調(diào)節(jié)的重要參與者,但是當(dāng)細(xì)胞含有過多的ROS時,就會對DNA、蛋白質(zhì)和脂質(zhì)等細(xì)胞大分子造成損害。O2· (超氧陰離子自由基) 可以與錳超氧化物歧化酶發(fā)生歧化反應(yīng)轉(zhuǎn)化為H2O2。在氧化還原活性金屬離子存在的條件下,H2O2可以產(chǎn)生高反應(yīng)性的羥基,導(dǎo)致mtDNA多個位點的損傷。不僅如此,ROS還會影響電子傳遞及能量代謝過程中的許多線粒體酶,包括細(xì)胞色素c氧化酶、肌酸激酶、ATP合成酶和ADP載體等[32]。眼作為特殊的器官,長期暴露于可見光中,細(xì)胞內(nèi)的線粒體可通過與線粒體光敏劑 (如細(xì)胞色素c氧化酶) 相互作用產(chǎn)生過多的ROS,導(dǎo)致線粒體功能障礙。研究[33]表明,眼內(nèi)的特定組織也可以產(chǎn)生非線粒體來源的ROS,如脂褐素 (視網(wǎng)膜色素上皮細(xì)胞中累積的年齡相關(guān)色素) 是ROS的有效光誘導(dǎo)發(fā)生物;在微血管內(nèi)皮細(xì)胞中,NADPH氧化酶是超氧化物的主要來源。這些ROS也可促進(jìn)線粒體的外源性氧化損傷,加劇線粒體功能障礙。這種氧化所致線粒體損傷的逐步累積被認(rèn)為是許多年齡相關(guān)性眼病的發(fā)病機制[10-11]。
大量研究表明,越來越多的年齡相關(guān)性眼病涉及線粒體功能障礙。其中,線粒體來源的ROS含量的升高與發(fā)生在眼前、后段的疾病密切相關(guān)。遺傳性線粒體基因突變及氧化損傷所致的線粒體損傷的逐步累積是導(dǎo)致年齡相關(guān)性疾病發(fā)生發(fā)展的重要因素[34]。
年齡相關(guān)性白內(nèi)障又稱老年性白內(nèi)障,是最常見的白內(nèi)障類型,隨年齡增加其發(fā)病率顯著升高。雖然白內(nèi)障的發(fā)病機制較為復(fù)雜,但相當(dāng)多的證據(jù)表明,線粒體功能障礙及ROS失衡是年齡相關(guān)性白內(nèi)障發(fā)生的重要原因[35]。晶狀體由前方晶狀體上皮細(xì)胞和赤道部的上皮細(xì)胞向后移動分化成的晶狀體纖維細(xì)胞構(gòu)成。在此過程中,晶狀體纖維細(xì)胞逐漸失去細(xì)胞核。晶狀體上皮細(xì)胞和新分化的纖維細(xì)胞是含有線粒體能夠進(jìn)行氧代謝的細(xì)胞。晶狀體需要有穩(wěn)定的氧化—抗氧化系統(tǒng)才能維持其透明度。但由于晶狀體存在于高度氧化的微環(huán)境中,光、紫外線和高氧通量的損傷持續(xù)存在,可強烈地促進(jìn)晶狀體上皮細(xì)胞的氧化損傷、線粒體損傷,ROS產(chǎn)生增加,使晶狀體中蛋白質(zhì)巰基丟失,氧化物質(zhì)殘留,產(chǎn)生高分子量聚集體[36]。氧化應(yīng)激所致的線粒體損傷在晶狀體中累積,最終將導(dǎo)致晶狀體發(fā)生渾濁。此外,晶狀體纖維不斷生成并將原先的纖維擠向中心,陳舊的纖維聚集于晶狀體核,此處的蛋白更易受氧化應(yīng)激的損傷[37]。正是由于人類晶狀體細(xì)胞對氧化損傷高度敏感,當(dāng)線粒體發(fā)生功能障礙時,極易引起晶狀體混濁[38]。
青光眼是全球第二大致盲眼病,視神經(jīng)萎縮和視野缺損是其重要特點。其視神經(jīng)的病理改變與在原發(fā)性線粒體疾病的視神經(jīng)病變中觀察到的視神經(jīng)杯狀萎縮相似[39]。視神經(jīng)包裹線粒體,使其更容易受到視網(wǎng)膜神經(jīng)節(jié)細(xì)胞 (retinal ganglion cells,RGCs) 的線粒體呼吸功能下降的影響[39-40]。青光眼眼內(nèi)壓升高可導(dǎo)致視網(wǎng)膜氧化應(yīng)激,加之光暴露等危險因素,RGCs的線粒體功能受到嚴(yán)重影響并增加ROS的產(chǎn)生。有證據(jù)表明,線粒體功能障礙可能會進(jìn)一步降低RGCs產(chǎn)生生物能量,增加細(xì)胞對氧化應(yīng)激的敏感性。研究[41]發(fā)現(xiàn),OPA1過表達(dá)對青光眼小鼠模型的RGCs具有保護(hù)作用,能降低細(xì)胞凋亡率,并可減少青光眼視神經(jīng)的變化。正常眼壓性青光眼與編碼線粒體蛋白的幾種mtDNA變異序列的累積有關(guān)。研究[42-44]發(fā)現(xiàn),小梁網(wǎng)對氧化應(yīng)激誘發(fā)的損傷有特殊敏感性。
糖尿病性視網(wǎng)膜病變是導(dǎo)致失明的主要疾病之一,其發(fā)病機制包括視網(wǎng)膜線粒體的進(jìn)展性功能障礙、高血糖、mtDNA損傷和視網(wǎng)膜毛細(xì)血管細(xì)胞凋亡加速等[45]。已有研究[45]證實線粒體功能障礙在糖尿病性視網(wǎng)膜病變中起重要作用。糖尿病患者的視網(wǎng)膜線粒體氧化應(yīng)激增加,復(fù)合體Ⅲ是活性氧增加的主要來源之一。超氧化物在糖尿病大鼠的視網(wǎng)膜和高糖培養(yǎng)基培養(yǎng)的視網(wǎng)膜血管內(nèi)皮細(xì)胞中均升高。糖尿病大鼠視網(wǎng)膜中H2O2含量增加,出現(xiàn)膜脂過氧化和DNA氧化損傷。視網(wǎng)膜中ROS的長期過度產(chǎn)生可導(dǎo)致糖尿病線粒體功能異常。高血糖誘導(dǎo)的線粒體電子傳遞鏈中超氧化物過量生成,通過抑制GAPDH活性激活高血糖損傷?;|(zhì)金屬蛋白酶2 (matrix metalloproteinase 2,MMP2) 是糖尿病性視網(wǎng)膜病變中的重要蛋白,它在糖尿病視網(wǎng)膜細(xì)胞中被激活并促進(jìn)凋亡[46]?;罨腗MP2通過熱休克蛋白60損傷連接蛋白43,進(jìn)而引起線粒體膜降解,激活細(xì)胞凋亡??寡趸委煟缰饕€粒體超氧化物清除酶錳超氧化物歧化酶的過表達(dá),可降低MMP2介導(dǎo)的線粒體損傷并抑制糖尿病性視網(wǎng)膜病變的發(fā)展[46]。但治療時機很重要,因為動物研究[47]已經(jīng)證明氧化應(yīng)激不僅促進(jìn)糖尿病性視網(wǎng)膜病變的發(fā)展,還能產(chǎn)生代謝記憶,在血糖控制良好時對視網(wǎng)膜病變好轉(zhuǎn)產(chǎn)生抗性,這種代謝記憶可能歸因于受損物質(zhì)在線粒體中的積累及ROS的損傷作用,即使在良好的血糖控制下也不容易消除。晚期糖基化終產(chǎn)物的積累也與代謝記憶有關(guān)[48]。與此同時,mtDNA的突變也與1型糖尿病的耐藥性有關(guān)。如在編碼NADH脫氫酶亞基2的線粒體基因中,單核苷酸變化(C5173A) 可致甲硫氨酸取代亮氨酸,從而導(dǎo)致耐藥性的產(chǎn)生[49]。糖尿病誘導(dǎo)的氧化應(yīng)激的抗氧化劑清除已經(jīng)成為近年研究的主題。
年齡相關(guān)性黃斑變性也稱老年黃斑變性(age-related macular degeneration,AMD) ,大多發(fā)生于45歲以上,其患病率隨年齡的增長而增高,是當(dāng)前中老年人的重要致盲疾病。目前認(rèn)為線粒體基因組功能障礙參與了臨床及動物模型的AMD[50-51]。隨著年齡的增長,視網(wǎng)膜色素上皮細(xì)胞中線粒體的數(shù)量和面積顯著減少。最近,已經(jīng)發(fā)現(xiàn)與AMD發(fā)病有關(guān)的mtDNA單倍群。許多研究[51]也證實由mtDNA損傷引發(fā)的線粒體功能障礙是視網(wǎng)膜老化和AMD發(fā)展的基礎(chǔ)。由于RGCs不被來自短波長光的黃斑色素保護(hù),因此特別容易受到光誘導(dǎo)的損傷[52]。老年人的視網(wǎng)膜中光感受器外部片段產(chǎn)生的ROS增加,mtDNA的缺失和損傷增加。此外,在敲除錳超氧化物歧化酶的小鼠視網(wǎng)膜中產(chǎn)生了與“干”AMD類似的病理損傷[53]。此外,有研究[50]在AMD患者和年齡匹配對照組之間比較了視網(wǎng)膜和血液中的mtDNA,結(jié)果發(fā)現(xiàn)視網(wǎng)膜細(xì)胞比血液中存在更多的mtDNA重排和缺失。這些mtDNA基因組的改變似乎能夠隨著時間的推移在病變的RGCs中積累,持續(xù)加劇視網(wǎng)膜的損傷,最終導(dǎo)致視力喪失。
線粒體與老化密切相關(guān),在年齡相關(guān)性眼病中具有重要作用。隨著人類預(yù)期壽命的不斷增加,迫切需要有效的方法預(yù)防或延緩如青光眼,白內(nèi)障、AMD等年齡相關(guān)性眼病的發(fā)生。雖然目前的臨床治療方案不涉及靶向線粒體治療策略,但減少氧化應(yīng)激損傷和線粒體功能障礙的發(fā)生,維持mtDNA的完整性,是未來研究中必須面對的挑戰(zhàn)。
參考文獻(xiàn):
[1] FALK MJ. Neurodevelopmental manifestations of mitochondrial disease [J]. J Dev Behav Pediatr,2010,31 (7) :610-621. DOI:10.1097/DBP.0b013e3181ef42c1.
[2] GRIMM A,ECKERT A. Brain aging and neurodegeneration:from a mitochondrial point of view [J]. J Neurochem,2017,143 (4) :418-431. DOI:10.1111/jnc.14037.
[3] GRIMM A,F(xiàn)RIEDLAND K,ECKERT A. Mitochondrial dysfunction:the missing link between aging and sporadic Alzheimer’s disease [J].Biogerontology,2016,17 (2) :281-296. DOI:10.1007/s10522-015-9618-4.
[4] SEO DY,LEE SR,KIM N,et al. Age-related changes in skeletal muscle mitochondria:the role of exercise [J]. Integr Med Res,2016,5 (3) :182-186. DOI:10.1016/j.imr.2016.07.003.
[5] HEPPLE RT. Impact of aging on mitochondrial function in cardiac and skeletal muscle [J]. Free Radic Biol Med,2016,98:177-186.DOI:10.1016/j.freeradbiomed.2016.03.017.
[6] ZHAO D,YANG J,YANG L. Insights for oxidative stress and mtor signaling in myocardial ischemia/reperfusion injury under diabetes [J]. Oxid Med Cell Longev,2017,2017:6437467. DOI:10.1155/2017/6437467.
[7] DYMKOWSKA D. Oxidative damage of the vascular endothelium in type 2 diabetes -the role of mitochondria and NAD (P) H oxidase [J].Postepy Biochem,2016,62 (2) :116-126.
[8] OHIA SE,OPERE CA,LEDAY AM. Pharmacological consequences of oxidative stress in ocular tissues [J]. Mutat Res,2005,579 (1/2) :22-36. DOI:10.1016/j.mrfmmm.2005.03.025.
[9] NJIE-MBYE YF,KULKARNI-CHITNIS M,OPERE CA,et al. Lipid peroxidation:pathophysiological and pharmacological implications in the eye [J]. Front Physiol,2013,4:366. DOI:10.3389/fphys.2013.00366.
[10] NITA M,GRZYBOWSKI A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults [J]. Oxid Med Cell Longev,2016,2016:3164734.DOI:10.1155/2016/3164734.
[11] KRUK J,KUBASIK-KLADNA K,ABOUL-ENEIN HY. The role oxidative stress in the pathogenesis of eye diseases:current status and a dual role of physical activity [J]. Mini Rev Med Chem,2015,16 (3) :241-257.
[12] LERUEZ S,AMATI-BONNEAU P,VERNY C,et al. Mitochondrial dysfunction affecting visual pathways [J]. Rev Neurol (Paris) ,2014,170 (5) :344-354. DOI:10.1016/j.neurol.2014.03.009.
[13] APPELHANS T,RICHTER CP,WILKENS V,et al. Nanoscale organization of mitochondrial microcompartments revealed by combin-ing tracking and localization microscopy [J]. Nano Lett,2012,12(2) :610-616. DOI:10.1021/nl203343a.
[14] BUSCH KB,DECKERS-HEBESTREIT G,HANKE GT,et al. Dynamics of bioenergetic microcompartments [J]. Biol Chem,2013,394 (2) :163-188. DOI:10.1515/hsz-2012-0254.
[15] DUDKINA NV,F(xiàn)OLEA IM,BOEKEMA EJ. Towards structural and functional characterization of photosynthetic and mitochondrial supercomplexes [J]. Micron,2015,72:39-51. DOI:10.1016/j.micron.2015.03.002.
[16] ATTARDI G,SCHATZ G. Biogenesis of mitochondria [J]. Annu Rev Cell Biol,1988,4:289-333. DOI:10.1146/annurev.cb.04.110188.001445.
[17] SHAFA SHARIAT PANAHI M,HOUSHMAND M,TABASSI AR.Mitochondrial D-loop variation in leber hereditary neuropathy patients harboring primary G11778A,G3460A,T14484C mutations:J and W haplogroups as high-risk factors [J]. Arch Med Res,2006,37(8) :1028-1033. DOI:10.1016/j.arcmed.2006.04.009.
[18] REZVANI Z,DIDARI E,ARASTEHKANI A,et al. Fifteen novel mutations in the mitochondrial NADH dehydrogenase subunit 1,2,3,4,4L,5 and 6 genes from Iranian patients with Leber’s hereditary optic neuropathy (LHON) [J]. Mol Biol Rep,2013,40 (12) :6837-6841. DOI:10.1007/s11033-013-2801-2.
[19] YAKES FM,VAN HOUTEN B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress [J]. Proc Natl Acad Sci USA,1997,94 (2) :514-519.
[20] BLASIAK J,GLOWACKI S,KAUPPINEN A,et al. Mitochondrial and nuclear DNA damage and repair in age-related macular degeneration [J]. Int J Mol Sci,2013,14 (2) :2996-3010. DOI:10.3390/ijms14022996.
[21] BLASIAK J,SZAFLIK JP. DNA damage and repair in age-related macular degeneration [J]. Front Biosci (Landmark Ed) ,2011,16:1291-1301.
[22] JARRETT SG,BOULTON ME. Poly (ADP-ribose) polymerase offers protection against oxidative and alkylation damage to the nuclear and mitochondrial genomes of the retinal pigment epithelium [J].Ophthalmic Res,2007,39 (4) :213-223. DOI:10.1159/000104683.
[23] KOVACS K,ERDELYI K,HEGEDUS C,et al. Poly (ADP-ribosyl)ation is a survival mechanism in cigarette smoke-induced and hydrogen peroxide-mediated cell death [J]. Free Radic Biol Med,2012,53(9) :1680-1688. DOI:10.1016/j.freeradbiomed.2012.08.579.
[24] WANG K,TAKAHASHI Y,GAO ZL,et al. Mitochondrial ND3 as the novel causative gene for Leber hereditary optic neuropathy and dystonia [J]. Neurogenetics,2009,10 (4) :337-345. DOI:10.1007/s10048-009-0194-0.
[25] BALLARD JW,KATEWA SD,MELVIN RG,et al. Comparative analysis of mitochondrial genotype and aging [J]. Ann N Y Acad Sci,2007,1114:93-106. DOI:10.1196/annals.1396.011.
[26] MITCHELL P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism [J]. Nature,1961,191:144-148.
[27] AGARONYAN K,MOROZOV YI,ANIKIN M,et al. Mitochondrial biology. Replication-transcription switch in human mitochondria[J]. Science,2015,347 (6221) :548-551. DOI:10.1126/science.aaa0986.
[28] YUM HR,CHAE H,SHIN SY,et al. Pathogenic mitochondrial DNA mutations and associated clinical features in Korean patients with Leber’s hereditary optic neuropathy [J]. Invest Ophthalmol Vis Sci,2014,55 (12) :8095-8101. DOI:10.1167/iovs.14-15311.
[29] PATRUSHEV MV,MAZUNIN IO,VINOGRADOVA EN,et al. Mitochondrial fission and fusion [J]. Biochemistry (Mosc) ,2015,80(11) :1457-1464. DOI:10.1134/S0006297915110061.
[30] MALKA F,GUILLERY O,CIFUENTES-DIAZ C,et al. Separate fusion of outer and inner mitochondrial membranes [J]. EMBO Rep,2005,6 (9) :853-859. DOI:10.1038/sj.embor.7400488.
[31] SILVA RAMOS E,LARSSON NG,MOURIER A. Bioenergetic roles of mitochondrial fusion [J]. Biochim Biophys Acta,2016,1857 (8) :1277-1283. DOI:10.1016/j.bbabio.2016.04.002.
[32] BIRCH-MACHIN MA,BOWMAN A. Oxidative stress and ageing[J]. Br J Dermatol,2016,175 (Suppl 2) :26-29. DOI:10.1111/bjd.14906.
[33] FANJUL-MOLES ML,LOPEZ-RIQUELME GO. Relationship between oxidative stress,circadian rhythms,and AMD [J]. Oxid Med Cell Longev,2016,2016:7420637. DOI:10.1155/2016/7420637.
[34] JARRETT SG,LEWIN AS,BOULTON ME. The importance of mitochondria in age-related and inherited eye disorders [J]. Ophthalmic Res,2010,44 (3) :179-190. DOI:10.1159/000316480.
[35] BRENNAN L,KHOURY J,KANTOROW M. Parkin elimination of mitochondria is important for maintenance of lens epithelial cell ROS levels and survival upon oxidative stress exposure [J].Biochim Biophys Acta,2017,1863 (1) :21-32. DOI:10.1016/j.bbadis.2016.09.020.
[36] PENDERGRASS W,ZITNIK G,TSAI R,et al. X-ray induced cataract is preceded by LEC loss,and coincident with accumulation of cortical DNA,and ROS;similarities with age-related cataracts [J].Mol Vis,2010,16:1496-1513.
[37] BABIZHAYEV MA,YEGOROV YE. Reactive Oxygen species and the aging eye:specific role of metabolically active mitochondria in maintaining lens function and in the initiation of the oxidation-induced maturity onset cataract - a novel platform of mitochondria-targeted antioxidants with broad therapeutic potential for redox regulation and detoxification of oxidants in eye diseases [J]. Am J Ther,2016,23 (1) :e98-e117. DOI:10.1097/MJT.0b013e3181ea31ff.
[38] BABIZHAYEV MA. Mitochondria induce oxidative stress,generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation:disruption of redox lens organization by phospholipid hydroperoxides as a common basis for cataract disease [J]. Cell Biochem Funct,2011,29 (3) :183-206.DOI:10.1002/cbf.1737.
[39] LEE S,VAN BERGEN NJ,KONG GY,et al. Mitochondrial dysfunction in glaucoma and emerging bioenergetic therapies [J]. Exp Eye Res,2011,93 (2) :204-212. DOI:10.1016/j.exer.2010.07.015.
[40] OSBORNE NN. Mitochondria:their role in ganglion cell death and survival in primary open angle glaucoma [J]. Exp Eye Res,2010,90(6) :750-757. DOI:10.1016/j.exer.2010.03.008.
[41] JU WK,KIM KY,DUONG-POLK KX,et al. Increased optic atrophy type 1 expression protects retinal ganglion cells in a mouse model of glaucoma [J]. Mol Vis,2010,16:1331-1342.
[42] TANWAR M,DADA T,SIHOTA R,et al. Mitochondrial DNA analysis in primary congenital glaucoma [J]. Mol Vis,2010,16:518-533.
[43] KUMAR M,TANWAR M,F(xiàn)AIQ MA,et al. Mitochondrial DNA nucleotide changes in primary congenital glaucoma patients [J]. Mol Vis,2013,19:220-230.
[44] KIMURA A,NAMEKATA K,GUO X,et al. Targeting oxidative stress for treatment of glaucoma and optic neuritis [J]. Oxid Med Cell Longev,2017,2017:2817252. DOI:10.1155/2017/2817252.
[45] SANTOS JM,TEWARI S,LIN JY,et al. Interrelationship between activation of matrix metalloproteinases and mitochondrial dys-function in the development of diabetic retinopathy [J]. Biochem Biophys Res Commun,2013,438 (4) :760-764. DOI:10.1016/j.bbrc.2013.07.066.
[46] MOHAMMAD G,KOWLURU RA. Matrix metalloproteinase-2 in the development of diabetic retinopathy and mitochondrial dysfunction [J]. Lab Invest,2010,90 (9) :1365-1372. DOI:10.1038/labinvest.2010.89.
[47] KOWLURU RA. Effect of reinstitution of good glycemic control on retinal oxidative stress and nitrative stress in diabetic rats [J]. Diabetes,2003,52 (3) :818-823.
[48] STITT AW,CURTIS TM. Advanced glycation and retinal pathology during diabetes [J]. Pharmacol Rep,2005,57 (Suppl) :156-168.
[49] GUSDON AM,VOTYAKOVA TV,MATHEWS CE. mt-Nd2a suppresses reactive oxygen species production by mitochondrial complexesⅠandⅢ[J]. J Biol Chem,2008,283 (16) :10690-10697.DOI:10.1074/jbc.M708801200.
[50] KENNEY MC,ATILANO SR,BOYER D,et al. Characterization of retinal and blood mitochondrial DNA from age-related macular degeneration patients [J]. Invest Ophthalmol Vis Sci,2010,51 (8) :4289-4297. DOI:10.1167/iovs.09-4778.
[51] DIB B,LIN H,MAIDANA DE,et al. Mitochondrial DNA has a pro-inflammatory role in AMD [J]. Biochim Biophys Acta,2015,1853 (11 Pt A) :2897-2906. DOI:10.1016/j.bbamcr.2015.08.012.
[52] OLMO-AGUADO S,MANSO AG,OSBORNE NN. Light might directly affect retinal ganglion cell mitochondria to potentially influence function [J]. Photochem Photobiol,2012,88 (6) :1346-1355.DOI:10.1111/j.1751-1097.2012.01120.x.
[53] OSBORNE NN,KAMALDEN TA,MAJID AS,et al. Light effects on mitochondrial photosensitizers in relation to retinal degeneration [J].Neurochem Res,2010,35 (12) :2027-2034. DOI:10.1007/s11064-010-0273-5.