劉爽 張卓伯
自誘導(dǎo)多能干細(xì)胞(induced pluripotent stem cell,iPSC)被發(fā)現(xiàn)以來(lái)它在神經(jīng)系統(tǒng)疾病的應(yīng)用越來(lái)越廣泛。本研究通過(guò)查閱文獻(xiàn)的方法對(duì)iPSC及其衍生物神經(jīng)干細(xì)胞(neural stem cells NSC)移植治療腦梗死的方法、結(jié)論進(jìn)行概述,為干細(xì)胞移植治療腦梗死提供理論依據(jù)。
腦梗死又稱缺血性腦卒中(cerebral infarction),是指因腦組織局部血液循環(huán)障礙,缺血缺氧引起的神經(jīng)功能障礙性疾病[1]。神經(jīng)細(xì)胞是一種永久細(xì)胞,一旦壞死后不可逆轉(zhuǎn),腦梗死的發(fā)生會(huì)導(dǎo)致神經(jīng)功能的缺損甚至威脅生命。腦梗死在我國(guó)的發(fā)病率很高,約為110/10萬(wàn)人口,腦梗死患者的病死率較高、生活質(zhì)量較差,對(duì)家庭和社會(huì)造成的負(fù)擔(dān)較重。目前多采用藥物或介入手術(shù)治療,尚未發(fā)現(xiàn)任何一種治療可以完全恢復(fù)神經(jīng)系統(tǒng)的功能。近些年來(lái)科學(xué)發(fā)現(xiàn)人類胚胎干細(xì)胞移植是一項(xiàng)新穎而有潛力的治療腦梗死的方法,已有動(dòng)物實(shí)驗(yàn)表明移植入小鼠體內(nèi)的胚胎干細(xì)胞具有多分化性,可以分化為神經(jīng)細(xì)胞,并且具有高度的自我復(fù)制能力,替代死亡的神經(jīng)細(xì)胞而發(fā)揮功能[2]。但是,由于胚胎干細(xì)胞需要使用胚胎細(xì)胞,存在倫理道德?tīng)?zhēng)議,且異體移植會(huì)產(chǎn)生免疫排斥反應(yīng),所以研究受到了限制。2006年誘導(dǎo)多能干細(xì)胞的發(fā)現(xiàn)解決了這一問(wèn)題,日本Yamanaka[3]研究小組利用Oct3/4、Sox2、C-Myc 和Klf4 4種轉(zhuǎn)錄因子重新編碼小鼠胚胎成纖維細(xì)胞,成功獲得了生物特性與胚胎干細(xì)胞非常相似的細(xì)胞,稱為誘導(dǎo)多能干細(xì)胞。
iPSC相比于傳統(tǒng)的細(xì)胞重編程手段具有極大的優(yōu)勢(shì)。(1)iPSC受體細(xì)胞可來(lái)自體細(xì)胞,不需要使用卵母細(xì)胞或胚胎,可避免倫理及免疫排斥兩大問(wèn)題;(2)來(lái)源廣泛。可以取自人B淋巴細(xì)胞[4]、肝細(xì)胞、胃細(xì)胞[5]、神經(jīng)細(xì)胞[6]等多種組織器官;(3)操作簡(jiǎn)單,具有重復(fù)性。取材可以來(lái)自患有特定疾病的患者,從而實(shí)現(xiàn)患者個(gè)體化。例如可以取來(lái)自于患神經(jīng)退行性疾病患者的皮膚細(xì)胞,如肌萎縮側(cè)索硬化癥或帕金森氏病[7],分化提取所需要的細(xì)胞類型,如運(yùn)動(dòng)神經(jīng)元、多巴胺能神經(jīng)元[8],這使得人們?cè)谘芯考膊“l(fā)展的細(xì)胞和分子水平上達(dá)到了一個(gè)新高度;(4)增殖能力高。許多類型的細(xì)胞如神經(jīng)細(xì)胞只能進(jìn)行有限數(shù)量的增殖,而重新編程后得到的iPSC仍然是二倍體細(xì)胞。這讓iPSC技術(shù)迅速取代了傳統(tǒng)的重編程手段, 向臨床應(yīng)用更近一步。
腦梗死與其他神經(jīng)系統(tǒng)退行性疾病不同,腦缺血發(fā)生后血管內(nèi)皮細(xì)胞、星形膠質(zhì)細(xì)胞、少突膠質(zhì)細(xì)胞、神經(jīng)元都在一定程度上發(fā)生了破壞和死亡,因此與帕金森病只需要一種細(xì)胞不同,治療腦梗死需要細(xì)胞移植后分化的細(xì)胞種類更多,但是腦梗死是一次性的腦組織缺血損傷而非退行性改變,已經(jīng)缺血壞死的腦組織不會(huì)再持續(xù)的退化,因此細(xì)胞移植治療腦梗死不需要再進(jìn)行基因修飾和重新編碼。Jiang等[9]在小鼠模型上初步完成了iPSC治療腦梗死的實(shí)驗(yàn),以評(píng)估治療的效果及風(fēng)險(xiǎn),雖然移植后小鼠的功能得到了改善,但發(fā)現(xiàn)大量的iPSC細(xì)胞經(jīng)移植后死亡,只有少量細(xì)胞存活,且存在高致瘤性的問(wèn)題。有報(bào)道稱經(jīng)顱內(nèi)直接注射細(xì)胞較硬膜下腔注射的方法導(dǎo)致畸胎瘤的概率增高。有研究將纖維蛋白膠與iPSC混合后移植入腦梗死小鼠的硬膜下腔,觀察到小鼠的功能改善,梗死面積縮小,且在6周后未發(fā)現(xiàn)腫瘤的形成,說(shuō)明纖維蛋白膠可以一定程度上降低腫瘤發(fā)生的概率[10]。
由于iPSC的較高致瘤性和較低存活率,將未分化的iPSC直接用于治療腦梗死是不可行的,而移植后的iPSC需要先分化為神經(jīng)干細(xì)胞(neural stem cells NSC),才能進(jìn)一步分化成為神經(jīng)元和神經(jīng)膠質(zhì)細(xì)胞,生理?xiàng)l件下人的腦組織側(cè)腦室的腦室下層及海馬齒狀回粒內(nèi)含有一定量的神經(jīng)干細(xì)胞,這些細(xì)胞以膠質(zhì)細(xì)胞的狀態(tài)存在而不發(fā)揮功能,當(dāng)神經(jīng)細(xì)胞受到損傷時(shí)這些神經(jīng)干細(xì)胞受到環(huán)境因素中某些信號(hào)因子的影響遷移、分化為神經(jīng)元而發(fā)揮功能。移植的NSC具有弱免疫原性的特點(diǎn),進(jìn)行細(xì)胞移植后很少發(fā)生免疫排斥的現(xiàn)象。此外,NSC的趨化性較強(qiáng),由于微環(huán)境的作用,移植入體內(nèi)后可向病灶處遷移、增殖、分化。因此,有研究將iPSC-NSC移植應(yīng)用于治療腦梗死[11],目前已有多種方法可在體外成功地將iPSCs誘導(dǎo)為神經(jīng)干細(xì)胞[12-14]。有研究將人類iPSC-NSC移植到腦缺血大鼠的紋狀體,并使用MRI追蹤發(fā)現(xiàn)細(xì)胞經(jīng)注射區(qū)域沿著胼胝體遷移至腦梗死區(qū)域,與宿主細(xì)胞發(fā)生整合,取代受損的細(xì)胞重建神經(jīng)環(huán)路[15]。此外,神經(jīng)干細(xì)胞修復(fù)神經(jīng)系統(tǒng)的損傷可能還有以下機(jī)制:(1)NSC分化為多種類型的成熟神經(jīng)元、星狀細(xì)胞、少突膠質(zhì)細(xì)胞,修復(fù)、替代梗死后缺損的神經(jīng)細(xì)胞;(2)改變微環(huán)境,產(chǎn)生營(yíng)養(yǎng)因子,如成纖維細(xì)胞生長(zhǎng)因子(fibroblast growth factor)、表皮生長(zhǎng)因子(epidermal growth factor)、腦源性神經(jīng)營(yíng)養(yǎng)因子(brain derived neurotrophic factor)等促進(jìn)損傷修復(fù)作用的營(yíng)養(yǎng)因子[16];(3)減少了炎癥反應(yīng)的發(fā)生、抑制了膠質(zhì)細(xì)胞的增生,且促進(jìn)了室管膜下區(qū)內(nèi)源性神經(jīng)干細(xì)胞的增殖和遷移,整體提高了神經(jīng)細(xì)胞的修復(fù)能力;(4)通過(guò)促進(jìn)血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor)和促血管生成素的生成,從而促進(jìn)新生血管的形成,為神經(jīng)功能的恢復(fù)提供充足的血供[17]。實(shí)驗(yàn)證據(jù)表明無(wú)腫瘤細(xì)胞形成。Oki等[8]人將在體外獲得的iPSC-NSC移植到腦梗死小鼠模型的紋狀體,10周后發(fā)現(xiàn)移植的細(xì)胞存活率是10%。Oki等人在10只裸鼠身上再次重復(fù)這個(gè)試驗(yàn),48 h后進(jìn)行神經(jīng)干細(xì)胞的移植,4個(gè)月后發(fā)現(xiàn)細(xì)胞的存活率為50%,免疫熒光檢測(cè)發(fā)現(xiàn)72%的細(xì)胞表達(dá)成熟神經(jīng)元抗體,6%的細(xì)胞表達(dá)星形膠質(zhì)細(xì)胞的抗體,2個(gè)月后2只小鼠死亡,8只存活,4個(gè)月后4只小鼠死亡,6只存活,所以移植后2個(gè)月的存活率為80%,4個(gè)月為60%;4個(gè)月后77%的細(xì)胞表達(dá)成熟神經(jīng)元抗體,5%的細(xì)胞表達(dá)紋狀體細(xì)胞的標(biāo)志物—多巴胺能和cAMP相關(guān)的神經(jīng)元磷蛋白(DARPP)-32,這個(gè)百分比與細(xì)胞直接移植到紋狀體后,存活的機(jī)率大致相同。這一發(fā)現(xiàn)預(yù)示著進(jìn)行移植的部位(例如皮層、紋狀體)不影響細(xì)胞最終的存活,而在體外將iPSCs分化為神經(jīng)干細(xì)胞再進(jìn)行移植比直接使用iPSCs更能提高細(xì)胞的存活率。
目前iPSC的應(yīng)用存在最大的問(wèn)題就是在基因整合的過(guò)程中腫瘤的發(fā)生,目前導(dǎo)致iPSC成瘤的因素還未明確。Riggs等[18]發(fā)現(xiàn)iPSCs與惡性肉瘤有部分細(xì)胞類型相同,在沉默基因與代謝活性方面存在某些共性,認(rèn)為iPSC與癌細(xì)胞十分相似,腫瘤發(fā)生的原因可能就在于此。Park等[19]認(rèn)為使用病毒作為載體將體細(xì)胞轉(zhuǎn)化為干細(xì)胞過(guò)程中會(huì)產(chǎn)生基因突變,導(dǎo)致腫瘤的發(fā)生。Mohammad等[20]用無(wú)病毒載體和無(wú)外源基因的編程方法誘導(dǎo)出iPSC,再將這些細(xì)胞分化成為神經(jīng)干細(xì)胞,并將這些細(xì)胞移植到腦梗死發(fā)生7 d后的實(shí)驗(yàn)小鼠體內(nèi),通過(guò)移除黏附物能力測(cè)試,測(cè)試到小鼠恢復(fù)了感知功能,且腦源性神經(jīng)營(yíng)養(yǎng)因子也相應(yīng)的增加,從而促進(jìn)細(xì)胞的存活、生長(zhǎng)及突觸的形成,12個(gè)月后測(cè)試無(wú)腫瘤形成。為了去除iPSC中的致腫瘤基因,Liu等[21]也使用相同的方法在缺氧的條件下僅使用2個(gè)因子將小鼠成纖維細(xì)胞轉(zhuǎn)染為iPSC,并將其誘導(dǎo)為神經(jīng)干細(xì)胞注入腦缺血小鼠模型,小鼠的神經(jīng)功能缺損也得到了改善,且無(wú)腫瘤形成。Thier等[22]使用最新的技術(shù),成功地激活了Oct4將小鼠成纖維細(xì)胞轉(zhuǎn)化為iPSC,這種方法與傳統(tǒng)的iPSC技術(shù)相比生產(chǎn)速度提高了2~3倍,且細(xì)胞的致瘤性也得到了降低。有實(shí)驗(yàn)表明當(dāng)移植宿主存在免疫缺陷時(shí)會(huì)增加致瘤的風(fēng)險(xiǎn)[23]。
由于腦梗死的發(fā)病年齡老年化,因此Tatarishvili等[24]在24個(gè)月齡的大鼠身上完成了細(xì)胞移植治療腦梗死的實(shí)驗(yàn),發(fā)現(xiàn)在神經(jīng)干細(xì)胞移植8周后49%的細(xì)胞分化為成熟的γ氨基丁酸神經(jīng)元,圓筒實(shí)驗(yàn)證明小鼠缺損的神經(jīng)功能明顯得到改善,且減少了小膠質(zhì)細(xì)胞的激活。目前大多數(shù)已發(fā)表的實(shí)驗(yàn)都使用的是健康雄性鼠,將來(lái)還需要在雌性鼠及一些合并其他疾病的鼠身上開(kāi)展實(shí)驗(yàn),如高血壓病、糖尿病等,這些都是腦梗死的危險(xiǎn)因素[22]。
iPSC-NSC移植的重要問(wèn)題之一就是腦梗死發(fā)生后細(xì)胞移植的時(shí)間,以往胚胎細(xì)胞移植的經(jīng)驗(yàn)提示大腦中動(dòng)脈閉塞致腦梗死發(fā)生后在第48 h移植細(xì)胞的存活率最高[25],Shear等[26]認(rèn)為腦梗死發(fā)生后第2~7 d為神經(jīng)干細(xì)胞移植的最佳時(shí)間,而非在這個(gè)時(shí)間點(diǎn)之前移植可能與急性期局部腦組織壞死、細(xì)胞釋放的炎癥介質(zhì)增高有關(guān),且急性期的神經(jīng)營(yíng)養(yǎng)因子較少,不利于細(xì)胞的生長(zhǎng),但是在腦梗死發(fā)生后第48 h這一時(shí)間點(diǎn)移植在臨床實(shí)施上比較困難,制備一定量的iPSC至少需要4周,再將其誘導(dǎo)為需要的神經(jīng)干細(xì)胞又需要幾周,而將這些細(xì)胞應(yīng)用于臨床前還需要經(jīng)過(guò)一系列的實(shí)驗(yàn),確保其安全性。因此,以現(xiàn)在的制備技術(shù)達(dá)到時(shí)間窗的要求還十分的困難。
目前就腦梗死細(xì)胞移植劑量的數(shù)據(jù)統(tǒng)計(jì)還十分匱乏,大部分的數(shù)據(jù)主要來(lái)自鼠胚胎神經(jīng)干細(xì)胞的實(shí)驗(yàn),Darsila等[27]分別將3×105、7.5×105和15×105數(shù)量的神經(jīng)干細(xì)胞移植到腦梗死小鼠模型的腦內(nèi),結(jié)果顯示當(dāng)移植細(xì)胞數(shù)超過(guò)3×105的時(shí)候,細(xì)胞的存活率將不再隨著細(xì)胞數(shù)的增加而增加,提示3×105數(shù)量的神經(jīng)干細(xì)胞可以以最小的數(shù)目發(fā)揮較好的治療效果。Wang等[28]認(rèn)為8×105數(shù)量的神經(jīng)干細(xì)胞治療腦梗死的Wistar大鼠為最佳數(shù)目。此項(xiàng)實(shí)驗(yàn)還沒(méi)有在與人類腦體積和構(gòu)造相似的大型動(dòng)物身上實(shí)踐過(guò),所以應(yīng)用人體的細(xì)胞數(shù)量可否依據(jù)這些實(shí)驗(yàn)的細(xì)胞數(shù)據(jù)成比例計(jì)算還不明確。
目前對(duì)iPSC的定向誘導(dǎo)和神經(jīng)干細(xì)胞的移植治療腦梗死實(shí)驗(yàn)研究已有很多,但還都停留在探索階段,以iPSC為基礎(chǔ)的細(xì)胞療法在治療腦梗死方面存在著巨大的潛力,但還有很多問(wèn)題亟待明確,如iPSC的致瘤性、神經(jīng)干細(xì)胞移植的數(shù)量、時(shí)間、部位(缺血半暗帶內(nèi)還是梗死區(qū)域)。為了保證iPSC和NSC的質(zhì)量和減少制備時(shí)間,將來(lái)需要建立統(tǒng)一來(lái)源的iPSC細(xì)胞儲(chǔ)備庫(kù),提供優(yōu)質(zhì)來(lái)源細(xì)胞,增加移植后的安全系數(shù),使細(xì)胞移植治療腦梗死應(yīng)用于臨床早日實(shí)現(xiàn)。
[1] 侯書敏,張東,黨國(guó)義.腦梗死臨床治療研究進(jìn)展[J].河北醫(yī)學(xué),2012,18(12):1799-1801.
[2] Kelly S,Bliss TM,Shah AK,et al.Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex[J].Proc Natl Acad Sci USA,2004,101(32):11839-11844.
[3] Takahashi K,Yamanaka S.Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J].Cell,2006,126(4):663-676.
[4] Hanna J,Markoulaki S,Schorderet P,et al.Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency[J].Cell,2008,133(2):250-264.
[5] Aoi T,Yae K,Nakagawa M,et al.Generation of pluripotent stem cells from adult mouse liver and stomach cells[J].Science,2008,321(5889):699-702.
[6] Kim JB,Sebastiano V,Wu G,et al.Oct4-induced pluripotency in adult neural stem cells[J].Cell,2009,136(3):411-419.
[7] Dimos JT,Rodolfa KT,Niakan KK,et al.Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons[J].Science,2008,321(5893):1218-1221.
[8] Oki K,Tatarishvili J,Wood J,et al.Human-induced pluripotent stem cells form functional neurons and improve recovery after grafting in stroke-damaged brain[J].Stem Cells,2012,30(6):1120-1133.
[9] Jiang M,Lv L,Ji H,et al.Induction of pluripotent stem cells transplantation therapy for ischemic stroke[J].Mol Cell Biochem,2011,354(1/2):67-75.
[10] Chen SJ,Chang CM,Tsai SK,et al.Functional improvement of focal cerebral ischemia injury by subdural transplantation of induced pluripotent stem cells with fibrin glue[J].Stem Cells Dev,2010,19(11):1757-1767.
[11] Chang DJ,Lee N,Park IH,et al.Therapeutic potential of human induced pluripotent stem cells in experimental stroke[J].Cell Transplant,2013,22(8):1427-1440.
[12] Hoveizi E,Ebrahimi-Barough S,Tavakol S,et al.In vitro differentiation of human iPS cells into neural like cells on a biomimetic polyurea[J].Mol Neurobiol,2017,54(1):601-607.
[13] Su H,Wang L,Huang W,et al.Immediate expression of Cdh2 is essential for efficient neural differentiation of mouse induced pluripotent stem cells[J].Stem Cell Res,2013,10(3):338-348.
[14] Stover AE,Brick DJ,Nethercott HE,et al.Process-based expansion and neural differentiation of human pluripotent stem cells for transplantation and disease modeling[J].J Neurosci Res,2013,91(10):1247-1262.
[15] Mochizuki N,Moriyama Y,Takagi N,et al.Intravenous injection of neural progenitor cells improves cerebral ischemia-induced learning dysfunction[J].Biol Pharm Bull,2011,34(2):260-265.
[16] Waschek JA.Noggin on heaven's door: a factor that promotes the selective production of serotonergic neurons from murine embryonic stem cells and induced pluripotent stem cells[J].J Neurochem,2012,122(1):1-3.
[17] Jiang Q,Zhang ZG,Ding GL,et al.Investigation of neural progenitor cell induced angiogenesis after embolic stroke in rat using MRI[J].Neuroimage,2005,28(3):698-707.
[18] Riggs JW,Barrilleaux BL,Varlakhanova N,et al.Induced pluripotency and oncogenic transformation are related processes[J].Stem Cells Dev,2013,22(1):37-50.
[19] Park TS,Huo JS,Peters A,et al.Growth factor-activated stem cell circuits and stromal signals cooperatively accelerate non-integrated iPSC reprogramming of human myeloid progenitors[J].PLoS One,2012,7(8):e42838.
[20] Mohamad O,Drury-Stewart D,Song M,et al.Vector-free and transgene-free human iPS cells differentiate into functional neurons and enhance functional recovery after ischemic stroke in mice[J].PLoS One,2013,8(5):e64160.
[21] Liu SP,Fu RH,Wu DC,et al.Mouse-induced pluripotent stem cells generated under hypoxic conditions in the absence of viral infection and oncogenic factors and used for ischemic stroke therapy[J].Stem Cells Dev,2014,23(4):421-433.
[22] Thier M,W rsd rfer P,Lakes YB,et al.Direct conversion of fibroblasts into stably expandable neural stem cells[J].Cell Stem Cell,2012,10(4):473-479.
[23] Nelson TJ,Martinez-Fernandez A,Yamada S,et al.Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells[J].Circulation,2009,120(5):408-416.
[24] Tatarishvili J,Oki K,Monni E,et al.Human induced pluripotent stem cells improve recovery in stroke-injured aged rats[J].Restor Neurol Neurosci,2014,32(4):547-558.
[25] Fisher M,Feuerstein G,Howells DW,et al.Update of the stroke therapy academic industry roundtable preclinical recommendations[J].Stroke,2009,40(6):2244-2250.
[26] Shear DA,Tate CC,Tate MC,et al.Stem cell survival and functional outcome after traumatic brain injury is dependent on transplant timing and location[J].Restor Neurol Neurosci,2011,29(4):215-225.
[27] Darsalia V,Allison SJ,Cusulin C,et al.Cell number and timing of transplantation determine survival of human neural stem cell grafts in stroke-damaged rat brain[J].J Cereb Blood Flow Metab,2011,31(1):235-242.
[28] Wang L,Cui WY,Wang XP,et al.Different quantities of neural stem cells transplantation in treating experimental cerebral infarction[J].Chinese Journal of Tissue Engineering Research,2012,16(1):90-94.