陳少丹,張利平,,湯柔馨,楊 凱,黃勇奇
?
基于SPEI和TVDI的河南省干旱時(shí)空變化分析
陳少丹1,張利平1,2※,湯柔馨1,楊 凱2,黃勇奇2
(1. 武漢大學(xué)水資源與水電工程科學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,武漢430072; 2. 黃岡師范學(xué)院旅游文化與地理科學(xué)學(xué)院,黃岡438000)
近年來(lái)干旱在中國(guó)頻發(fā)且影響不斷加劇,因此監(jiān)測(cè)干旱對(duì)氣候變化、農(nóng)業(yè)生產(chǎn)都有重要意義?;?961-2016年56年的氣象資料,利用標(biāo)準(zhǔn)化降水蒸散指數(shù)(SPEI)定量地分析了河南省不同時(shí)間尺度(1、3、6和12個(gè)月)的干旱發(fā)生的時(shí)空變化特征和強(qiáng)度;另外采用溫度植被干旱指數(shù)(TVDI)分析了河南省的區(qū)域面積上的干旱空間變化,并探討了SPEI和TVDI的相關(guān)性。結(jié)果表明:1961-2016年56 a間,SPEI值在各時(shí)間尺度上都呈微弱的濕潤(rùn)化,隨著時(shí)間尺度的增大,SPEI值波動(dòng)幅度減??;河南省各地區(qū)干旱分布不均勻,發(fā)生干旱年的是1961、1965、1966、1968、1972、1976、1978、1981、1986、1988、1997、2001、2013共13年,與實(shí)際情況較為一致。在月時(shí)間尺度上,SPEI與TVDI的相關(guān)性分析表明,SPEI-1與TVDI呈負(fù)相關(guān)關(guān)系,即TVDI越小,SPEI的值越大,干旱程度越輕;TVDI越大,SPEI的值越小,干旱程度越嚴(yán)重。研究結(jié)果可為河南省干旱影響評(píng)估提供參照標(biāo)準(zhǔn)。
氣候變化;干旱;遙感;SPEI;TVDI;MODIS;河南省
干旱是全球最常見(jiàn)、最復(fù)雜的自然災(zāi)害之一,其發(fā)生的頻率高、持續(xù)時(shí)間長(zhǎng)、并且影響范圍廣,對(duì)農(nóng)業(yè)生產(chǎn)、自然生態(tài)系統(tǒng)和社會(huì)經(jīng)濟(jì)都造成了巨大的影響[1]。目前對(duì)于干旱的監(jiān)測(cè)方法應(yīng)用最廣泛的主要有帕爾默干旱指數(shù)(palmer drought severity index,PDSI)、標(biāo)準(zhǔn)化降雨指數(shù)(standard precipitation index,SPI)和標(biāo)準(zhǔn)化降雨蒸散指數(shù)(standard precipitation evapotranspiration index,SPEI)[2-4]。
PDSI是由Palmer(1965)在水平衡原理的基礎(chǔ)上提出的一個(gè)氣象干旱指數(shù),主要考慮了前期降水、水分供給及潛在蒸散發(fā)等因素。然而,PDSI具有固定的時(shí)間尺度,不能多尺度反映干旱特征[5]。SPI指數(shù)具有多尺度特性且計(jì)算簡(jiǎn)單,能夠很好地反映干旱強(qiáng)度及持續(xù)時(shí)間,缺點(diǎn)是只考慮了降水對(duì)干旱的影響,不能反映由于全球變暖導(dǎo)致的溫度上升而引起的蒸發(fā)量的變化[6]。2010年,Vicente-Serrano等[7]在SPI的基礎(chǔ)上,通過(guò)引入潛在蒸散,構(gòu)建了SPEI指數(shù),它融合了PDSI和SPI的優(yōu)點(diǎn),不僅考慮了PDSI中干旱對(duì)蒸散的響應(yīng),而且結(jié)合了SPI的計(jì)算簡(jiǎn)單和多時(shí)間尺度特征,因此能很好地對(duì)干旱進(jìn)行監(jiān)測(cè)與分析[8-12]。近年來(lái),許多學(xué)者也開(kāi)始采用SPEI進(jìn)行研究,莊少偉、高蓓等利用SPEI分別研究了中國(guó)區(qū)域及東北地區(qū)近幾十年來(lái)干旱時(shí)空變化特征[9-11],研究結(jié)果證明SPEI在該地區(qū)有較好的適用性。另外,植被作為聯(lián)結(jié)土壤、大氣和水分的自然紐帶,也受干旱影響顯著[13-14]。隨著遙感技術(shù)的發(fā)展,研究范圍從基于站點(diǎn)的觀測(cè)延展到整個(gè)區(qū)域,對(duì)于站點(diǎn)分布不均并且數(shù)據(jù)較少的區(qū)域提供了干旱計(jì)算新的途徑,并且可以對(duì)大面積干旱進(jìn)行實(shí)時(shí)動(dòng)態(tài)的監(jiān)測(cè)?;跍囟戎脖桓珊抵笖?shù)(temperature vegetation dryness index,TVDI)的遙感干旱監(jiān)測(cè)模型已在國(guó)內(nèi)很多地方得到了驗(yàn)證[15-17]。MODIS遙感影像具有高的空間分辨率,但由于影像的時(shí)間序列較短,因此采用遙感反演技術(shù)很難對(duì)研究區(qū)的干旱演變進(jìn)行長(zhǎng)時(shí)間分析。目前單獨(dú)采用SPEI和TVDI進(jìn)行干旱監(jiān)測(cè)分析較多,但是同時(shí)利用SPEI和TVDI兩種指數(shù)對(duì)干旱進(jìn)行監(jiān)測(cè),并且分析兩者之間關(guān)系的研究較少?;诖?,本研究以河南省為研究區(qū)域,基于SPEI和TVDI指數(shù),分析了區(qū)域干旱多時(shí)空尺度演變特征,采用相關(guān)分析探討了上述2種方法描述干旱的差異和相關(guān)性,分析了干旱對(duì)于植被生長(zhǎng)的影響,以期為河南省的干旱監(jiān)測(cè)預(yù)警和農(nóng)業(yè)生產(chǎn)提供參考依據(jù)。
河南省位于中國(guó)中東部、黃河中下游,界于110°~116°E和31°~36°N之間[8]。研究區(qū)屬于暖溫帶-亞熱帶、濕潤(rùn)-半濕潤(rùn)季風(fēng)氣候,降雨多集中在夏季,常伴有暴雨,年平均降水量約為500~900 mm,南部及西部山地分布較多,尤其大別山區(qū)可達(dá)1 100 mm以上,降水的時(shí)空分布不均,更易受旱澇災(zāi)害的影響[18]。
本文采用河南省1961-2016年逐月的氣象數(shù)據(jù),由中國(guó)氣象科學(xué)數(shù)據(jù)共享網(wǎng)(http://cdc.cma.gov.cn/home.do)提供,包括降雨量、平均氣溫、最高氣溫、最低氣溫、風(fēng)速與日照時(shí)數(shù)等。由于有的站點(diǎn)數(shù)據(jù)缺失,因此最終選取17個(gè)氣象站點(diǎn)的數(shù)據(jù)進(jìn)行研究,站點(diǎn)的分布見(jiàn)圖1。遙感影像數(shù)據(jù)選用的是美國(guó)USGS數(shù)據(jù)中心(https://lpdaac.usgs.gov/)提供的空間分辨率為1km的植被指數(shù)產(chǎn)品MOD13A3 NDVI月合成數(shù)據(jù),NDVI月合成主要是通過(guò)最大合成法對(duì)日數(shù)據(jù)進(jìn)行合成得到;地表溫度數(shù)據(jù)是的MOD11A2,其分辨率是1km。然后利用NASA官方網(wǎng)站提供的MRT(MODIS ReProjection Tool)工具對(duì)MOD13A3、MOD11A2進(jìn)行投影與文件格式的轉(zhuǎn)換,投影坐標(biāo)系為常用的UTM投影,投影帶為49。
圖1 河南省氣象站點(diǎn)分布
SPEI是根據(jù)降水量和潛在蒸散發(fā)的差值偏離平均狀態(tài)的程度來(lái)計(jì)算研究區(qū)域的干旱狀況[19]。在SPEI計(jì)算過(guò)程中,潛在蒸散發(fā)目前常用的2種方法是Thornthwaite 公式和Penman-Monteith公式[20-22],但由于Thornthwaite公式只是溫度的函數(shù),而Penman-Monteith公式不僅考慮了熱量因子,也考慮了空氣動(dòng)力因子,因此本文選用Penman-Monteith公式來(lái)計(jì)算潛在蒸散發(fā),其計(jì)算過(guò)程不再贅述,詳見(jiàn)文獻(xiàn)[23-24]。SPEI的計(jì)算過(guò)程如下:
1)計(jì)算逐月的降水與潛在蒸散量的差值,其公式如下
式中D為降水量與潛在蒸散量的差值,P為月降水,PET是根據(jù)Penman-Monteith公式計(jì)算的月潛在蒸散量,D、P和PET的單位均為mm。
2)計(jì)算不同時(shí)間尺度的水分盈虧累積序列,本文計(jì)算的時(shí)間尺度包括1、3、6和12個(gè)月。
式中是計(jì)算的次數(shù),則是計(jì)算的時(shí)間尺度。
3)D數(shù)據(jù)序列進(jìn)行正態(tài)化。采用log-logistic概率密度函數(shù)分布對(duì)D進(jìn)行擬合,并求出累計(jì)函數(shù)
式中和分別是尺度參數(shù)、形狀參數(shù)和起始參數(shù),可通過(guò)線性矩的方法計(jì)算得到。()是概率密度函數(shù),()是概率分布函數(shù)。
4)SPEI值是通過(guò)對(duì)序列進(jìn)行標(biāo)準(zhǔn)正態(tài)分布轉(zhuǎn)換獲得。
其中,常數(shù)0=2.515 5,1=0.802 9,2=0.010 3,1= 1.432 8,2=0.189 3,3=0.001 3。
SPEI具有多時(shí)間尺度的特征,本研究主要選取1、3、6和12個(gè)月的尺度進(jìn)行分析。按照中國(guó)氣象局制定的SPEI干旱等級(jí)劃分標(biāo)準(zhǔn)對(duì)河南省的干旱等級(jí)進(jìn)行分析(表1)。
表1 SPEI值干旱等級(jí)劃分
本文采用干旱頻率來(lái)評(píng)價(jià)河南省干旱發(fā)生的頻繁程度,其計(jì)算公式如下
式中為數(shù)據(jù)序列中干旱發(fā)生的次數(shù),為數(shù)據(jù)的總月份數(shù)。文中選用SPEI-3來(lái)計(jì)算河南省17個(gè)氣象站干旱的發(fā)生頻率[8,25]。
地表溫度(TS)與歸一化植被指數(shù)(NDVI)之間存在明顯的負(fù)相關(guān)關(guān)系,兩者的結(jié)合能夠提供植被生長(zhǎng)狀況與土壤濕度分布信息[26]。當(dāng)研究區(qū)植被覆蓋與土壤濕度變化范圍大時(shí),與NDVI的散點(diǎn)圖呈三角形分布,在-NDVI的特征空間有很多的等值線,由此提出了溫度植被干旱指數(shù)(TVDI),其定義為[27-31]
式中min是最低地表溫度,℃,max是相同NDVI值條件下最高地表溫度,℃。min=1+1·NDVI,對(duì)應(yīng)的是Ts-NDVI特征空間中的濕邊,max=2+2·NDVI,稱為干邊,1、1和2、2分別是濕邊和干邊的擬合方程的系數(shù)。離濕邊越接近,TVDI的值越小,干旱程度越輕;相反,越接近于干邊,TVDI的值會(huì)越大,說(shuō)明干旱越嚴(yán)重[30]。因此,TVDI的取值介于0~1之間,其表達(dá)式如下
本研究選用河南省的17個(gè)氣象站點(diǎn)1961-2016年的逐月氣象數(shù)據(jù),根據(jù)前面介紹的步驟分別對(duì)各站點(diǎn)56年的SPEI值進(jìn)行計(jì)算,研究共計(jì)算了1、3、6和12個(gè)月4種時(shí)間尺度,然后對(duì)計(jì)算得到的17個(gè)氣象站點(diǎn)的SPEI值進(jìn)行月平均得到1、3、6和12個(gè)月的年際變化特征(圖2)。
圖2 1961-2016年1、3、6和12個(gè)月的時(shí)間尺度年際變化
從圖2中可以看出,隨著時(shí)間尺度的變大,波動(dòng)的幅度在減小,SPEI值在各時(shí)間尺度上都呈微弱的濕潤(rùn)化。1個(gè)月尺度的SPEI值(SPEI-1)波動(dòng)幅度最大,其次為3個(gè)月(SPEI-3)、6個(gè)月(SPEI-6),波動(dòng)幅度最小的是12個(gè)月的尺度(SPEI-12)。
為了表示河南省不同年份的干旱事件,本文繪制了各個(gè)時(shí)間尺度的月等高線圖及在圖上繪制了相應(yīng)干旱事件的嚴(yán)重程度等級(jí)(圖3)。通常SPEI-3的值表示的是季尺度的干旱狀況,每年的5、8、11、2月分別代表春、夏、秋、冬的干旱狀況。SPEI-6的是半年的干旱狀況,每年的10、2月代表的是前半年、后半年的干旱狀況。SPEI-12是年干旱狀況,12月代表的是年干旱的SPEI值。從圖3中可以看出,輕度干旱發(fā)生的最為頻繁,然后是中度干旱。SPEI-1和SPEI-3反映的是短期的干旱過(guò)程,SPEI-6和SPEI-12反映的是中長(zhǎng)期的干旱過(guò)程。從圖3b中SPEI-3中看出發(fā)生春旱、夏旱、秋旱和冬旱的年數(shù)分別是12、12、13和15年(表2)。從圖3d中,SPEI-12中可以看出發(fā)生干旱的年份是:1961、1965、1966、1968、1972、1976、1978、1981、1986、1988、1997、2001、2013共13年,與實(shí)際情況較為一致。
注:SPEI-1、SPEI-3、SPEI-6 與SPEI-12 分別指1、3、6 和12 個(gè)月尺度的SPEI指數(shù)值。
表2 基于SPEI-3的河南省發(fā)生春旱、夏旱、秋旱和冬旱的年份
為分析河南省17個(gè)氣象站的干旱頻率分布特征,根據(jù)氣象站56 a的SPEI-3值統(tǒng)計(jì)出不同等級(jí)干旱頻率(圖4)。從圖4中可以看出,輕度干旱發(fā)生頻率最高,除了西華氣象站,其余氣象站的輕度干旱發(fā)生頻率都大于15%;其次是中度干旱,大部分氣象站的中度干旱頻率都在5%到10%之間;嚴(yán)重干旱和極端干旱的頻率較低,基本都在5%以內(nèi)。56 a來(lái)干旱頻率最大的地方是鄭州(33.10%),共23次;其次是信陽(yáng)和欒川,分別為32.14%和31.55%,發(fā)生頻率最小的地方是洛陽(yáng)和西華,分別為25.10%和25.30%。
圖4 河南省不同等級(jí)干旱頻率分布特征
為了研究SPEI與遙感干旱監(jiān)測(cè)的相關(guān)性,本文利用MODIS數(shù)據(jù)產(chǎn)品MOD13A3得到NDVI,時(shí)間分辨率為8 d的MOD11A2遙感影像進(jìn)行月加權(quán)平均得到月溫度LST數(shù)據(jù),根據(jù)前面計(jì)算方法得到河南省的TVDI分布,以2013年12個(gè)月干旱為例,表3表示的是1個(gè)月尺度SPEI-1與TVDI每月的相關(guān)性,從中可以看出,SPEI-1與TVDI呈負(fù)相關(guān)關(guān)系,即TVDI越小,SPEI-1的值越大,干旱程度越輕;TVDI越大,SPEI-1的值越小,干旱程度越嚴(yán)重。另外,SPEI-1與TVDI的相關(guān)性較大,且通過(guò)了顯著性檢驗(yàn)。為了更充分展現(xiàn)SPEI-1與TVDI相關(guān)性,對(duì)17個(gè)氣象站點(diǎn)的不同時(shí)間也做了相關(guān)性分析(表4),從表4中可以看出,同一地點(diǎn)的不同時(shí)間中SPEI-1與TVDI也呈現(xiàn)負(fù)相關(guān)關(guān)系,與前面結(jié)論一致。TVDI的值介于0~1之間,TVDI的值越小,說(shuō)明研究區(qū)越濕潤(rùn),其值越大,越干旱,圖5中展現(xiàn)了2013年共12個(gè)月的河南省干旱狀況圖,從圖5中看出,豫南和豫中發(fā)生干旱的頻率較高,最低的是豫西地區(qū),從圖中可以很清晰地看到河南省干旱的空間和時(shí)間變化趨勢(shì)。
表3 SPEI與TVDI相關(guān)性分析
表4 基于不同站點(diǎn)的SPEI與TVDI的相關(guān)性
圖5 基于TVDI的河南省干旱分布狀況
通過(guò)利用SPEI和TVDI對(duì)河南省的干旱進(jìn)行了時(shí)空變化分析,且探討了SPEI和TVDI的相關(guān)性。在進(jìn)行干旱研究中,構(gòu)建合理的干旱等級(jí)標(biāo)準(zhǔn)是一個(gè)重要的科學(xué)問(wèn)題,本文統(tǒng)一按照國(guó)家干旱等級(jí)標(biāo)準(zhǔn)規(guī)定的干旱發(fā)生等級(jí)SPEI值,但是對(duì)于農(nóng)業(yè)干旱來(lái)說(shuō),同一干旱等級(jí),不同時(shí)間尺度的SPEI值應(yīng)存在差異性,其值需用實(shí)際受干旱的情況來(lái)確定和進(jìn)行驗(yàn)證。由于存在土壤水分的緩沖作用,短時(shí)間尺度的值應(yīng)該比長(zhǎng)時(shí)間尺度的值偏高一些,因此,在以后的研究中,需要考慮干旱等級(jí)指標(biāo)的確定問(wèn)題。
另外,進(jìn)行SPEI各尺度分析時(shí),要考慮作物的生長(zhǎng)季節(jié)、作物的耐旱能力,比如冬季,北部地區(qū)冬小麥處于越冬期,不存在受干旱影響的問(wèn)題,但南部不越冬的小麥有可能受旱。所以監(jiān)測(cè)農(nóng)作物類型的干旱狀況可以考慮3個(gè)月尺度類型,文中選取的12月的值主要是從年際變化方面來(lái)看河南省的干旱變化特征。總體來(lái)說(shuō),SPEI和TVDI都能夠很好地對(duì)河南省的干旱狀況進(jìn)行反映。
基于17個(gè)氣象站點(diǎn)的1961-2016年共56 a的氣象數(shù)據(jù),利用SPEI定量地分析了河南省不同時(shí)間尺度(1、3、6和12個(gè)月)的干旱發(fā)生的時(shí)空變化特征和強(qiáng)度;并采用溫度植被干旱指數(shù)(TVDI)分析了河南省的區(qū)域面積上的干旱空間變化,且探討了SPEI和TVDI的相關(guān)性。得到以下結(jié)論:
1)SPEI-1和SPEI-3反映的是短期的干旱過(guò)程,SPEI-6和SPEI-12反映的是中長(zhǎng)期的干旱過(guò)程,不同時(shí)間尺度SPEI的值波動(dòng)規(guī)律不同,尺度越小,波動(dòng)的幅度就越大,根據(jù)SPEI值的時(shí)間尺度的干旱發(fā)生狀況可以看出,在季尺度上,冬旱的發(fā)生年數(shù)比較多,共15次,在年尺度上,發(fā)生干旱的年份是:1961、1965、1966、1968、1972、1976、1978、1981、1986、1988、1997、2001、2013共13年,與實(shí)際情況較為一致。
2)在干旱發(fā)生強(qiáng)度上,56 a來(lái)發(fā)生干旱次數(shù)最多的地區(qū)是鄭州,共23次;發(fā)生次數(shù)最少的分別是西華和洛陽(yáng),共12次,河南是極易發(fā)生干旱的省份。
3)根據(jù)SPEI月尺度與遙感干旱監(jiān)測(cè)方法進(jìn)行相關(guān)性研究發(fā)現(xiàn),兩者之間呈現(xiàn)負(fù)相關(guān)關(guān)系,即TVDI越小,SPEI-1的值越大,干旱程度越輕;TVDI越大,SPEI-1的值越小,干旱程越嚴(yán)重,且通過(guò)了顯著性檢驗(yàn),說(shuō)明SPEI-1與TVDI的相關(guān)性較大,也為進(jìn)一步研究氣象干旱指數(shù)與遙感監(jiān)測(cè)兩者結(jié)合之間提供了思路。SPEI雖然考慮的因素較多,但是,干旱易受地形以及人類活動(dòng)等的影響[32],因此針對(duì)此方法的研究還有待進(jìn)一步的深入。
[1] 王兆禮,黃澤勤,李軍,等. 基于SPEI和NDVI的中國(guó)流域尺度氣象干旱及植被分布時(shí)空演變[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(14):177-186.
Wang Zhaoli, Huang Zeqin, Li Jun, et al. Assessing impacts of meteorological drought on vegetation at catchment scale in China based on SPEI and NDVI[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(14): 177-186. (in Chinese with English abstract)
[2] Benitez J B, Domecq R M. Analysis of meteorological drought episodes in Paraguay[J]. Climatic Change, 2014, 127(1): 15-25.
[3] Mishra A K, Singh V P. Drought modeling: A review[J]. Journal of Hydrology, 2011, 403(1/2): 157-175.
[4] Wang Qianfeng, Shi Peijun, Lei Tianjie, et al. The alleviating trend of drought in the Huang-Huai-Hai Plain of China based on the daily SPEI[J]. International Journal of Climatology, 2015, 35(13): 3760-3769.
[5] Palmer W. Meteorological drought[Z]. U.S. Department of Commerce Weather Bureau Research Paper, 1965.
[6] Stagge J H, Kohn I, Tallaksen L M, et al. Modeling drought impact occurrence based on meteorological drought indices in Europe[J]. Journal of Hydrology, 2015, 530: 37-50.
[7] Vicente-Serrano S M, Begueria S, Lopez-Moreno J I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index[J]. Journal of Climate, 2010, 23(7): 1696-1718.
[8] 史本林,朱新玉,胡云川,等. 基于SPEI指數(shù)的近53年河南省干旱時(shí)空變化特征[J]. 地理研究,2015,34(8):1547-1558.
Shi Benlin, Zhu Xinyu, Hu Yunchuan, et al. Spatial and temporal variations of drought in Henan province over a 53-year period based on standardized precipitation evapotranspiration index[J]. Geographical Research, 2015, 34(8): 1547-1558. (in Chinese with English abstract)
[9] 莊少偉. 基于標(biāo)準(zhǔn)化降水蒸發(fā)指數(shù)的中國(guó)區(qū)域干旱化特征分析[D]. 蘭州:蘭州大學(xué),2013.
Zhuang Shaowei. Drought Characteristics in the Regions of China Based on the Standardized Precipitation Evapotranspiration Index[D]. Lanzhou: Lanzhou University, 2013. (in Chinese with English abstract)
[10] 高蓓,姜彤,蘇布達(dá),等. 基于SPEI的1961-2012年?yáng)|北地區(qū)干旱演變特征分析[J]. 中國(guó)農(nóng)業(yè)氣象,2014,35(6):656-662.
Gao Bei, Jiang Tong, Su Buda, et al. Evolution analysis on droughts in northeast China during 1961-2012 based on SPEI[J]. Chinese Journal of Agrometeorology, 2014, 35(6): 656-662. (in Chinese with English abstract)
[11] 孫濱峰,趙紅,王效科. 基于標(biāo)準(zhǔn)化降水蒸發(fā)指數(shù)(SPEI)的東北干旱時(shí)空特征[J]. 生態(tài)環(huán)境學(xué)報(bào),2015,24(1):22-28.
Sun Binfeng, Zhao Hong, Wang Xiaoke. Spatiotemporal characteristics of drought in Northeast China based on SPEI[J]. Ecology and Environment Sciences, 2015, 24(1): 22-28. (in Chinese with English abstract)
[12] Potop V, Boroneant C, Mozny M, et al. Observed spatiotemporal characteristics of drought on various time scales over the Czech Republic[J]. Theoretical and Applied Climatology, 2014, 115(3/4): 563-581.
[13] 嚴(yán)建武,陳報(bào)章,房世峰,等. 植被指數(shù)對(duì)旱災(zāi)的響應(yīng)研究:以中國(guó)西南地區(qū)2009年-2010年特大干旱為例[J]. 遙感學(xué)報(bào),2012,16(4):720-737.
Yan Jianwu, Chen Baozhang, Fang Shifeng, et al. The response of vegetation index to drought: Taking the extreme drought disaster between 2009 and 2010 in Southwest China as an example[J]. Journal of Remote Sensing, 2012, 16(4): 720-737. (in Chinese with English abstract)
[14] 王鵬新,孫威. 基于植被指數(shù)和地表溫度的干旱監(jiān)測(cè)方法的對(duì)比分析[J]. 北京師范大學(xué)學(xué)報(bào):自然科學(xué)版,2007,43(3):319-323.
Wang Pengxin, Sun Wei. Comparison study on NDVI and LST based drought monitoring approaches[J]. Journal of Beijing Normal University: Natural Science, 2007, 43(3): 319-323. (in Chinese with English abstract)
[15] Li Zhengguo, Wang Yanglin, Zhou Qingbo, et al. Spatiotemporal variability of land surface moisture based on vegetation and temperature characteristics in Northern Shaanxi Loess Plateau, China[J]. Journal of Arid Environments, 2008, 72(6): 974-985.
[16] Wang C Y, Qi S H, Niu Z, et al. Evaluating soil moisture status in China using the temperature-vegetation dryness index (TVDI)[J]. Canadian Journal of Remote Sensing, 2004, 30(5): 671-679.
[17] 趙杰鵬,張顯峰,廖春華,等. 基于TVDI的大范圍干旱區(qū)土壤水分遙感反演模型研究[J]. 遙感技術(shù)與應(yīng)用,2011,26(6):742-750.
Zhao Jiepeng, Zhang Xianfeng, Liao Chunhua, et al. TVDI based soil moisture retrieval from remotely sensed data over large areas[J]. Remote Sensing Technology and Application, 2011, 26(6): 742-750. (in Chinese with English abstract)
[18] 余衛(wèi)東,柳俊高,常軍,等. 1957-2005年河南省降水和溫度極端事件變化[J]. 氣候變化研究進(jìn)展,2008,4(2):78-83.
Yu Weidong, Liu Jungao, Chang Jun, et al. Changes in extreme temperature and precipitation in Henan province during 1957-2005[J]. Advances in Climate Change Research, 2008, 4(2): 78-83. (in Chinese with English abstract)
[19] 陳斐,楊沈斌,王春玲,等. 基于SPEI指數(shù)的西北地區(qū)春旱時(shí)空分布特征[J]. 干旱氣象,2016,34(1):34-42.
Chen Fei, Yang Shenbin, Wang Chunling, et al. Spatial and temporal distribution of spring drought in Northwest China based on standardized precipitation evapotranspiration index[J]. Journal of Arid Meteorology, 2016, 34(1): 34-42. (in Chinese with English abstract)
[20] 劉珂,姜大膀. 基于兩種潛在蒸散發(fā)算法的SPEI對(duì)中國(guó)干濕變化的分析[J]. 大氣科學(xué),2015,39(1):23-36.
Liu Ke, Jiang Dapang. Analysis of dryness/wetness over China using standardized precipitation evapotranspiration index based on two evapotranspiration[J]. Journal of Atmospheric Sciences, 2015, 39(1): 23-36. (in Chinese with English abstract)
[21] Monteith J L. Evaporation and environment[J]. Symp Soc Exp Biol, 1965, 19: 205-234.
[22] Thornthwaite C W. An Approach toward a Rational Classification of Climate[J]. Geographical Review, 1948, 38(1): 55-94.
[23] 丁加麗,彭世彰,徐俊增,等. 基于Penman-Monteith方程的節(jié)水灌溉稻田蒸散量模型[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(4):31-35.
Ding Jiali, Peng Shizhang, Xu Junzeng, et al. Estimation of rice evapotranspiration under controlled irrigation by using Penman-Monteith method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(4): 31-35. (in Chinese with English abstract)
[24] 焦醒,劉廣全,匡尚富,等. Penman-Monteith模型在森林植被蒸散研究中的應(yīng)用[J]. 水利學(xué)報(bào),2010,41(2):245-252.
Jiao Xing, Liu Guangquan, Kuang Shangfu, et al. Review on application of Penman-Monteith Equation to studying forest vegetation evapotranspiration[J]. Journal of Hydraulic Engineering, 2010, 41(2): 245-252. (in Chinese with English abstract)
[25] 趙林, 于家爍, 薄巖, 等. 基于SPEI的湖北省近52年干旱時(shí)空格局變化[J]. 長(zhǎng)江流域資源與環(huán)境, 2015, 24(7) :1230-1237.
Zhao Lin, Yu Jiashuo, Bo Yan, et al. Temporal and spatial distribution of drought in Hubei province during 1961-2012 based on SPEI[J]. Resources and Environment in the Yangtze Basin, 2015, 24(7):1230-1237. (in Chinese with English abstract)
[26] 齊述華,王長(zhǎng)耀,牛錚. 利用溫度植被旱情指數(shù)(TVDI)進(jìn)行全國(guó)旱情監(jiān)測(cè)研究[J]. 遙感學(xué)報(bào),2003,7(5):420-427.
Qi Shuhua, Wang Changyao, Niu Zheng. Evaluating soil moisture status in China using the temperature/vegetation dryness index (TVDI)[J]. Journal of Remote Sensing, 2003, 7(5): 420-427. (in Chinese with English abstract)
[27] Patel N R, Anapashsha R, Kumar S, et al. Assessing potential of MODIS derived temperature/vegetation condition index (TVDI) to infer soil moisture status[J]. International Journal of Remote Sensing, 2009, 30(1): 23-39.
[28] Sandholt I, Rasmussen K, Andersen J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[J]. Remote Sensing of Environment, 2002, 79(2/3): 213-224.
[29] 范遼生,姜紀(jì)紅,盛暉,等. 利用溫度植被干旱指數(shù)(TVDI)方法反演杭州伏旱期土壤水分[J]. 中國(guó)農(nóng)業(yè)氣象,2009,30(2):230-234.
Fan Liaosheng, Jiang Jihong, Sheng Hui, et al. Reverse of soil moisture for summer drought period in Hangzhou by using TVDI method[J]. Chinese Journal of Agrometeorology, 2009, 30(2): 230-234. (in Chinese with English abstract)
[30] 杜靈通,侯靜,胡悅,等. 基于遙感溫度植被干旱指數(shù)的寧夏2000-2010年旱情變化特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(14):209-216.
Du Lingtong, Hou Jing, Hu Yue, et al. Drought variation characteristics in Ningxia from 2000 to 2010 based on temperature vegetation dryness index by remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(14): 209-216. (in Chinese with English abstract)
[31] 鮑艷松,嚴(yán)婧,閔錦忠,等. 基于溫度植被干旱指數(shù)的江蘇淮北地區(qū)農(nóng)業(yè)旱情監(jiān)測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(7):163-172.
Bao Yansong, Yan Jing, Min Jinzhong, et al. Agricultural drought monitoring in north Jiangsu by using temperature vegetation dryness index[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(7): 163-172. (in Chinese with English abstract)
[32] 王隨繼,閆云霞,顏明,等. 皇甫川流域降水和人類活動(dòng)對(duì)徑流量變化的貢獻(xiàn)率分析——累積量斜率變化率比較方法的提出及應(yīng)用[J]. 地理學(xué)報(bào),2012,67(3):388-397.
Wang Suiji, Yan Yunxia, Yan Ming, et al. Contributions of precipitation and human activities to the runoff change of the Huangfuchuan drainage basin: Application of comparative method of the slope changing ratio of cumulative quantity[J]. Acta Geographica Sinica, 2012, 67(3): 388-397. (in Chinese with English abstract)
Analysis on temporal and spatial variation of drought in Henan Province based on SPEI and TVDI
Chen Shaodan1, Zhang Liping1,2※, Tang Rouxin1, Yang Kai2, Huang Yongqi2
(1.,,430072,;2.,,438000,)
In the context of global warming, drought is the most complex and damaging natural disaster, which becomes more and more frequent, causing negative impacts on agriculture, water resources, natural ecosystems, and society activities. There are several kinds of drought indices derived from station-based meteorological data that are widely used for monitoring drought evolution, mainly including the Palmer drought severity index (PDSI), the standardized precipitation index (SPI) and the standardized precipitation evapotranspiration index (SPEI). The SPEI not only considers precipitation and temperature data, but also integrates the sensitivity of PDSI to changes in evaporation demand and the simplicity of calculation and the multi-scale features of the SPI that identify different types of drought. Therefore, the SPEI was used to describe the drought severity determined by the difference between precipitation and potential evapotranspiration, based on the monthly meteorological data from 1961 to 2016 in Henan Province. And the regional SPEI was obtained at different time scales (1-, 3-, 6-, and 12-month) to characterize the dry or wet conditions in the study area. And the 1-month SPEI can clearly see the subtle changes of drought occurrence and reflect a short-term condition; the 3-month SPEI provides the seasonal drought occurrence; the 12-month SPEI reflects the drought variation at inter-annual time scales. In addition, the remote sensing method, which can provide large coverage, and multispectral and multitemporal observations from satellite sensors at various scales, is another method used to monitor drought conditions on a regional scale, especially in the areas with few meteorological stations. Numerous studies have suggested that a combination of surface temperature, normalized difference vegetation index (NDVI) and land surface temperature (LST) can reveal information on the regional drought conditions. Here, the temperature vegetation dryness index (TVDI) based on the interpretation of the simplified NDVI-LST space for estimating drought conditions was selected to monitor drought conditions on a regional scale, and the moderate resolution imaging spectroradiometer (MODIS) was used, which has many advanced characteristics such as wide spectral range, high temporal resolution and low cost. And the correlation between SPEI and TVDI was calculated. The results showed that SPEI was increasing slightly at different time scales during the period of 1961–2016, indicating that Henan was getting more humid. As the time scale increased, the amplitude of the SPEI decreased. However, the distribution in Henan has been uneven. Annually, droughts occurred in 1961, 1965, 1966, 1968, 1972, 1976, 1978, 1981, 1986, 1988, 1997, 2001 and 2013. Moreover, drought frequency was selected to calculate the probability of drought occurrence. During the period of 1961-2016, Zhengzhou had the highest frequency (33.10%), followed by Xinyang and Luanchuan (32.14% and 31.55%, respectively), whereas Luoyang and Xihua had the lowest frequency (25.10% and 25.30%, respectively). Correlation analysis between monthly TVDI and SPEI showed that there existed negative relationship between 1-month SPEI and TVDI, and as TVDI got smaller, SPEI became higher, reflecting that the severity of drought was lighter, and conversely drought would aggravate as TVDI got larger and SPEI became lower. Therefore, our study on the relationship between SPEI and TVDI can provide a scientific basis for early warning and risk management of water resources and agricultural production.
climate changing; drought; remote sensing; SPEI; TVDI; MODIS; Henan province
10.11975/j.issn.1002-6819.2017.24.017
S127
A
1002-6819(2017)-24-0126-07
2017-07-03
2017-12-08
國(guó)家自然科學(xué)基金項(xiàng)目(51339004);國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFA0603704);湖北省科技計(jì)劃項(xiàng)目(2015BCA290)
陳少丹,博士生,主要從事水文水資源研究。 Email:chensd2014@163.com
張利平,教授,博士生導(dǎo)師,主要從事變化環(huán)境下水資源與氣候變化研究。Email:zhanglp@whu.edu.cn
陳少丹,張利平,湯柔馨,楊 凱,黃勇奇. 基于SPEI和TVDI的河南省干旱時(shí)空變化分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(24):126-132. doi:10.11975/j.issn.1002-6819.2017.24.017 http://www.tcsae.org
Chen Shaodan, Zhang Liping, Tang Rouxin, Yang Kai, Huang Yongqi. Analysis on temporal and spatial variation of drought in Henan Province based on SPEI and TVDI[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(24): 126-132. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.24.017 http://www.tcsae.org