楊美良 羅婉慶 張建仁
摘要:
考慮樁基的剪切變形影響,利用單廣義位移深梁理論,建立了樁基m法的計(jì)算方法,導(dǎo)出了水平位移、轉(zhuǎn)角、彎矩和剪力的初參數(shù)表達(dá)式和無(wú)量綱參數(shù)函數(shù)的統(tǒng)一表達(dá)式,根據(jù)樁底邊界條件建立了初參數(shù)解的計(jì)算公式;給出了無(wú)量綱參數(shù)函數(shù)隨換算深度和彎剪剛度比的變化圖形。研究表明,換算深度小于3.0時(shí),彎剪剛度比對(duì)無(wú)量綱參數(shù)函數(shù)影響較小,換算深度大于4.0時(shí),彎剪剛度比對(duì)無(wú)量綱參數(shù)函數(shù)影響的趨勢(shì)非常明顯,樁基剪切變形的影響程度與樁的邊界條件有關(guān)。算例結(jié)果表明,樁身的剪切變形有增大樁頂水平位移、提高彎矩零點(diǎn)位置、改變彎矩分布特征、擴(kuò)大樁側(cè)土壓力大小等影響。
關(guān)鍵詞:
樁;單廣義位移梁理論;剪切變形;初參數(shù); m法
中圖分類號(hào):TU473
文獻(xiàn)標(biāo)志碼:A文章編號(hào):16744764(2016)06005408
Abstract:
Considering the shear deformation effect of piles, the calculating theory of m method assumption for piles was presented by using the single generalized displacement theory of deep beam. The initial parameter formulae to horizontal displacement, slope, moment and shear force were derived. The unified nondimensional functions were also put forward. According to the boundary conditions, the initial parameters solutions were determined. The changing figures of nondimensional functions with converting length and ratio of bend stiffness to shear stiffness were plotted. Some conclusions were summarized that when the converting length was less than 3.0, there was little influence of the ratio of bending stiffness to shear stiffness on the nondimensional functions , while the converting length was greater than 3.0, the influence of the ratio of bending stiffness to shear stiffness on the nondimensional functions became obvious; the influencing degree of the shear deformation effect was related to the boundary conditions. Example results showed that shear deformation can enlarge the horizontal displacement at the top, lift the position of zero moment, change moment distribution and magnify the soil pressure on pile.
Keywords:
pile; single generalized displacement beam theory; shear deformation; initial parameter; m method
樁基礎(chǔ)是橋梁、建筑等工程中常用的基礎(chǔ)形式,并有日益推廣使用的趨勢(shì)[1],其水平樁的計(jì)算理論主要有m法、K法、C值法、雙參數(shù)法等[12]。目前,規(guī)范推薦采用基于Euler梁理論的m法,并編制了大量計(jì)算表格,相應(yīng)的有限元法[34]、有限差分法[4]和瑞利里茲法[3]等?;谏盍豪碚?,考慮樁身剪切變形影響的研究也取得積極進(jìn)展,肖世衛(wèi)[5]考慮樁身剪切變形影響,利用深梁?jiǎn)卧治隽藰稒M向受力問(wèn)題,并以此分析樁身剪切變形對(duì)樁頂位移和樁身內(nèi)力的影響,得到了剪切變形影響極小的結(jié)論。該文不足之處是采用有限元法進(jìn)行數(shù)值研究,沒(méi)有推導(dǎo)理論解析解;樁身抗彎剛度矩陣采用Timoshenko梁?jiǎn)卧灰坪瘮?shù)、但樁側(cè)土抗力剛度卻采用Euler梁?jiǎn)卧灰坪瘮?shù),兩者不統(tǒng)一。
目前,考慮剪切變形影響的深梁有0~3階剪切變形理論,被廣泛認(rèn)同的理論有Timoshenko理論[6]、Jemielita理論[7]、Levinson理論[8]、Bickford理論[9]、Reddy理論[10]等,這些理論都有2個(gè)或以上的位移,計(jì)算上不方便。2000年,龔克提出了單廣義位移深梁理論[11],該理論能用單一的廣義撓度表出轉(zhuǎn)角、彎矩和剪力,計(jì)算上非常方便,本文選擇該理論來(lái)建立樁基m法分析方法,以考慮基樁的剪切變形影響,推動(dòng)樁基計(jì)算理論的發(fā)展。
1單廣義位移深梁理論
2000年龔克提出單廣義位移深梁理論,建立理論模型時(shí)取梁的中心線為 x 軸,梁的撓曲面為xy 平面, 對(duì)梁的變形作如下假設(shè)[11]:1)梁的中性軸的軸向位移不計(jì),y 方向的擠壓變形不計(jì);2)變形前垂直于中心線的平面在變形后仍保持為平面(不一定垂直于撓曲線) ;3)剪切轉(zhuǎn)角隨x 二階變化率不計(jì)。相應(yīng)的平衡方程、轉(zhuǎn)角ψ、彎矩M和剪力Q表達(dá)式如下[13]見(jiàn)式(1)。endprint
D·4wx4=qψ=wx+DC3wx3M=D·2wx2+DC4wx4Q=D·3wx3 (1)
式中:D(=EI)為樁身的抗彎勁度、C(=kGA)為樁身的抗剪勁度、k為樁身截面的剪切修正系數(shù),圓形截面取9/10、矩形截面取5/6。
從以上計(jì)算公式可以看出,單廣義位移深梁理論的平衡方程與Euler梁理論一致,轉(zhuǎn)角、彎矩和剪力用廣義位移撓度表示,該理論的正確性和推廣應(yīng)用已在文獻(xiàn)[11]中有充分論證。
2彈性樁的m法計(jì)算理論
采用彈性樁m法的計(jì)算假定,彈性樁側(cè)受水平分布力的平衡條件為
從圖4和表1的樁頂水平位移數(shù)據(jù)欄可以看出,隨著R的加大,樁的抗剪剛度減小,樁頂水平位移加大。當(dāng)R=0.15時(shí),樁頂水平位移與不考慮剪切變形的位移大5.51%。
從圖4和表2的正側(cè)最大彎矩、負(fù)側(cè)最大彎矩?cái)?shù)據(jù)欄可以看出,考慮剪切變形影響時(shí),樁側(cè)最大正彎矩減小、負(fù)側(cè)最大彎矩增大。本算例中,不考慮剪切變形時(shí),樁身長(zhǎng)度范圍內(nèi)不出現(xiàn)負(fù)彎矩,但考慮剪切變形后,由于樁身的彎曲剛度減小,樁身變形加大,正側(cè)彎矩與不考慮剪切變形影響時(shí)的結(jié)果減小0.37%,同時(shí),在另一側(cè)出現(xiàn)負(fù)彎矩現(xiàn)象,不考慮剪切變形影響時(shí)則無(wú)負(fù)彎矩出現(xiàn)。因此,剪切變形對(duì)樁身的彎矩分布有一定影響,并有提高彎矩0點(diǎn)位置的作用。
從圖5和表2的正側(cè)最大壓應(yīng)力和負(fù)側(cè)的最大壓應(yīng)力數(shù)據(jù)欄可以看出,考慮剪切變形的影響后,正、負(fù)側(cè)的最大壓應(yīng)力都有所擴(kuò)大,其中,正側(cè)正應(yīng)力與不考慮剪切變形時(shí)的結(jié)果擴(kuò)大15.20%、負(fù)側(cè)正應(yīng)力擴(kuò)大94.55%。
7結(jié)論
從以上的分析、公式推導(dǎo)和算例分析可以看出:
1)本文精心選擇單廣義位移深梁理論,建立樁基m法分析方法,可以考慮樁身剪切變形影響,當(dāng)彎剪剛度比為0時(shí)可退化成不考慮剪切變形影響的形式,因此,所導(dǎo)出計(jì)算公式的適應(yīng)性比目前基于Euler梁理論的常用m法更好。
2)不考慮邊界條件時(shí),樁身位移、內(nèi)力計(jì)算的無(wú)量綱參數(shù)函數(shù)有統(tǒng)一表達(dá)式,計(jì)算時(shí)取級(jí)數(shù)的前10項(xiàng)就有非常高的精度。
3)當(dāng)換算深度αh>3.0時(shí),剪切變形對(duì)位移、內(nèi)力計(jì)算的無(wú)量綱參數(shù)函數(shù)的影響才開(kāi)始顯示出來(lái),當(dāng)換算深度αh<3.0時(shí)剪切變形影響甚小。
4)隨著彎剪剛度比的增大,剪切變形有擴(kuò)大樁頂位移、減小樁身正彎矩、改變樁身兩側(cè)彎矩的分布特征、提高彎矩0點(diǎn)位置等作用。
參考文獻(xiàn):
[1]
吳恒立.計(jì)算推力樁的綜合剛度原理和雙參數(shù)法[M].北京:人民交通出版社,2000:138.
WU H L. Synthetical stiffness principle and biparameter method for lateral loaded piles[M].Beijing: China Communications Press,2000:138.(in Chinese)
[2] 凌治平.基礎(chǔ)工程[M].北京:人民交通出版社,1986:96114.
LIN Z P. Foundation engineering[M]. Beijing: China Communications Press,1986:96114.(in Chinese)
[3] 夏桂云.嵌巖彈性樁的穩(wěn)定分析[J].重慶交通學(xué)院學(xué)報(bào),2001,20(1):7982.
XIA G Y. Stability analysis of socketed poles[J]. Journal of Chongqing Communications University,2001,20(1):7982.(in Chinese)
[4] 戴自航,陳林靖.多層地基中水平荷載樁計(jì)算m法的兩種數(shù)值解析[J].巖土工程學(xué)報(bào),2007,29(5):690696.
DAI Z H,CHEN L J. Two numerical solutions of laterally loaded piles installed in multilayered soils by m method[J].Chinese Journal of Geotechnical Engineering, 2007, 29(5):690696.(in Chinese)
[5] 肖世衛(wèi).橫向受力樁中剪切變形影響的分析[J].西南交通大學(xué)學(xué)報(bào),1992(1):2831.
XIA S W. Analysis of the influence of shear deformation on laterally loaded piles[J]. Journal of Southwest Jiaotong University,1992(1):2831.(in Chinese)
[6] 夏桂云,李傳習(xí).考慮剪切變形影響的桿系結(jié)構(gòu)理論與應(yīng)用[M].北京:人民交通出版社,2008.
XIA G Y,LI C X. Calculating theory and its applications of frame structures with shear deformation effects[M].Beijing:China Communications Press,2008.(in Chinese)
[7] WANG C M, REDDY J N, LEE K H. Shear deformable beams and plates[M]. Amsterdam:Elsevier, 2000.
[8] LEVINSON M. A new rectangular beam theory [J]. Journal of Sound and Vibration,1981(74):8187.
[9] BRICKFORD W B. A consistent higher order beam theory [J]. Developments in Theoretical and Applied Mechanics,1982(11):137150.
[10] REDDY J N. A simple higher order theory for laminated composite plates[J]. Journal of Applied Mechanics,1984(51):745752.
[11] 龔克.單廣義位移的深梁理論與中厚板理論[J].應(yīng)用數(shù)學(xué)和力學(xué),2000,21(9):984990.
GONG K. Bending Theories for beams and plates with single generalized displacement[J]. Applied Mathematics and Mechanics,2000, 21(9):984990.(in Chinese)
[12] 周相略.樁基礎(chǔ)m法計(jì)算系數(shù)的統(tǒng)一表達(dá)式[J].公路,1993(6):1822.
ZHOU X N. Uniform expressions for calculating parameters of piles by m method[J]. Highway,1993(6):1822.(in Chinese)
(編輯胡玲)endprint