亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于WorldView-2影像的土壤含鹽量反演模型

        2018-01-09 01:14:49吾木提艾山江買(mǎi)買(mǎi)提沙吾提依力亞斯江努爾麥麥提茹克亞薩吾提王敬哲
        關(guān)鍵詞:鹽漬化含鹽量反射率

        吾木提·艾山江,買(mǎi)買(mǎi)提·沙吾提,3,依力亞斯江·努爾麥麥提,茹克亞·薩吾提,王敬哲

        ?

        基于WorldView-2影像的土壤含鹽量反演模型

        吾木提·艾山江1,2,買(mǎi)買(mǎi)提·沙吾提1,2,3※,依力亞斯江·努爾麥麥提1,2,茹克亞·薩吾提1,2,王敬哲1,2

        (1. 新疆大學(xué)資源與環(huán)境科學(xué)學(xué)院,烏魯木齊 830046; 2. 新疆綠洲生態(tài)教育部重點(diǎn)實(shí)驗(yàn)室,烏魯木齊 830046; 3.新疆智慧城市與環(huán)境建模普通高校重點(diǎn)實(shí)驗(yàn)室,烏魯木齊 830046)

        針對(duì)WorldView-2影像高空間分辨率評(píng)價(jià)其定量反演土壤含鹽量的能力,以鹽漬化現(xiàn)象較為明顯的新疆克里雅河流域?yàn)檠芯繉?duì)象,基于WorldView-2影像和實(shí)測(cè)高光譜數(shù)據(jù),利用偏最小二乘回歸(partial least squares regression, PLSR)和BP人工神經(jīng)網(wǎng)絡(luò)(back propagation artificial neural networks, BP ANN)方法建立定量反演該流域土壤含鹽量模型并做出研究區(qū)高空間分辨率土壤含鹽量分布圖。結(jié)果表明:1)利用實(shí)測(cè)高光譜數(shù)據(jù)和影像數(shù)據(jù)分別建立的2種模型中BP神經(jīng)網(wǎng)絡(luò)模型預(yù)測(cè)精度都高于PLSR模型,其中基于影像數(shù)據(jù)建立的6:8:1結(jié)構(gòu)的3層BP神經(jīng)網(wǎng)絡(luò)模型決定系數(shù)2、均方根誤差RMSE、相對(duì)分析誤差RPD分別為0.851、0.979、2.337,模型的穩(wěn)定性和預(yù)測(cè)能力都優(yōu)于PLSR模型(2、RMSE、RPD分別為0.814、1.139、2.007)。2)利用WorldView-2影像提高了土壤含鹽量制圖的空間分辨率,歸一化植被指數(shù)NDVI和比例植被指數(shù)RVI較有效降低了植被覆蓋與土壤水分對(duì)預(yù)測(cè)精度的影響。該文建立的考慮植被覆蓋與土壤水分定量反演土壤含鹽量的模型不需要復(fù)雜的參數(shù),一定程度上滿(mǎn)足了干旱、半干旱地區(qū)的鹽漬化監(jiān)測(cè)需求,可以促進(jìn)WorldView-2等高空間分辨率衛(wèi)星在鹽漬化監(jiān)測(cè)中的進(jìn)一步應(yīng)用。

        遙感;土壤;鹽分測(cè)量;WorldView-2影像;克里雅河流域;實(shí)測(cè)高光譜;神經(jīng)網(wǎng)絡(luò);反演模型

        0 引 言

        土壤鹽漬化是導(dǎo)致土地退化和土壤生產(chǎn)力下降的主要原因之一,一般出現(xiàn)在地下水位高且可溶性鹽分含量相對(duì)較高的干旱、半干旱地區(qū)[1]。對(duì)土壤鹽漬化過(guò)程的早期認(rèn)識(shí)和鹽漬化程度的評(píng)估對(duì)土地的可持續(xù)利用和管理至關(guān)重要,特別是在干旱、半干旱地區(qū)。中國(guó)鹽漬化土壤分布廣泛,帶來(lái)了十分嚴(yán)重的生態(tài)、環(huán)境、社會(huì)和經(jīng)濟(jì)問(wèn)題。尤其是在西北綠洲農(nóng)業(yè)區(qū),由于地理?xiàng)l件的特殊性和水土資源利用的不合理性,使得土壤鹽漬化加劇、農(nóng)作物產(chǎn)量下降,不僅影響了當(dāng)?shù)剞r(nóng)業(yè)可持續(xù)發(fā)展,還對(duì)國(guó)家糧食和生態(tài)安全構(gòu)成了威脅[2-4]。與此同時(shí),惡劣的氣候條件和人口密度的增加導(dǎo)致了土地利用強(qiáng)度的變化[5]。遙感技術(shù)為確定鹽漬土特征、多尺度制圖和土壤鹽漬化程度的監(jiān)測(cè)提供一個(gè)重要的方法。

        國(guó)內(nèi)外不少研究人員利用不同空間和時(shí)間分辨率的多光譜數(shù)據(jù)(Landsat TM, Landsat ETM+, SPOT XS, IKONOS and IRS)對(duì)鹽漬化土壤進(jìn)行監(jiān)測(cè)與制圖。近年來(lái),高光譜數(shù)據(jù)在土壤鹽漬化信息提取及制圖方面得到了廣泛的應(yīng)用。丁建麗等[6]利用實(shí)測(cè)高光譜數(shù)據(jù)建立了提取鹽漬化土壤信息的監(jiān)測(cè)模型;趙振亮等[7]利用ASD高光譜數(shù)據(jù)對(duì)渭干河-庫(kù)車(chē)河綠洲土壤含鹽量進(jìn)行了估算;Weng等[8]基于EO-1 Hyperion數(shù)據(jù)利用多元校正PLSR(partial least squares regression)和逐步多元回歸(stepwise multiple regression, SMR)方法對(duì)黃河流域土壤含鹽量進(jìn)行了估算,結(jié)果發(fā)現(xiàn)PLSR方法比SMR方法更適合于土壤含鹽量的估算;雷磊等[9]把實(shí)測(cè)高光譜數(shù)據(jù)和HIS影像數(shù)據(jù)相結(jié)合對(duì)新疆庫(kù)車(chē)縣土壤鹽漬化進(jìn)行監(jiān)測(cè),提高了區(qū)域尺度上土壤鹽漬化監(jiān)測(cè)精度。與多光譜影像相比,高光譜影像雖然能夠提供高光譜分辨率,但由于數(shù)據(jù)冗余、空間分辨率相對(duì)較低,不能滿(mǎn)足土壤鹽分高空間分辨率定量分析與制圖的需要[10-14]。雖然有一些研究利用多光譜遙感數(shù)據(jù)和實(shí)測(cè)光譜反射率數(shù)據(jù)進(jìn)行鹽漬化監(jiān)測(cè),但是利用實(shí)測(cè)鹽漬土敏感波段與常用光學(xué)傳感器覆蓋光譜之間的關(guān)系、高空間分辨率的遙感數(shù)據(jù)和不同光譜指數(shù)對(duì)鹽漬土進(jìn)行監(jiān)測(cè)的研究略有欠缺。本文利用室內(nèi)實(shí)測(cè)高光譜數(shù)據(jù)、高空間分辨率的WorldView-2數(shù)據(jù)、WorldView-2影像中獲取的歸一化植被指數(shù)(normalized difference vegetation index, NDVI)、比值植被指數(shù)(ratio vegetation index, RVI)等指數(shù)構(gòu)建基于偏最小二乘回歸(PLSR)和BP神經(jīng)網(wǎng)絡(luò)的鹽漬土鹽分預(yù)測(cè)模型,并選出定量反演土壤含鹽量的最佳模型,進(jìn)一步做出該研究區(qū)高空間分辨率的土壤含鹽量分布圖。

        1 材料與方法

        1.1 研究區(qū)概況

        克里雅河流域位居塔克拉瑪干沙漠南緣,昆侖山中段北麓,受大陸性干旱氣候和山盆相間的地貌格局影響,流域中部發(fā)育了典型的綠洲—荒漠生態(tài)系統(tǒng)[15]。流域內(nèi)海拔最高點(diǎn)6 962 m,海拔5 000 m以上的山峰終年冰雪覆蓋,北部沙漠海拔在1 000 m以上[16]??死镅藕恿饔蜃阅舷虮笨煞譃?個(gè)自然景觀帶,即山帶、低山丘陵帶、山前戈壁平原帶、洪積扇平原帶和沙漠帶。四季分明、晝夜溫差大、降水稀少、蒸發(fā)量大、春夏多風(fēng)沙和浮塵是該流域的氣候特點(diǎn),屬典型的極端干旱區(qū)[17-18]。平原綠洲區(qū)年均降水僅有14 mm左右,蒸發(fā)量則高達(dá)2 500 mm左右,綠洲主要依靠山區(qū)冰雪融水和部分地下水灌溉[18]。流域范圍內(nèi)土壤鹽漬化和沙漠化現(xiàn)象共存,嚴(yán)重制約著植被生長(zhǎng)分布和綠洲農(nóng)業(yè)的發(fā)展,生態(tài)環(huán)境十分脆弱[18]。根據(jù)該流域以上特征,研究區(qū)選在鹽漬化現(xiàn)象較均勻的天然綠洲和綠洲—荒漠交錯(cuò)帶,東西方向長(zhǎng)度約為1 km,各個(gè)采樣點(diǎn)之間的距離為100 m;南北方向跨度近1.2 km,各個(gè)采樣點(diǎn)之間的距離為200 m。研究區(qū)位置與采樣點(diǎn)分布如圖1所示。

        圖1 研究區(qū)位置和采樣點(diǎn)分布

        1.2 鹽漬化程度的劃分

        根據(jù)多年來(lái)實(shí)測(cè)數(shù)據(jù)資料,結(jié)合新疆水利廳發(fā)布的《新疆縣級(jí)鹽堿地改良利用規(guī)劃工作大綱》[7],加上野外采樣點(diǎn)的分布情況,做出土壤鹽漬化程度分級(jí)標(biāo)準(zhǔn)(表1)。

        表1 土壤鹽漬化程度分級(jí)

        1.3 土壤樣本的采集與鹽分測(cè)定

        2016年9月24日在研究區(qū)的東南部用五點(diǎn)梅花狀方法采集土壤表層(0~20 cm)樣本共66個(gè),樣品風(fēng)干后適當(dāng)磨碎、過(guò)3.5 mm孔篩,量取20 g土樣加100 mL蒸餾水準(zhǔn)備溶液,過(guò)濾后實(shí)驗(yàn)室用Multi3420 SET B便攜式多參數(shù)分析儀測(cè)定鹽分。所采集的樣品中(均值3.80 g/kg,最小值0.20 g/kg,最大值9.10 g/kg,標(biāo)準(zhǔn)差2.25 g/kg,變異系數(shù)59%),總樣本的2/3用于建模(均值4.20 g/kg,最小值0.20 g/kg,最大值9.10 g/kg,標(biāo)準(zhǔn)差2.24 g/kg,變異系數(shù)53%),1/3用于驗(yàn)證(均值3.10 g/kg,最小值0.60 g/kg,最大值7.50 g/kg,標(biāo)準(zhǔn)差2.14 g/kg,變異系數(shù)69%)。根據(jù)統(tǒng)計(jì)數(shù)據(jù),總體樣本的均值和變異系數(shù)介于建模組與驗(yàn)證組之間,說(shuō)明建模與驗(yàn)證組的范圍相對(duì)一致[16]。

        1.4 World View-2數(shù)據(jù)的獲取與預(yù)處理

        購(gòu)買(mǎi)2016年9月26日與實(shí)地采樣時(shí)間較同步的WorldView-2數(shù)據(jù),WorldView-2有一個(gè)全色波段(450~800 nm)和可見(jiàn)光-近紅外范圍內(nèi)的8個(gè)多光譜波段。全色波段的空間分辨率最高可達(dá)到0.46 m,多光譜波段的空間分辨率最高可到1.85 m。為了匹配實(shí)測(cè)光譜反射率數(shù)據(jù)與WorldView-2數(shù)據(jù),對(duì)影像數(shù)據(jù)進(jìn)行輻射定標(biāo)和Flaash大氣校正[19-21]。

        1.5 地面鹽漬土光譜數(shù)據(jù)的采集與處理

        利用美國(guó)ASD FieldSpec3光譜儀對(duì)采集回來(lái)的土壤樣本進(jìn)行光譜反射率的測(cè)定。光譜儀波譜范圍為(350~2 500 nm),在(350~1 000 nm)范圍內(nèi)采樣間隔為1.4 nm,在(1 000~2 500 nm)范圍內(nèi)采樣間隔為2 nm。把準(zhǔn)備好的土樣放在直徑為10 cm深度2 cm的容器里,裝滿(mǎn)后刮平土壤表面,在室內(nèi)進(jìn)行光譜測(cè)量。將容器按90°轉(zhuǎn)動(dòng)3次測(cè)4個(gè)方向的光譜反射率,每個(gè)方向保存5條光譜曲線,取平均得到該樣本最終的光譜反射率數(shù)據(jù)[22]。

        在測(cè)得的光譜數(shù)據(jù)中,為了降低噪聲的影響,將信噪比較低的邊緣波段(350~399、2 401~2 500 nm)去除[23],對(duì)剩下的(400~2 400 nm)的光譜曲線用OriginPro軟件中的Savitzky-Golsy平滑方法進(jìn)行平滑處理。對(duì)平滑后的光譜反射率數(shù)據(jù)求二階導(dǎo)數(shù),在原始土壤光譜數(shù)據(jù)的基礎(chǔ)上,在ENVI5.1中進(jìn)行包絡(luò)線去除,處理后的光譜反射率數(shù)據(jù)作為下一步選擇敏感波段的依據(jù)。

        1.6 敏感波段的選擇及指數(shù)計(jì)算

        土壤鹽分敏感波段的選擇可為傳感器光譜覆蓋范圍的確定提供有用的信息。敏感波段通過(guò)土壤鹽分與不同變換形式的光譜反射率的相關(guān)分析來(lái)確定,相關(guān)性越強(qiáng),表明該波段對(duì)鹽分越敏感。本文利用Pearson相關(guān)分析方法,選取原始光譜數(shù)據(jù)和二階導(dǎo)數(shù)與土壤鹽分進(jìn)行相關(guān)性分析,通過(guò)顯著性檢驗(yàn)的波段作為敏感波段用于建立反演模型。

        在處理好的遙感影像上根據(jù)NDVI、RVI的計(jì)算公式(1)、(2),利用ENVI軟件BandMath模塊計(jì)算2種植被指數(shù)。健康植被的RVI一般大于1,受大氣影響;NDVI值取值范圍為[-1,1],負(fù)值表示水、云等,正值表示植被,可以消除土壤水分和植被等影響[1]。

        NDVI=(NIR-)/(NIR+) (1)

        RVI= NIR/(2)

        式中NIR為近紅外波段反射率,為紅光波段反射率。本文中,NIR取WorldView-2影像的第4波段,取第3波段進(jìn)行計(jì)算。

        1.7 實(shí)測(cè)光譜擬合為WorldView-2光譜及其相關(guān)性分析

        地面實(shí)測(cè)光譜分辨率一般高于圖像光譜分辨率,本文將實(shí)測(cè)光譜轉(zhuǎn)換到圖像光譜尺度并兩者之間做相關(guān)性分析,實(shí)現(xiàn)從地面光譜到影像光譜較好的模擬。從能量的角度來(lái)看,光譜擬合是一個(gè)根據(jù)已知的光譜響應(yīng)函數(shù)進(jìn)行能量的重新分配的過(guò)程,相當(dāng)于對(duì)實(shí)測(cè)光譜按照波長(zhǎng)做加權(quán)平均。本文從WorldView-2多光譜數(shù)據(jù)中獲取66個(gè)采樣點(diǎn)的地理位置和表面反射率,利用式(3)實(shí)現(xiàn)從實(shí)測(cè)光譜到WorldView-2影像每個(gè)波段光譜的擬合,并在4種不同鹽分條件下對(duì)World View-2影像8個(gè)波段與被擬合的實(shí)測(cè)光譜反射率數(shù)據(jù)間進(jìn)行Pearson相關(guān)分析。

        式中ρ為待擬合的WorldView-2第個(gè)波段;f()為待擬合波段的光譜響應(yīng)函數(shù);()為波段處的實(shí)測(cè)反射光譜;max和min分別是實(shí)測(cè)反射光譜的上下限[1]。

        1.8 建立模型與驗(yàn)證

        本文采用常用的偏最小二乘回歸(PLSR)方法和BP神經(jīng)網(wǎng)絡(luò)方法分別建立定量反演土壤含鹽量模型。PLSR方法是一種多變量回歸分析方法,與普通最小二乘回歸方法相比,其優(yōu)勢(shì)在于采用數(shù)據(jù)降維、信息綜合與篩選,提取對(duì)系統(tǒng)最佳解釋能力的新綜合成分[22]。常用的BP神經(jīng)網(wǎng)絡(luò)模型是由輸入層、隱含層和輸出層組成[18,24]。其中心思想是調(diào)整權(quán)值使網(wǎng)絡(luò)總誤差最小,通過(guò)把學(xué)習(xí)的結(jié)果反饋到中間的隱含層,改變其權(quán)系數(shù)矩陣,從而達(dá)到預(yù)期的學(xué)習(xí)目的[3]。本研究以土壤含鹽量為因變量,根據(jù)二階導(dǎo)數(shù)選出的敏感波段與WorldView-2影像反射率、NDVI、RVI指數(shù)作為自變量分別建立基于實(shí)測(cè)光譜和WorldView-2影像光譜的PLSR模型和BP神經(jīng)網(wǎng)絡(luò)模型。

        模型預(yù)測(cè)精度選取決定系數(shù)(2)、均方根誤差(RMSE, root mean square error)、相對(duì)分析誤差(RPD, residual prediction deviation)來(lái)衡量模型的預(yù)測(cè)精度。2越接近1,表明該模型的擬合效果越高,并且越穩(wěn)定。RMSE越小,模型的估算效果越好。RPD用來(lái)判定模型的預(yù)測(cè)能力,一般RPD<1.4,說(shuō)明模型不能對(duì)樣本進(jìn)行預(yù)測(cè);1.4≤RPD<2,說(shuō)明該模型的預(yù)測(cè)能力一般,可以粗略地對(duì)樣本進(jìn)行預(yù)測(cè);RPD≥2,說(shuō)明模型具有極好的預(yù)測(cè)能力[25]。

        2 結(jié)果與分析

        2.1 鹽漬化土壤光譜特征分析

        圖2為不同含鹽量土壤光譜曲線圖。由圖2a可知,土壤含鹽量的差異導(dǎo)致反射率的變化,隨著土壤含鹽量的增加,光譜反射率也呈現(xiàn)提高的趨勢(shì),光譜曲線變化趨勢(shì)基本一致。圖2b顯示光譜吸收帶和4種不同鹽漬化程度土壤包絡(luò)線去除后的光譜曲線,在478、1 413、1 915和2 204 nm處有較深的吸收谷,在418、692、876、1 143和2 376 nm處有較淺的吸收谷。從483到810 nm不同含鹽量的樣品光譜反射率區(qū)別不太明顯。從810到876 nm光譜反射率隨著含鹽量的增加而減小。隨著波長(zhǎng)的增加,不同含鹽量的樣品光譜反射率區(qū)別越來(lái)越明顯??梢?jiàn)光波段的420、478 nm處有較深的吸收谷,近紅外波段900 nm附近有較弱的吸收谷。這說(shuō)明可以利用可見(jiàn)光-近紅外波段土壤反射光譜來(lái)區(qū)分不同含鹽量的土壤。

        圖2 不同含鹽量土壤光譜曲線

        2.2 敏感波段的選擇及指數(shù)計(jì)算

        在以上分析的基礎(chǔ)上,將土壤含鹽量和反射率逐波段做Pearson相關(guān)分析,得出相關(guān)系數(shù)在各波長(zhǎng)上的分布圖(圖3)。圖3a、3b分別為原始光譜和光譜二階導(dǎo)數(shù)與土壤含鹽量間的相關(guān)系數(shù)圖。由圖可知,原始光譜與土壤含鹽量間的相關(guān)性較低,沒(méi)有通過(guò)0.01顯著性檢驗(yàn)的波段;對(duì)二階導(dǎo)數(shù)光譜來(lái)說(shuō),土壤含鹽量與各波段呈正負(fù)相關(guān),呈負(fù)相關(guān)的波段個(gè)數(shù)與呈正相關(guān)波段數(shù)相當(dāng),通過(guò)0.01顯著性檢驗(yàn)(臨界值0.312)的波段分布在(530~825、1 255~2 300 nm)區(qū)間內(nèi),最高值出現(xiàn)在539 nm處。與原始光譜相比,在(400~2 400 nm)整個(gè)區(qū)間各波段與土壤含鹽量相關(guān)性有明顯的提高,說(shuō)明二階導(dǎo)光譜反射率與土壤含鹽量相關(guān)性較好,適合用于土壤含鹽量的定量反演。以上結(jié)果說(shuō)明,相對(duì)于原始光譜來(lái)說(shuō),采用光譜二階導(dǎo)數(shù)建立模型可能提高定量反演土壤鹽分的精度。因此,結(jié)合可見(jiàn)光、近紅外、短波紅外波段分布范圍與二階導(dǎo)數(shù)光譜中通過(guò)0.01顯著性檢驗(yàn)的波段539、624、688、808、1 280、1 757和2 271 nm作為敏感波段用于實(shí)測(cè)數(shù)據(jù)建模。以上這些波段被WorldView-2的3個(gè)可見(jiàn)光波段(510~580、630~690、585~625 nm)和近紅外波段(770~895 nm)所覆蓋。因此,將WorldView-2影像的3、4、5、7波段作為敏感波段用于影像數(shù)據(jù)建模。不同傳感器在土壤鹽漬化監(jiān)測(cè)方面的適用性可以通過(guò)光譜分辨率或空間分辨率來(lái)判斷。本文中,由于空間分辨率優(yōu)于光譜分辨率,沒(méi)有考慮高光譜傳感器和中低空間分辨率的多光譜傳感器,選用高空間分辨率WorldView-2數(shù)據(jù)對(duì)其土壤鹽漬化監(jiān)測(cè)能力進(jìn)行評(píng)價(jià)。

        圖3 土壤含鹽量與光譜反射率間的相關(guān)性分析

        由于室內(nèi)測(cè)光譜的土壤樣本不含水分和植被信息,不受土壤水分和植被覆蓋等影響。為了減小研究區(qū)受土壤水分和植被覆蓋的影響,根據(jù)式(1),(2)在WorldView-2影像中計(jì)算NDVI,RVI,作為模型參數(shù),用來(lái)降低土壤水分和植被覆蓋的影響。

        2.3 實(shí)測(cè)光譜擬合數(shù)據(jù)與WorldView-2光譜及其相關(guān)性分析

        實(shí)測(cè)光譜擬合得到的反射率與WorldView-2影像反射率的相關(guān)性分析結(jié)果及光譜曲線對(duì)比如圖4所示,圖4中擬合光譜與影像光譜的8個(gè)波段對(duì)應(yīng)的反射率分別是66個(gè)采樣點(diǎn)中含鹽量不同的4個(gè)樣點(diǎn)的值。圖中可知,含鹽量1.3 g/kg(輕度鹽漬化土壤)的土壤擬合光譜與WorldView-2影像光譜相關(guān)性最好,2達(dá)到了0.967,其他3種鹽漬土的土壤擬合光譜與WorldView-2影像光譜相關(guān)性相差不大,2都在0.8以上,說(shuō)明可以用WorldView-2影像進(jìn)行定量反演土壤含鹽量能得到較好的效果。此外,通過(guò)實(shí)測(cè)數(shù)據(jù)擬合的光譜與WorldView-2影像8波段光譜曲線變化趨勢(shì)相對(duì)一致,說(shuō)明擬合光譜與WorldView-2影像光譜具有類(lèi)似的特征信息。由于受到土壤水分、植被覆蓋以及大氣校正精度的影響,WorldView-2影像反射率值都比室內(nèi)實(shí)測(cè)光譜反射率值低。根據(jù)以上分析可知,由實(shí)測(cè)窄波段擬合得到的寬波段光譜反射率與WorldView-2影像反射率具有較高的相關(guān)性,可為WorldView-2影像上定量反演鹽分提供較可靠的依據(jù)。

        圖4 擬合實(shí)測(cè)光譜與WorldView-2影像光譜反射率相關(guān)性

        2.4 建立模型與驗(yàn)證

        基于實(shí)測(cè)高光譜二階導(dǎo)數(shù)選取的敏感波段539、624、688、808、1 280、1 757和2 271 nm作為自變量,含鹽量作為因變量建立PLSR模型;以上7個(gè)波段作為輸入層,含鹽量作為輸出層,隱含層取為8,建立7:8:1結(jié)構(gòu)的BP神經(jīng)網(wǎng)絡(luò)模型。RLSR、BP神經(jīng)網(wǎng)絡(luò)模型預(yù)測(cè)模型精度都達(dá)到了較高水平,2RMSERPD分別為0.767、1.129、2.243和0.802、0.995、2.546。以上結(jié)果表明可見(jiàn)光-近紅外波段的實(shí)測(cè)光譜二階導(dǎo)數(shù)據(jù)在監(jiān)測(cè)土壤鹽漬化方面具有較好的反演能力,BP神經(jīng)網(wǎng)絡(luò)模型的預(yù)測(cè)能力優(yōu)于PLSR模型。

        以WorldView-2影像4個(gè)波段(B3、B4、B5、B7)反射率和NDVI、RVI作為自變量,含鹽量作為因變量建立基于WorldView-2影像的PLSR模型; BP神經(jīng)網(wǎng)絡(luò)模型選取6:8:1的3層結(jié)構(gòu),輸入層包括WorldView-2影像4個(gè)波段(B3、B4、B5、B7)反射率、NDVI、RVI,隱含層確定為8,輸出層為土壤含鹽量。2種模型的建模及驗(yàn)證結(jié)果如表3所示。從建模效果看,2種模型的2都高于0.8,RMSE較接近,說(shuō)明2種模型的預(yù)測(cè)能力接近。其中BP神經(jīng)網(wǎng)絡(luò)模型的R達(dá)到了0.894,明顯高于PLSR模型,BP神經(jīng)網(wǎng)絡(luò)模型穩(wěn)定性較好,與用實(shí)測(cè)數(shù)據(jù)建立的模型驗(yàn)證結(jié)果一致。從預(yù)測(cè)值與實(shí)測(cè)值之間的擬合分析(圖5)可以看出,基于WorldView-2影像數(shù)據(jù)建立的BP神經(jīng)網(wǎng)絡(luò)模型中,驗(yàn)證樣本點(diǎn)較為均勻地分布在1:1直線的兩側(cè),表明BP神經(jīng)網(wǎng)絡(luò)模型擬合效果較好;PLSR模型中,驗(yàn)證樣本點(diǎn)大部分較為離散的分布在1:1線之上,說(shuō)明預(yù)測(cè)值大于實(shí)測(cè)值。以上結(jié)果表明,在鹽漬化監(jiān)測(cè)方面,單獨(dú)使用WorldView-2數(shù)據(jù)估算土壤含鹽量的精度可達(dá)到較高水平,BP神經(jīng)網(wǎng)絡(luò)模型定量反演含鹽量的能力優(yōu)于PLSR模型。圖6為研究區(qū)基于2種模型的土壤含鹽量分布圖,圖中可發(fā)現(xiàn),整體上研究區(qū)鹽漬化程度較重,重度鹽漬化區(qū)域主要分布在研究區(qū)西南部和東北部,東部區(qū)域鹽漬化程度相對(duì)較低,非鹽漬地和輕度鹽漬地所占比重很少,這可以為本區(qū)域治理鹽漬化和土地利用規(guī)劃提供一定的根據(jù)。

        表3 基于WorldView-2影像的PLSR模型與BP神經(jīng)網(wǎng)絡(luò)模型土壤含鹽量精度比較

        圖5 基于WorldView-2影像土壤含鹽量預(yù)測(cè)值與實(shí)測(cè)值散點(diǎn)圖

        圖6 土壤含鹽量分布圖

        3 結(jié) 論

        本文以新疆克里雅河流域?yàn)檠芯繉?duì)象,利用WorldView-2影像數(shù)據(jù),實(shí)測(cè)室內(nèi)光譜數(shù)據(jù)以及66個(gè)樣本含鹽量數(shù)據(jù),建立定量反演土壤含鹽量的PLSR和BP神經(jīng)網(wǎng)絡(luò)模型,得出以下結(jié)論:

        1)土壤光譜反射率隨著含鹽量的增加呈上升趨勢(shì),光譜曲線變化趨勢(shì)基本一致。光譜二階導(dǎo)數(shù)可在定量反演土壤含鹽量過(guò)程中,起到去噪并突出光譜特征信息的作用,尤其是在(530~825、1 255~2 300 nm)區(qū)間內(nèi)明顯提高了與土壤含鹽量的相關(guān)性。

        2)根據(jù)實(shí)測(cè)光譜二階導(dǎo)數(shù)與土壤含鹽量的相關(guān)性分析,得出敏感波段539、624、688、808、1 280、1 757和2 271 nm,并建立PLSR和BP神經(jīng)網(wǎng)絡(luò)模型,發(fā)現(xiàn)BP神經(jīng)網(wǎng)絡(luò)模型預(yù)測(cè)精度高于PLSR模型,2RMSERPD分別達(dá)到了0.802、0.995、2.546。這些波段被WorldView-2的3個(gè)可見(jiàn)光波段(510~580、630~690、585~625 nm)和近紅外波段(770~895 nm)所覆蓋,因此WorldView-2影像的3、4、5、7波段確定為土壤含鹽量的敏感波段,而且通過(guò)對(duì)擬合的實(shí)測(cè)光譜與WorldView-2光譜數(shù)據(jù)的相關(guān)性分析,發(fā)現(xiàn)用WorldView-2影像能達(dá)到較好反演土壤含鹽量的目的。

        3)基于WorldView-2影像數(shù)據(jù)建立的BP神經(jīng)網(wǎng)絡(luò)模型與PLSR模型相比,2從0.814提高到了0.851,說(shuō)明模型穩(wěn)定性得到了較好的提升;RMSE從1.139降低到了0.979,RPD從2.007提高到了2.337,說(shuō)明模型的預(yù)測(cè)能了有了明顯的提高,為今后定量反演干旱、半干旱地區(qū)土壤含鹽量提供了一定的依據(jù)。

        4)利用WorldView-2影像提高了鹽分制圖的空間分辨率,歸一化植被指數(shù)NDVI和比例植被指數(shù)RVI較有效的降低了植被覆蓋與土壤水分對(duì)預(yù)測(cè)精度的影響。本文中,由于野外工作的限制,利用室內(nèi)實(shí)測(cè)高光譜數(shù)據(jù),沒(méi)有考慮土壤質(zhì)地、有機(jī)質(zhì)、土壤粒徑、植被類(lèi)型、植被生長(zhǎng)情況、地下水位、土壤埋深等影響土壤特性的因素,今后有待進(jìn)一步進(jìn)行研究。

        [1] Sidike A, Zhao S, Wen Y. Estimating soil salinity in Pingluo County of China using QuickBird data and soil reflectance spectra[J]. International Journal of Applied Earth Observation & Geoinformation, 2014, 26(2): 156-175.

        [2] 海米提·依米提,潘曉玲,塔西甫拉提·特依拜,等. 塔里木盆地水土資源開(kāi)發(fā)及其生態(tài)環(huán)境效應(yīng)[J]. 資源科學(xué),2004,24(6):48-54.

        Hamid Yimit, Pan Xiaoling, Tashpolat Teyip, et al. Water resource development in Tarim Basin and its eco-environmental effects[J]. Resources Science, 2004, 24(6): 48-54. (in Chinese with English abstract)

        [3] 王靜,劉湘南,黃方,等. 基于ANN技術(shù)和高光譜遙感的鹽漬土鹽分預(yù)測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(12):161-166.

        Wang Jing, Liu Xiangnan, Huang Fang, et al. Salinity forecasting of saline soil based on ANN and hyperspectral remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(12): 161-166. (in Chinese with English abstract)

        [4] Baumgardner M F, Silva L R F, Biehl L L, et al. Reflectance properties of soils[J]. Advances in Agronomy, 1986, 38: 1-44.

        [5] 塔西甫拉提·特依拜,吐?tīng)栠d·艾山,海米提·司馬義,等. 土壤鹽漬化遙感監(jiān)測(cè)研究進(jìn)展綜述[J]. 新疆大學(xué)學(xué)報(bào):自然科學(xué)版,2008,25(1):1-7.

        Tashpolat Tiyip , Tursun Hasan, Hamid Ishmael, et al. Research progress and summary of remote sensing monitoring of soil salinization[J]. Journal of Xinjiang University: Natural Science Edition, 2008, 25(1): 1-7. (in Chinese with English abstract)

        [6] 丁建麗,伍漫春,劉海霞,等. 基于綜合高光譜指數(shù)的區(qū)域土壤鹽漬化監(jiān)測(cè)研究[J]. 光譜學(xué)與光譜分析,2012,32(7):1918-1922.

        Ding Jianli, Wu Manchun, Liu Haixia, et al. Study on the soil salinization monitoring based on synthetical hyperspectral index[J]. Spectroscopy and Spectral Analysis, 2012, 32(7): 1918-1922. (in Chinese with English abstract)

        [7] 趙振亮,塔西甫拉提·特依拜,孫倩,等. 土壤光譜特征分析及鹽漬化信息提取:以新疆渭干河/庫(kù)車(chē)河綠洲為例[J]. 地理科學(xué)進(jìn)展,2014,33(2):280-288.

        Zhao Zhenliang, Tashpolat Tiyip, Sun Qian, et al. Soil spectrum characteristics and information extraction of salinization: A case study in Weigan-Kuqa Oasis in Xinjiang[J]. Progress in Geography, 2014, 33(2): 280-288. (in Chinese with English abstract)

        [8] Weng Y, Gong P, Zhu Z. Soil salt content estimation in the Yellow River delta with satellite hyperspectral data[J]. Canadian Journal of Remote Sensing, 2008, 34(3): 259-270.

        [9] 雷磊,塔西甫拉提·特依拜,丁建麗,等. 實(shí)測(cè)高光譜和HIS影像的區(qū)域土壤鹽漬化遙感監(jiān)測(cè)研究[J]. 光譜學(xué)與光譜分析,2014,34(7):1948-1953.

        Lei Lei, Tashpolat Tiyip, Ding Jianli, et al. Study on the soil salinization monitoring based on measured hyperspectral and HIS data[J]. Spectroscopy and Spectral Analysis, 2014, 34(7): 1948-1953. (in Chinese with English abstract)

        [10] Dehaan R, Taylor G R. Image-derived spectral endmembers as indicators of salinisation[J]. International Journal of Remote Sensing, 2003, 24(4): 775-794.

        [11] Farifteh J, Vander Meer F, Atzberger C, et al. Quantitative analysis of salt-affected soil reflectance spectra:A comparison of two adaptive methods (PLSR and ANN)[J]. Remote Sensing of Environment, 2007, 110: 59-78.

        [12] Janik L J, Forrester S T, Rawson A. The prediction of soil chemical and physical properties from mid-infrared spectroscopy and combined partial least-squares regression and neural networks (PLS-NN) analysis[J]. Chemometrics & Intelligent Laboratory Systems, 2009, 97(2): 179-188.

        [13] Weng Yongling, Gong Peng, Zhu Zhiliang. A Spectral index for estimating soil salinity in the Yellow River Delta region of China using EO-1 hyperion data[J]. Pedosphere, 2010, 20(3): 378-388.

        [14] Ghosh G, Kumar S, Saha S K. Hyperspectral satellite data in mapping salt-affected soils using linear spectral unmixing analysis[J]. Journal of the Indian Society of Remote Sensing, 2012, 40(1): 129-136.

        [15] 姜紅濤,塔西甫拉提·特依拜,買(mǎi)買(mǎi)提·沙吾提,等. 于田綠洲土壤鹽漬化動(dòng)態(tài)變化研究[J]. 土壤通報(bào),2014,45(1):123-129.

        Jiang Hongtao, Tashpolat Tiyip, Mamat Sawut, et al. Study on spatial and temporal dynamics change of soil salinization in Keriya Oasis[J].Chinese Journal of Soil Science, 2014, 45(1): 123-129. (in Chinese with English abstract)

        [16] 阿不都拉·阿不力孜. 于田綠洲土壤水鹽分布特征及其生態(tài)效應(yīng)[D]. 烏魯木齊:新疆大學(xué),2016.

        Abdulla Abliz. Ecological Effects of Soil Water-salt Distribution in the Keriya Oasis[D]. Urumqi: Xinjiang University, 2016. (in Chinese with English abstract)

        [17] 米合熱古麗·塔什卜拉.基于多源光譜數(shù)據(jù)的干旱區(qū)土壤含鹽量定量反演研究[D]. 烏魯木齊:新疆大學(xué),2017.

        Mihrigul Tashpolat. Research on Quantitative Inversion of Soil Salinity with Multi-source Spectrum Data in Arid Area[D]. Urumqi: Xinjiang University, 2017. (in Chinese with English abstract)

        [18] 劉全明. 含鹽土壤鹽漬化雷達(dá)反演模擬研究[J]. 測(cè)繪通報(bào),2014(9):43-46.

        Liu Quanming. On radar inversion and simulation of salty soil salinization[J]. Bulletin of Surveying and Mapping, 2014(9): 43-46. (in Chinese with English abstract)

        [19] Alexakis D D, Daliakopoulos I N, Panagea I S, et al. Assessing soil salinity using WorldView-2 multispectral images in Timpaki, Crete, Greece[J]. Geocarto International, 2016, 10: 1-38.

        [20] Vermeulen D, Niekerk A V. Evaluation of a WorldView-2 image for soil salinity monitoring in a moderately affected irrigated area[J]. Journal of Applied Remote Sensing, 2016, 10(2): 1181-1205.

        [21] Muller S J, Niekerk A V. Identification of WorldView-2 spectral and spatial factors in detecting salt accumulation in cultivated fields[J]. Geoderma, 2016, 273: 1-11.

        [22] Fard R S, Matinfar H R. Capability of vis-NIR spectroscopy and Landsat 8 spectral data to predict soil heavy metals in polluted agricultural land (Iran)[J]. Arabian Journal of Geosciences, 2016, 9(20): 745-759.

        [23] 王敬哲,塔西甫拉提·特依拜,丁建麗,等. 基于分?jǐn)?shù)階微分預(yù)處理高光譜數(shù)據(jù)的荒漠土壤有機(jī)碳含量估算[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(21):161-169.

        Wang Jingzhe, Tashpolat Tiyip, Ding Jianli, et al. Estimation of desert soil organic carbon content based on hyperspectral data preprocessing with fractional differential[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(21): 161-169. (in Chinese with English abstract)

        [24] 劉全明,成秋明,王學(xué),等. 河套灌區(qū)土壤鹽漬化微波雷達(dá)反演[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(16):109-114.

        Liu Quanming, Cheng Qiuming, Wang Xue, et al. Soil salinity inversion in Hetao Irrigation district using microwave radar[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(16): 109-114. (in Chinese with English abstract)

        [25] 于雷,洪永勝,耿雷,等. 基于偏最小二乘回歸的土壤有機(jī)質(zhì)含量高光譜估算[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(14):103-109.

        Yu Lei, Hong Yongsheng, Geng Lei, et al. Hyperspectral estimation of soil organic matter content based on partial least squares regression[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(14): 103-109. (in Chinese with English abstract)

        Inversion model of soil salt content based on WorldView-2 image

        Umut Hasan1,2, Mamat Sawut1,2,3※, Ilyas Nurmamat1,2, Rukiya Sawut1,2, Wang Jingzhe1,2

        (1.,,830046; 2.,830046,; 3.,830046,)

        Soil salinization has become one of the global environmental issues, especially in arid and semi-arid areas. In order to prevent its further deterioration, it is important to monitor soil salinity timely, quantitatively and dynamically. Remote sensing technique has become a promising method to detect and monitor the soil salinity due to its many advantages. The aim of this study was to evaluate the ability of quantitative inversion of soil salt content based on the WorldView-2 images with high spatial resolution. In this paper, Keriya River basin, Xinjiang, China was selected as the study area. Based on the WorldView-2 image data and soil salt content, this paper used 2 kinds of methods including the partial least squares regression (PLSR) and back propagation artificial neural network (BP ANN) to establish the quantitative inversion models of soil salt content. Soil salinity information was extracted from the WorldView-2 data, which was synchronized with field sampling time, and covered an area of 1.2 km × 1 km. The distance between adjacent sampling points was 100 m in east-west direction, and 200 m in north-south direction. Sixty-six sampling points were designed in the study area, and digging depth in soil was 20 cm. Hand-held GPS (global position system) receiver was used to record the coordinates of sampling points, and the soil salt content and soil spectra were measured in the indoor. Spectral radiometric calibration and atmospheric correction were performed on the WorldView-2 data to match the image data with the measured re?ectance spectra. The measurement of soil spectra was conducted using an ASD (analytical spectral devices) FieldSpec3 portable spectro radiometer (American Analytical Spectral Devices, Inc.) at wavelengths from 350 to 2500 nm with a sampling interval of 1.4 nm from 350 to 1000 nm and 2 nm from 1000 to 2500 nm. The edge bands including 350-399 and 2401-2500 nm were removed from the measured spectral data, and the remaining 400-2400 nm spectrum curve was smoothed with Savitzky-Golay smoothing method in software OriginPro. Original soil spectral data were continuum-removed in ENVI 5.1 to analyze the spectral characteristics of soil. Correlation analysis between the original and two-order derivative of measured reflectance data and the soil salinity was performed by using Pearson correlation analysis method, and the significant bands were used to establish the inversion model. The geographic locations and surface re?ectance of the soil samples were obtained precisely from WorldView-2 multi-spectral data. Spectral re?ectance of each band of WorldView-2 data was simulated by calculating a weighted average of the measured re?ectance spectra to reduce the error resulted from the spectral resolution difference of the image derived spectra and measured re?ectance spectra. PLSR model was established, in which the reflectance of 4 bands i.e. B3, B4, B5 and B7 of WorldView-2 image and NDVI (normalized difference vegetation index) and RVI (ratio vegetation index) were selected as independent variables, and salt content was used as dependent variable. Three-layer BP neural network model was established in which the input layer was made up of the reflectance of 4 bands of WorldView-2 image (B3, B4, B5 and B7) and NDVI and RVI, and the number of net neurons was 6; the output layer was a neuron corresponding to the salt content of sampling point. After a lot of tentative computation, the optimal number of neurons in the hidden layer was selected as 8. The results showed that: 1) The prediction accuracy of BP neural network model based on WorldView-2 image data was higher than the PLSR model in the study area, and the coefficient of determination (2), root mean square error (RMSE) and residual prediction deviation (RPD) were 0.851, 0.979 and 2.337 respectively for the former and 0.814, 1.139 and 2.007 respectively for the latter. 2) The spatial resolution of salinity mapping could be improved by using WorldView-2 images. The NDVI and the RVI were helpful to reduce the influence of vegetation cover and soil moisture on the prediction accuracy. This inversion model established in this paper can meet the needs of monitoring salinization in arid and semi-arid area and promote the further application of WorldView-2 high spatial resolution satellite in the monitoring of salinization.

        remote sensing; soils; salinity measurements; WorldView-2 image;Keriya river basin; measured spectral data; neural network; inversion models

        10.11975/j.issn.1002-6819.2017.24.026

        S155; TP79

        A

        1002-6819(2017)-24-0200-07

        2017-07-27

        2017-11-30

        國(guó)家自然科學(xué)基金資助項(xiàng)目(41361016、41561089、40901163、41761077)共同資助

        吾木提·艾山江,男(維吾爾族),新疆伊寧人,主要研究方向:環(huán)境遙感應(yīng)用。Email:MasterWu516@163.com

        買(mǎi)買(mǎi)提·沙吾提,男(維吾爾族),新疆喀什人,博士,副教授,主要從事干旱區(qū)資源與環(huán)境遙感應(yīng)用研究。Email:korxat@xju.edu.cn

        吾木提·艾山江,買(mǎi)買(mǎi)提·沙吾提,依力亞斯江·努爾麥麥提,茹克亞·薩吾提,王敬哲. 基于WorldView-2影像的土壤含鹽量反演模型[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(24):200-206. doi:10.11975/j.issn.1002-6819.2017.24.026 http://www.tcsae.org

        Umut Hasan, Mamat Sawut, Ilyas Nurmamat, Rukiya Sawut, Wang Jingzhe. Inversion model of soil salt content based on WorldView-2 image[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(24): 200-206. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.24.026 http://www.tcsae.org

        猜你喜歡
        鹽漬化含鹽量反射率
        影響Mini LED板油墨層反射率的因素
        蔬菜大棚土壤鹽漬化成因及防治措施
        近岸水體異源遙感反射率產(chǎn)品的融合方法研究
        具有顏色恒常性的光譜反射率重建
        含鹽量及含水率對(duì)鹽漬土凍脹規(guī)律影響試驗(yàn)研究*
        土地質(zhì)量地球化學(xué)調(diào)查成果在判定土壤鹽漬化、沙化中的應(yīng)用
        黃河三角洲鹽漬土有機(jī)氮組成及氮有效性對(duì)土壤含鹽量的響應(yīng)*
        甘肅蘇干湖濕地土壤鹽漬化、地下水位埋深及其對(duì)生態(tài)環(huán)境的影響
        什么是水的含鹽量?
        化學(xué)腐蝕硅表面結(jié)構(gòu)反射率影響因素的研究*
        電子器件(2017年2期)2017-04-25 08:58:37
        啪啪无码人妻丰满熟妇| 国产亚洲精品成人aa片新蒲金| 性裸交a片一区二区三区| 极品熟妇大蝴蝶20p| 亚洲AV色欲色欲WWW| 91精品国产综合久久精品密臀 | 女女同恋一区二区在线观看| 天堂新版在线资源| 欧美亚洲综合另类| 午夜一区二区三区av| 中文字字幕在线中文乱码解| 成人精品视频一区二区| 狠狠色婷婷久久一区二区| 国产一区二区精品网站看黄| 日本视频在线观看一区二区| 亚洲av无码国产精品草莓在线| 亚洲人成网站在线观看播放| 亚洲午夜无码久久久久软件| 国产精品成人自拍在线观看| 吃下面吃胸在线看无码| 亚洲精品国产av成拍| 欧美成人www在线观看| 欧美熟妇精品一区二区三区| 国产美女精品AⅤ在线老女人| 一区二区视频在线国产| 成人做受黄大片| 国产成人影院一区二区| 国产av熟女一区二区三区老牛| 手机看片自拍偷拍福利| 毛片内射久久久一区| 亚洲AV无码久久精品成人| 不卡av一区二区在线| 欧美综合天天夜夜久久| 无遮挡亲胸捏胸免费视频| 一区二区三区在线蜜桃| 国产成人久久精品一区二区三区| 中国熟妇人妻xxxxx| 成人永久福利在线观看不卡| 精品少妇人妻av一区二区蜜桃| 人人妻人人狠人人爽| 国产日b视频|