亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        關(guān)于C8⊕C8中極小零和子列的一個(gè)性質(zhì)

        2018-01-09 23:21:24張海燕劉庚

        張海燕+劉庚

        摘 要:如果在群CnCn中,每個(gè)含有2n-1個(gè)元素的極小零和序列中都包含一些階數(shù)為n-1的元素,那么我們稱正整數(shù)n具有性質(zhì)B。在二維阿貝爾群的零和理論中,性質(zhì)B是一個(gè)中心議題。關(guān)于性質(zhì)B這一問(wèn)題最早是由高維東教授和A.Geroldinger提出并進(jìn)行研究[1-3]。之后,他們證明了如果n具有性質(zhì)B[4-6],當(dāng)n大于等于6時(shí),2n也具有性質(zhì);還證明了如果n∈{2,3,4,5,6,7},n具有性質(zhì)B。在文[7]中,我們證明了n=10時(shí),n具有性質(zhì)B。本文證明n=8時(shí),n也具有性質(zhì)B。

        關(guān)鍵詞:阿貝爾群;零和子列;性質(zhì)B

        DOI:10.15938/j.jhust.2017.06.021

        中圖分類號(hào): O156.1

        文獻(xiàn)標(biāo)志碼: A

        文章編號(hào): 1007-2683(2017)06-0113-03

        Abstract:We say a positive integer n has Property B if every minimal zerosum subsequence of 2n-1 elements in CnCn contains some elements n-1 times. Property B is a central topic in zerosum theory on abelian group G with rank two. Property B has been first formulated and investigated by professer W.D.Gao and A.Geroldinger in [1-3]. It has been proved that if n≥6 and if n has Property B, then 2n has Property B. It has been also proved that if n∈{2,3,4,5,6,7}, then n has property B[4-6]. In [7], we proved that n=10 has Property B. In this paper, we will verify that n=8 has Property B.

        Keywords:abelian group; zerosum subsequence; Property B

        Similar to the proof of case 1, we can verify that there are at most two distinct elements in Tof case2 and case 3.

        Theorem is true.

        References:

        [1] GAO W D, GEROLDINGER A. On Long Minimal Zero Sequences in Finite Abelian Groups[J]. Period Math. Hungar, 1999(38):179-211.

        [2] GAO W D, GEROLDINGER A. On Zerosum Sequences in Z/nZ Z/nZ[J]. Integers, 2003(3) (Paper A08).

        [3] GAO W D, ZHUANG J J. Sequences not Containing Long Zerosum Subsequences[J]. European J. Combin, 2006(27): 777-787.

        [4] GAO W D, GEROLDINGER A. Zerosum Probiems in Finite Abelian Groups: a survey[J]. Expo.Math, 2006(24): 337-369.

        [5] CHANG G J, CHEN S H, WANG G Q, et al. On the Number of Subsequences with a Given Sum in a Finite Abelian Group[J]. Electron. J. Combin, 2011(18): 133-157.

        [6] CHINTAMANI M N, MORIYA B K, GAO W D, et al. New Upper Bounds for the Davenport and for the ErdosGinzburgZiv Constants[J]. Arch. Math., 2012(98):133-142.

        [7] ZANG H Y, LIU W H. A Property on Minimal Zerosum Subsequence inC10C10[J]. Advanced Materials Research ICEEIS2016981,2014:255-257.

        [8] 韓冬春. ErdosGinzburgZiv Theorem for Finite Nilpotent Groups[J]. Arch. Math, 2015(104): 325-332.

        [9] GAO W D,LI Y L, YUAN P Z,et al. On the Structure of Long Zerosum Free Sequences and Nzerosum Free Sequences Over Finite Cyclic Groups[J]. Arch. Math, 2015(105): 361-370.

        [10]高維東,韓冬春,PENG J T, et al. On Zerosum Subsequences of Length k*exp(G)[J]. J. Combin. Theory Ser. 2014(A125):240-253.

        [11]ADHIKARIA S D,高維東,WANG G Q. ErdosGinzburgZiv Theorem for Finite Commutative Semigroups[J]. J. Pure Appl. Algebra, 2014(218):1838-1844.

        [12]高維東,路在平. The ErdsGinzburgZiv Theorem for Dihedral Groups[J]. J. Pure Appl. Algebra, 2008(212): 311-319.

        [13]高維東,侯慶虎,SCHMID W, et al. On Short Zerosum Subsequences II[J]. Integers,2007(7):21-56.

        [14]GAO W D, Alfred Geroldinger. On a Property of Minimal Zerosum Sequences and Restricted Sumsets[J]. Bull. London Math. Soc, 2005(37):321-334.

        [15]高維東,PENG J T,鐘慶海. A Quantitative Aspect of Nonunique Factorizations: the Narkiewicz Constants III[J]. Acta Arith., 2013(158):271-285.

        (編輯:溫澤宇)endprint

        亚洲人成网站免费播放| 免费国产自拍在线观看| 丰满少妇a级毛片| 亚洲中文有码字幕青青| 成人精品国产亚洲欧洲| 亚洲一本二区偷拍精品| 亚洲第一狼人天堂网亚洲av | 日本人妻伦理在线播放| 真人做爰片免费观看播放| 在线观看91精品国产免费免费| 精品视频在线观看一区二区有| 欧美1区二区三区公司| 日本国产精品高清在线| 精品香蕉一区二区三区| 好吊色欧美一区二区三区四区| 思思久久96热在精品不卡| 白色白色视频在线观看| 久久婷婷色香五月综合缴缴情| 国产av无码专区亚洲av琪琪| 中字亚洲国产精品一区二区| 久久老熟女一区二区三区| 最新国产毛2卡3卡4卡| 久久精品国产亚洲av忘忧草18| 欧美日韩国产乱了伦| 日本一区二区免费高清| 亚洲一区二区三区av无码| 亚洲国产成人91| 久久天堂精品一区专区av| 中文字幕一区二区三区四区五区| 国产亚洲精品aaaaaaa片| 午夜福利视频男同女同| 日本加勒比精品一区二区视频| 99精品久久精品一区二区| 国产精品无码精品久久久| 少妇勾引视频网站在线观看 | 久久久久av无码免费网| 国产高中生在线| av免费在线观看在线观看| 亚洲成av人片不卡无码| 欧美 国产 日产 韩国 在线 | 久久精品国产久精国产69|