趙花妮,王欣欣,楊明霞
(隴東學院 數學與統(tǒng)計學院,甘肅 慶陽 745000)
n取n-k+1系統(tǒng)在多監(jiān)控下剩余壽命隨機性質的研究
趙花妮,王欣欣,楊明霞
(隴東學院 數學與統(tǒng)計學院,甘肅 慶陽 745000)
n取n-k+1系統(tǒng)在可靠性理論和實際應用中扮演著非常的角色。本文考慮由兩組獨立元件分別構成的兩個n取n-k+1系統(tǒng)在多個監(jiān)控下剩余壽命的隨機比較問題。結果表明,n取n-k+1系統(tǒng)在雙監(jiān)控下剩余壽命的一些隨機性質在3個監(jiān)控下同樣成立,并進一步得出分別由兩組獨立同分布元件組成的兩個系統(tǒng)在多個監(jiān)控下剩余壽命關于似然比序的隨機比較。
似然比序;剩余壽命;多監(jiān)控
所謂n取n-k+1系統(tǒng)是指由n個元件組成的系統(tǒng)中,系統(tǒng)要正常工作當且僅當至少有n-k+1個元件正常工作[1]。令X1,X2,…,Xn為n個獨立且與X同分布的元件壽命,其構成的系統(tǒng)的壽命記為X,記X1:n,X2:n,…,Xn:n為X1,X2,…,Xn由小到大排列的順序統(tǒng)計量。令Y1,Y2,…,Yn為n個獨立且與Y同分布的元件壽命,其構成的系統(tǒng)的壽命記為Y,記Y1:n,Y2:n,…,Yn:n為Y1,Y2,…,Yn由小到大排列的順序統(tǒng)計量[2]。在可靠性和統(tǒng)計分析中,n取n-k+1系統(tǒng)的剩余壽命是一類很重要的問題,并有許多學者對其進行了研究。例如,Zhang[3]研究了由n個獨立同分布元件構成的n取n-k+1系統(tǒng)在雙監(jiān)控下剩余壽命的隨機比較。Poursaeed[4]研究了并聯系統(tǒng)在多個監(jiān)控下平均剩余壽命的隨機性質。本文考慮由兩組獨立元件分別構成的兩個n取n-k+1系統(tǒng)在多個監(jiān)控下剩余壽命關于似然比序的隨機比較。
定義[5]若X、Y分別為兩個非負隨機變量,分別用f(x)、g(x)代表其密度函數,如果f(x)/g(x)關于x是遞減的,則稱X以似然比序小于等于Y,記為X≤lrY。
在這里,首先考慮3個監(jiān)控下的情形。定義由n個元件組成的n取n-k+1系統(tǒng),服從獨立同分布F,設在3個監(jiān)控下,系統(tǒng)在時刻t1總的元件失效個數為r個,在時刻t2(t1
P(Xk:n-t3>x|Xr:n
(1)
定理1揭示了n取n-k+1系統(tǒng)的剩余壽命在雙監(jiān)控下關于似然比序的結論在3個監(jiān)控下同樣成立,顯然此結論加強了引理的結論。通過引理[4]以及以上定理,可以看到它們具有相似的結構。因此,我們可以把這種情形推廣到一般情形。設在l個監(jiān)控下,元件在ti時的失效個數為mi個,i=1,2,...,l-1并且在tl(t1 P(Xk:n-tl>x|Xm1:n (2) 可以看到式(2)與式(1)具有類似的結構,因而,可以把這種情形在多監(jiān)控下做進一步的推廣。 證明:運用式(2),證明方法同上,此處省略。 [1] 索清輝,錢永久,張方.基于概率理論對既有結構剩余壽命的評估[J].建筑技術開發(fā),2004,31(3):4-4. [2] Poursaeed M H.A note on the mean past and the mean residual life of a (n-k+1)-out-of-nsystem under multi monitoring[J].Stat Papers,2010(51):409-419. [3] Zhang Z C,Yang Y H.Ordered properties on the residual life and inactivity time of(n-k+1)-out-of-nsystems under double monitoring[J].Statistics and Probability Letters,2010(80):711-717. [4] Poursaeed M H, Nematollahi A R.On the Mean Past and the Mean Residual Life Under Double Monitoring[J].Communicationsinstatistics-TheoryandMethods,2008(37):1119-1133. [5] Shaked M,Shanthikumar J G.Two variability order[J].Probadility in the Enaineerina and Informational Sciences,1998(12):1-23. Study of Ordered Properties on Residual Life of (n-k+1)-out-of-nSystems under Multi-monitoring ZHAO Huani, WANG Xinxin, YANG Mingxia (Longdong University, Qingyang 745000, China) (n-k+1)-out-of-nsystems plays an important role in the theory of reliability and the practical application. This paper studies the stochastic comparisons based on residual life of (n-k+1)-out-of-nsystems under multi-monitor, which is respectively created by two sets of independent components. The results show that the random nature of the residual life for these systems takes place under both double and three monitors, and the likelihood radio rate order stochastic components under multi-monitor have also carried out in two different systems consisting of two separate sets of independent and evenly distributed components. likelihood ratio rate order; residual life; multi-monitor 10.3969/j.issn.1674-5403.2017.04.017 O123.2 A 1674-5403(2017)04-0076-03 2017-09-05 趙花妮(1986-)女,甘肅慶陽人,碩士,助教,主要從事應用概率統(tǒng)計與隨機分析方面的研究. 甘肅省高等學??蒲许椖?2017A-099).