楊鋒功, 楊華峰, 戰(zhàn)東平, 楊永坤, 張慧書
1.石家莊鋼鐵有限責(zé)任公司煉鋼廠,石家莊 053001;2.東北大學(xué) 冶金學(xué)院,沈陽 110819;3.遼寧科技學(xué)院 冶金工程學(xué)院,本溪 117004)
鋼包軟吹氬時(shí)間對(duì)GCr15軸承鋼中夾雜物的影響
楊鋒功1, 楊華峰1, 戰(zhàn)東平2, 楊永坤2, 張慧書3
1.石家莊鋼鐵有限責(zé)任公司煉鋼廠,石家莊 053001;2.東北大學(xué) 冶金學(xué)院,沈陽 110819;3.遼寧科技學(xué)院 冶金工程學(xué)院,本溪 117004)
針對(duì)石鋼60 t LD-LF-VD-CC生產(chǎn)工藝,對(duì)4爐采用不同鋼包軟吹氬時(shí)間的GCr15軸承鋼進(jìn)行取樣分析.采用金相顯微鏡和掃描電鏡結(jié)合能譜分析,研究了4爐軸承鋼中間包樣品中夾雜物的尺寸分布及種類特征.結(jié)果表明,隨著精煉后軟吹氬時(shí)間的延長,GCr15軸承鋼中全氧質(zhì)量分?jǐn)?shù)降低,中間包中的夾雜物平均直徑減小,大于15 μm的夾雜物比例也明顯降低,但對(duì)夾雜物的種類沒有明顯影響.鋼中夾雜物主要為Al2O3、MgO·Al2O3和MgO-Al2O3-SiO2-CaO(CaS)夾雜物等,這與冶金熱力學(xué)計(jì)算結(jié)果一致.
軸承鋼;夾雜物;軟吹氬;鋼包;中間包
鋼中非金屬夾雜物對(duì)鋼的性能有顯著影響,軸承鋼作為特殊鋼種高潔凈鋼的代表品種,非金屬夾雜物對(duì)其疲勞性能影響顯著,對(duì)鋼中全氧質(zhì)量分?jǐn)?shù)和夾雜物的要求則更為嚴(yán)格[1-2].鋼包底吹氬會(huì)影響鋼中夾雜物的去除效果,從而對(duì)鋼中夾雜物和全氧質(zhì)量分?jǐn)?shù)有較明顯影響.前人采用水模實(shí)驗(yàn)、數(shù)值模擬方法開展了很多鋼包底吹氬的優(yōu)化研究,并取得了較好的應(yīng)用效果[3-4],使得軸承鋼中的平均全氧質(zhì)量分?jǐn)?shù)控制到了小于5.0×10-6的較低水平[5-6].石家莊鋼鐵公司也曾開展了相關(guān)研究[7].本文重點(diǎn)討論了鋼包底吹氬不同時(shí)間對(duì)鋼中全氧質(zhì)量分?jǐn)?shù)及夾雜物尺寸分布的影響,為國內(nèi)軸承鋼的生產(chǎn)提供借鑒.
石鋼GCr15軸承鋼的生產(chǎn)工藝流程為:鐵水—60 t氧氣頂?shù)讖?fù)吹轉(zhuǎn)爐—60 t LF(Ladle Furnace)鋼包精煉—60 t VD(Vacuum Degassing)真空精煉—連鑄.轉(zhuǎn)爐過程是進(jìn)行脫磷、脫碳和合適的終點(diǎn)控制,生產(chǎn)軸承鋼主要采用單渣造渣工藝,出鋼過程完成主要的化學(xué)成分的合金化;LF精煉過程造還原渣,實(shí)施白渣精煉,保證良好的脫氧、脫硫和夾雜物去除,并完成化學(xué)成分的調(diào)整;LF操作過程采用全程底吹氬;VD真空過程主要是在真空條件下完成脫氫、脫氮和夾雜物去除;最后,經(jīng)過精煉的鋼水在連鑄澆注成鑄坯,連鑄過程實(shí)施全程保護(hù)澆注.
為了研究軟吹氬時(shí)間對(duì)鋼中全氧質(zhì)量分?jǐn)?shù)的影響.在石鋼GCr15軸承鋼生產(chǎn)過程中,VD真空精煉結(jié)束破真空后,開始軟吹氬,對(duì)同一澆次連續(xù)生產(chǎn)的4爐鋼水,隨軟吹時(shí)間的延長,按一定時(shí)間間隔在鋼包中取樣,同時(shí)取對(duì)應(yīng)爐次的中間包試樣,分析軟吹對(duì)鋼中全氧質(zhì)量分?jǐn)?shù)的影響.
為了研究軟吹時(shí)間對(duì)鋼中夾雜物尺寸、數(shù)量及種類的影響,針對(duì)不同軟吹時(shí)間的另外3個(gè)爐次鋼水,在連鑄中間包穩(wěn)態(tài)澆注過程進(jìn)行取樣,并將上述爐次中的第4爐用作軟吹40 min爐次的對(duì)比樣.取樣后切取10 mm×10 mm×15 mm的試樣,對(duì)樣品研磨、拋光后,采用卡爾蔡司Axio Observer A1m光學(xué)顯微鏡在500倍條件下進(jìn)行觀察,分析夾雜物數(shù)量、尺寸分布、夾雜物面積.采用SSX-550掃描電鏡分析試樣中夾雜物的種類、成分及其組成.分析鋼中的夾雜物情況,為煉鋼過程夾雜物的控制提供指導(dǎo).
圖1為統(tǒng)計(jì)生產(chǎn)過程中不同軟吹時(shí)間條件下樣品鋼中全氧質(zhì)量分?jǐn)?shù)的變化情況.可以看出,隨著軟吹時(shí)間的延長,鋼中全氧質(zhì)量分?jǐn)?shù)降低,軟吹30 min以上,中間包鋼水中的全氧質(zhì)量分?jǐn)?shù)均可降低到小于10×10-6,這為石鋼超低氧GCr15軸承鋼的獲得提供了良好的工藝保障.
圖1 軟吹時(shí)間對(duì)鋼包及中間包中全氧質(zhì)量分?jǐn)?shù)的影響Fig.1 Effect of soft argon blowing time on the total oxygen content in ladle and tundish
表1為4爐不同軟吹時(shí)間的GCr15軸承鋼中間包試樣中夾雜物的統(tǒng)計(jì)結(jié)果.可以看出,4爐樣品中,夾雜物尺寸控制范圍存在一定波動(dòng).隨著軟吹時(shí)間的延長,鋼中夾雜物的平均直徑逐漸減小,且大于15 μm的夾雜物比例也明顯降低.軟吹40 min 的爐次,GCr15軸承鋼中夾雜物尺寸小于5 μm的比例可以達(dá)到93.1%,平均直徑可以達(dá)到1.57 μm,大于15 μm的比例為0.1%.而軟吹25 min 的爐次,尺寸小于5 μm的比例則為83.7%,相差近10%;平均直徑也較大,達(dá)到2.41 μm;大于15 μm的比例也較高,達(dá)到0.8%.可見,延長軟吹氬時(shí)間對(duì)于夾雜物的去除是有利的.
表1 GCr15軸承鋼夾雜物尺寸分布情況(500倍)
鋼液中夾雜物的運(yùn)動(dòng)受到浮力、黏滯力和慣性力的影響[8-9],鋼液和夾雜物的密度差修正的伽利略準(zhǔn)數(shù)描述為[10]:
式中,ρL、ρP分別為鋼液和夾雜物的密度,dP為夾雜物直徑,μ為鋼液黏度,g為重力加速度,νb為鋼液與夾雜物的相對(duì)運(yùn)動(dòng)速度,cd為夾雜物的形阻系數(shù),Rep為夾雜物運(yùn)動(dòng)的雷諾數(shù).
根據(jù)式(1)可以算出小于 10 μm 夾雜物的Ga′值為9.43×10-6~9.43×10-3. 1~10 μm的夾雜物在鋼液運(yùn)動(dòng)的情況下,它們幾乎完全與鋼液運(yùn)動(dòng)同步運(yùn)動(dòng)[11].若在煉鋼過程中不能使其碰撞、聚合長大上浮,在中間包中停留時(shí)間較短的情況下,想要在中間包中上浮排除此類夾雜物也是相當(dāng)困難的,殘留在鋼中將導(dǎo)致鋼的全氧質(zhì)量分?jǐn)?shù)升高.因此,此類夾雜物必須在精煉過程中采取有效措施(例如本文提出的軟吹氬)予以去除.
從試樣掃描電鏡(SEM)和能譜分析(EDX)分析結(jié)果可以看出,由于各組采用相同的脫氧、造渣和真空工藝,僅軟吹氬工藝不同,因此,各組實(shí)驗(yàn)的夾雜物種類并沒有明顯差別.鋼中的夾雜物主要有Al2O3夾雜物、MgO·Al2O3夾雜物和MgO-Al2O3-SiO2-CaO(CaS)夾雜物.圖2為鋼中的典型夾雜物的形貌特征.
圖2 中包內(nèi)軸承鋼樣品中的典型夾雜物Fig.2 Typical inclusions of molten bearing steel in tundish(a)—Al2O3夾雜物; (b)—MgO·Al2O3夾雜物; (c)—MgO-Al2O3-SiO2-CaO(CaS)夾雜物
將式(2)~式(5)[12]線性組合,經(jīng)計(jì)算可得 1 873 K 溫度下軸承鋼中[Mg]、[Al]與脫氧產(chǎn)物組成的關(guān)系,如圖3所示.可以看出,與其他鋁脫氧鋼不同,由于軸承鋼不能采用鈣處理[13],因此鋼中有較多的Al2O3夾雜物存在.同時(shí),在T=1 873 K 時(shí),當(dāng)軸承鋼中w[Al]=0.02%~0.05%范圍內(nèi)時(shí),只要有微量鎂的存在,就有可能生成MgO·Al2O3夾雜物.正常生產(chǎn)過程中,初煉轉(zhuǎn)爐下渣中含有質(zhì)量分?jǐn)?shù)為9%左右的MgO、鋼包采用鎂碳磚、中間包使用鎂質(zhì)耐火材料以及精煉渣或覆蓋劑中都會(huì)或多或少地含有MgO,這導(dǎo)致鋼中會(huì)有微量[Mg]的存在.取樣爐次均檢測到了MgO·Al2O3夾雜物的存在,這與上述分析結(jié)果是一致的.
ΔGo=-117150-2.89TJ·mol-1
(2)
Mg(g)=[Mg]
ΔGo=117400-31.4TJ·mol-1
(3)
ΔGo=-732702+205.99TJ·mol-1
(4)
MgO(s)+Al2O3(s)= MgO·Al2O3(s)
ΔGo=-35600+2.09TJ·mol-1
(5)
圖3 1 873 K時(shí)軸承鋼中鎂、鋁含量與脫氧產(chǎn)物組成的關(guān)系Fig.3 Relation among magnesium, aluminum and deoxidation products at 1 873 K
(1)隨著精煉后軟吹氬時(shí)間的延長,GCr15軸承鋼中全氧質(zhì)量分?jǐn)?shù)降低,中間包中的夾雜物平均直徑減小,大于15 μm的夾雜物比例也明顯降低.
(2)軟吹40 min的爐次,GCr15軸承鋼中夾雜物尺寸小于5 μm的比例可以達(dá)到93.1%,平均直徑達(dá)到1.57 μm,大于15 μm的比例為0.1%.
(3)不同軟吹氬工藝對(duì)GCr15軸承鋼中間包中夾雜物種類的影響較小,鋼中夾雜物主要為Al2O3、MgO·Al2O3和MgO-Al2O3-SiO2-CaO(CaS)夾雜物等,這與冶金熱力學(xué)計(jì)算結(jié)果一致.
[1] 戰(zhàn)東平, 姜周華, 龔偉, 等. 軸承鋼中氮化鈦的生成與控制[J]. 過程工程學(xué)報(bào), 2009, 9(s1): 238-241.
(Zhan Dongping, Jiang Zhouhua, Gong Wei,etal. Formation and control of titanium nitride in bearing steel[J]. The Chinese Journal of Process Engineering, 2009, 9(s1): 238-241.)
[2] 鐘順?biāo)? 王昌生. 軸承鋼[M]. 北京: 冶金工業(yè)出版社, 2000.
(Zhong Shunsi, Wang Changsheng. Bearing steel[M]. Beijing: Metallurgical Industry Press, 2000.)
[3] 王博, 姜周華, 戰(zhàn)東平, 等. GCr15軸承鋼夾雜物及全氧質(zhì)量分?jǐn)?shù)控制工藝分析[J]. 材料與冶金學(xué)報(bào), 2004, 3(2): 90-94.
(Wang Bo, Jiang Zhouhua, Zhan Dongping,etal. Analyses of inclusions and total oxygen content control in bearing steel of GCr15[J]. Journal of Materials and Metallurgy, 2004, 3(2): 90-94.)
[4] 楊念祖, 朱良. 軸承鋼鈣處理時(shí)點(diǎn)狀?yuàn)A雜物生成及轉(zhuǎn)變的熱力學(xué)分析[J]. 鋼鐵, 1988, 23(3): 41-45.
(Yang Nianzu, Zhu Liang. Thermodynamic analysis on formation and transformation of globular inclusion in CaSi treated bearing steel[J]. Iron & Steel, 1988, 23(3): 41-45.)
[5] 韓文習(xí), 李豐功, 戰(zhàn)東平, 等. 60 t LF 鋼包底吹氬行為的物理模擬[J] .山東冶金, 2012, 34(3): 29-31.
(Han Wenxi, Li Fenggong, Zhan Dongping,etal. Physical simulation on bottom argon blowing behavior in a 60 t ladle furnace[J]. Shandong Metallurgy, 2012, 34(3): 29-31.)
[6] 薛正良, 王義芳. 用小氣泡從鋼液中去除夾雜物顆粒[J]. 金屬學(xué)報(bào), 2003(4): 431-434.
(Xue Zhengliang, Wang Yifang. Inclusion removal from molten steel by attachment small bubbles[J]. Acta Metallurgica Sinica, 2003(4): 431-434.)
[7] 董大西, 楊鋒功, 劉勇, 等. 60 t LD-LF-VD-CC工藝生產(chǎn)低氧GCr15軸承鋼[C]//第七屆(2009)中國鋼鐵年會(huì)論文集. 北京:中國金屬學(xué)會(huì), 2009, 10, 2-59~2-62.
(Dong Daxi, Yang Fenggong, Liu Yong,etal. Production of low oxygen content GCr15 bearing steel by the process of 60 t LD-LF-VD-CC[C]//Proceedings of the seventh (2009) China Iron & steel annual conference. Beijing: The Chinese Society for Metals, 2009, 10, 2-59~2-62.)
[8] Simpson I D, Tritsiniotis Z, Moore L G. Steel cleanness requirements for X65 to X80 electric resistance welded linepipe steels[J]. Ironmaking and Steelmaking, 2003, 30(2): 158-164.
[9] Holappa L, H?m?l?inen M, Liukkonen M,etal. Thermodynamic examination of inclusion modification and precipitation from calcium treatment to solidified steel[J]. Ironmaking and Steelmaking, 2003, 30(2): 111-115.
[10] 尹弘斌, 金山同. CAS工藝條件下鋼包內(nèi)夾雜物上浮規(guī)律的理論研究[J]. 鋼鐵, 1995, 30(10): 13-17.
(Yin Hongbin, Jin Shantong. Theoretical studies on removal of inclusions in CAS ladle treatment process[J]. Iron & Steel, 1995, 30(10): 13-17. )
[11] Zhan Dongping, Zhang Huishu, Jiang Zhouhua. Effects of AlMnCa and AlMnFe alloys on deoxidization of low carbon and low silicon aluminum killed steels[J]. Journal of Iron and Steel Research International, 2008, 15(3): 15-18.
[12] 梁連科, 車蔭昌, 楊懷, 等. 冶金熱力學(xué)及動(dòng)力學(xué)[M]. 沈陽: 東北工學(xué)院出版社, 1989.
(Liang Lianke, Che Yinchang, Yang Huai,etal. Thermodynamics and kinetics of metallurgy[M]. Shenyang: Northeastern University of Technology Press, 1989.)
[13] Tiekink W, van den Bogert R, Breedijk T,etal. Some aspects of behaviour of calciumin silicon killed steels[J]. Ironmaking and Steelmaking, 2003, 30(2): 146-140.
EffectofladlesoftargonblowingtimeoninclusionsofGCr15bearingsteelintundish
Yang Fenggong1, Yang Huafeng1, Zhan Dongping2, Yang Yongkun2, Zhang Huishu3
(1.Steelmaking Plant of Shijiangzhuang Iron and Steel Co.Ltd., Shijiangzhuang 050031, China; 2.School of Metallurgy, Northeastern University, Shenyang 110004, China; 3.School of Metallurgical Engineering, Liaoning Institute of Science and Technology, Benxi 117004, China)
Aimed at 60 t LD- LF-VD-CC process at a plant in China Shijiazhuang Iron and Steel Co. Ltd., four GCr15 steel samples were taken from the tundish, treated by the different soft argon blowing times in the ladle. Inclusions in the steels were investigated by metallographic microscope (OM) and scan electron microscope (SEM). The results showed that, with increase of the soft argon blowing time in ladle, the total oxygen content in GCr15 bearing steel and the mean diameter of the inclusion decreases, and inclusions bigger than 15 μm evidently debases, however, the inclusion type does not change so much. They are still Al2O3, MgO·Al2O3and MgO-Al2O3-SiO2-CaO(CaS) ect. This is consistent with the thermodynamical calculation.
bearing steel; inclusions; soft argon blowing; ladle; tundish
10.14186/j.cnki.1671-6620.2017.04.002
TF 703.5
A
1671-6620(2017)04-0246-04