亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        A NOTE ON HILBERT TRANSFORM OF A CHARACTERISTIC FUNCTION

        2018-01-15 06:35:11QUMengJIANGManru
        數(shù)學(xué)雜志 2018年1期

        QU Meng,JIANG Man-ru

        (School of Mathematics and Computer Science,Anhui Normal University,Wuhu 241003,China)

        1 Introduction

        The Hilbert transform is the operatorHdefined by

        initially forf∈S(R).A very straight calculus via Fourier transform and Plancherel’s equality show thatHcan be extended to an isomorphic onL2;i.e.,

        There were also several other ways to prove(1.1),see[2,7]and references therein.Halso satisfies so called Kolmogorov’s inequality;i.e.,for anyλ>0,there exists a positive constantCsuch that

        The best possible constantCin(1.2)was obtained by Davis in[4].Moreover by interpolation technique and duality argument,Hcan be extended to a bounded operator onLp(R)for allp>1.We can refer to the nice textbooks[3,5]and[9]for more properties of Hilbert transform.

        LetEbe a Lebesgue measurable set with|E|<∞and denoteH(χE)be the Hilbert transform of the characteristic function of the setE.In 1959,Stein and Weiss[8]proved that the distribution function ofH(χE)does not depend on the structure of the setEbut only on its measure|E|.More precisely,for anyλ>0,

        In[1],Colzani,Laeng and Monz′on gave an exact formula for theLpintegral ofH(χE).For 1<p<∞,

        Theorem 1.1 LetEbe a Lebesgue measurable subset of R with|E|<∞and letHbe the Hilbert transform.For all 1<p<∞,

        Theorem 1.2 LetEbe a Lebesgue measurable subset of R with|E|<∞and letHbe the Hilbert transform.For anyλ>0,

        We note that in the proof of Theorem 1.2,Laeng used an argument taking Theorem 1.1 for granted.This argument(Lemma 1.4 in[1])reads

        If‖f‖p=‖g‖pforp1<p<p2then the distrubtion functions offandgequals;i.e.,|{x∈E:|f(x)|>λ}|=|{x∈E:|f(x)|>λ}|for allλ>0.

        Also as pointed in[1],this argument is based on a Mellin transform.However as in the usual way,theLp(X)norm has layer cake representation

        Once we proved the distribution function result(Theorem 1.2)in a direct way,Theorem 1.1 is proved with the help of“l(fā)ayer cake representation”.

        This short note is just based on the upon argument.In Section 2,we prove Theorem 1.2 which relies on a refinement of the key lemma in[8]by Stein and Weiss.The proof of Theorem 1.2 also relies on a limiting argument.In Section 3,by using Theorem 1.2,we give the proof of Theorem 1.1 on the straight-forward way.

        2 Proof of Theorem 1.2

        We first recall the following result in[8].

        Lemma 2.1 LetEbe a compact set in R withwherea1<b1<a2<b2<···<an<bn.Denotebe a rational function.Then for anyξ>1,

        Remark 2.2 LetEas in Lemma 2.1,an observation is for anyξ>0,

        which implies that the set{x∈E:f(x)>ξ}is at most the collection of finite elementsb1,···,bnand then is a set of measure zero.

        With(2.1)and(2.3),we immediately have

        Similar way as discussed above,we also have

        and

        By(2.2)and(2.5),we have

        Similar to Lemma 2.1 and Remark 2.2,we immediate have

        Lemma 2.3 LetEas in the Lemma 2.1.Denotewe have

        The following lemma asserts that Theorem 1.2 is right for a compact setE?R.

        Lemma 2.4 LetEbe a compact set,equations(1.7)and(1.8)preserve.

        Proof For any compact setE,we can writewitha1<b1<a2<b2<···<an<bn.De fi neandg(x)=as introduced in Lemma 2.1.By the property of Hilbert transformHχ[a,b](x)(see Example 5.1.3 in[5]),we have

        So for anyλ>0,the set{x∈R:|H(χE)(x)|>λ}can be rewrite as

        We note thatWiintersect empty each other.Therefore

        The same way,by(2.3),(2.5),(2.7)and(2.8)withξ=eπλ,

        The lemma is proved.

        Now we turn to the proof of Theorem 1.2.SinceEis finite measurable set,there exists a sequence of compact sets{Fn},suqch that for anyn,Fn?EandWith which we immediately getand then(1.1).Now for any fixedλ>0,we write

        Then for anyu∈(0,1),by Chebyshev’s inequality and Lemma 2.4,we have

        Letn→∞,and then letu→1,we have

        On the other hand,for anynand anyu∈(0,1),Chebyshev’s inequality and Lemma 2.4 gives

        Letn→∞and then letu→1,we haveBoth(2.10)and(2.11)give|{x∈E:|H(χE)(x)|>λ}|This is just the equation(1.7).We end the proof of Theorem 1.2 since the proof of(1.8)is the similar one.

        3 Proof of Theorem 1.1

        Proof We only prove(1.5)since we can prove(1.6)in the similar way.Forp>1,

        Then by Theorem 1.2,we have

        and

        In the last equality in(3.3),we useCombining(3.1)–(3.3),(1.5)follows.

        [1]Colzani L,Laeng E,Monz′on L.Variations on a theme of Boole and Stein-Weiss[J].J.Math.Anal.Appl.,2010,363:225–229

        [2]Duoandikoetxea J.The Hilbert transform and Hermite functions:a real variabel proof of theL2-isometry[J].J.Math.Anal.Appl.,2008,347:592–596.

        [3]Duoandikoetxea J.Fourier analysis[M].Providence,RI:American Math.Soc.,2001.

        [4]Davis B.On the weak type(1,1)inequality for conjugate functions[J].P.Amer.Math.Soci.,1974,44:307–311.

        [5]Grafakos L.Classical Fourier analysis(3nd ed.)[M].GTM 249,New York:Springer,2014.

        [6]Laeng E.On theLpnorm of the Hilbert transform of a characteristic function[J].J.Func.Anal.,2012,262:4534–4539.

        [7]Laeng E.A simple real-variable proof that the Hilbert transform is anL2-isometry[J].C.R.Math.Acad.Sci.Paris.,2010,348(17-18):977–980.

        [8]Stein E,Weiss G.An extension of a theorem of Marcinkiewicz and some of its application[J].J.Math.Mech.,1959,8:263–284.

        [9]Wei D.Boundedness of the Hilbert transform on Banach valued Hardy spaces[J].J.Math.,1999,19(1):117–120.

        十八禁视频网站在线观看| 精品人妻一区二区三区浪人在线 | 欧美日韩中文字幕日韩欧美| 亚洲一二三区在线观看| 亚洲电影一区二区三区 | 亚洲精品国产精品国自产观看| 亚洲七七久久综合桃花| 国产精品日本天堂| 中文字幕亚洲乱码熟女在线| 精品国产三区在线观看| 国产亚洲精品av一区| 国产日韩精品suv| 亚洲 另类 日韩 制服 无码| 亚洲成a人片在线观看天堂无码| 中出高潮了中文字幕| 亚洲中文字幕乱码在线观看| 日本激情网站中文字幕| 久久亚洲欧美国产精品 | 自拍偷自拍亚洲精品播放| 99久久国产亚洲综合精品| 国产免费激情小视频在线观看| 免费女女同黄毛片av网站| 国内久久婷婷六月综合欲色啪| 国自产拍偷拍精品啪啪一区二区| 亚洲成av人在线观看天堂无码| 人禽无码视频在线观看| 精品一区二区三区四区少妇| 免费啪啪av人妻一区二区| 久久中文字幕亚洲综合| 国产欧美日韩中文久久| 东京热人妻一区二区三区| 久久久久久久98亚洲精品| 国产一区二区在线观看视频免费| 尤物蜜桃视频一区二区三区| 国产欧美综合一区二区三区| 国产亚洲一本大道中文在线| 欧美丰满大乳高跟鞋| 免费国产一级片内射老| 亚洲精品中文字幕91| 亚洲精品成人网站在线播放| 亚洲精品欧美二区三区中文字幕 |