史 磊,郭朝暉,梁 芳,彭 馳,肖細(xì)元,封文利
?
水分管理和施用石灰對(duì)水稻鎘吸收與運(yùn)移的影響
史 磊,郭朝暉※,梁 芳,彭 馳,肖細(xì)元,封文利
(中南大學(xué)冶金與環(huán)境學(xué)院,長沙 410083)
通過田間試驗(yàn),研究了間歇灌溉和全生育期淹水2種水分管理結(jié)合水稻分蘗期施用石灰對(duì)不同水稻生育期的土壤和水稻各組織中Cd分布與運(yùn)移的影響。研究結(jié)果表明,全生育淹水和施用石灰均能升高土壤pH值,降低土壤中有效態(tài)Cd含量;施用石灰能降低土壤中酸可提取態(tài)Cd所占比例而殘?jiān)鼞B(tài)所占比例增加。在全生育期淹水條件下施用石灰有利于改善土壤性狀并提高土壤中Fe質(zhì)量百分含量。與不施用石灰相比,在間歇灌溉條件下,施用石灰處理的糙米中Cd質(zhì)量分?jǐn)?shù)從0.86 mg/kg降低到0.56 mg/kg,而在全生育期淹水條件下,施用石灰處理的糙米中Cd質(zhì)量分?jǐn)?shù)從0.77 mg/kg降低到0.34 mg/kg;無論間歇灌溉還是全淹水處理?xiàng)l件下,施用石灰均增加了水稻總生物量。施用石灰后,在灌漿期,水稻莖葉中Cd的富集系數(shù)顯著降低(<0.05);在成熟期,根和稻米中Cd的富集系數(shù)顯著降低(<0.05);在全生育期淹水條件下,成熟期水稻根到莖葉轉(zhuǎn)運(yùn)系數(shù)和莖葉到米中轉(zhuǎn)運(yùn)系數(shù)均顯著降低(<0.05)。水稻糙米中Cd含量與土壤中有效態(tài)Cd含量、水稻地上部Cd累積量呈顯著正相關(guān),與土壤pH值呈顯著負(fù)相關(guān)。上述研究結(jié)果表明,施用石灰能夠顯著降低稻田土壤中Cd的生物有效性;采用全生育期淹水結(jié)合在分蘗期施用石灰是降低稻米中Cd含量有效措施且不會(huì)導(dǎo)致水稻減產(chǎn)。
水分管理;石灰;重金屬;水稻;鎘;富集系數(shù);轉(zhuǎn)運(yùn)系數(shù)
農(nóng)田土壤Cd污染會(huì)給農(nóng)產(chǎn)品安全和人體健康帶來潛在的危害[1]。水稻是中國的主要農(nóng)作物之一,中國部分地區(qū)稻田土壤中Cd污染問題突出,發(fā)展適宜的修復(fù)技術(shù)降低水稻對(duì)土壤中Cd的吸收是目前研究的熱點(diǎn)之一[2-5]。石灰是一種廉價(jià)易得的化學(xué)改良劑,常用于治理受重金屬污染的土壤。Simón等[6]報(bào)道在酸性農(nóng)田土壤中施用石灰能夠提高土壤pH值,從而有利于Cd的沉淀。在黃鐵礦礦區(qū)污染土壤中施用石灰與植物修復(fù)技術(shù)聯(lián)合修復(fù)土壤也能達(dá)到較好的效果[7]。Hale和Bolan等[8-9]均報(bào)道了添加石灰能夠降低土壤中Cd遷移性。事實(shí)上施用石灰降低土壤中重金屬的有效性與土壤類型和水分管理等因素密切相關(guān)[10-11]。在水稻種植過程中,通過水分管理也能夠降低土壤中Cd的生物有效性[12-13]。張雪霞等[14]通過盆栽試驗(yàn)發(fā)現(xiàn),水稻植株中Cd含量隨著土壤水分含量的增加而減少。Chen等[15]報(bào)道在淹水條件下,施用石灰能夠明顯降低土壤中Cd生物有效性。Arao等[16]報(bào)道在水稻抽穗后淹水能夠明顯減少稻米中Cd濃度。Hu等[17]報(bào)道在水稻不同生育期全淹水和間歇灌溉能夠提高水稻稻米的產(chǎn)量,且降低水稻各器官Cd濃度同時(shí)發(fā)現(xiàn)生殖生長期在控制水稻莖葉和根系中Cd積累比營養(yǎng)生長期起著更重要的作用。然而,上述研究結(jié)果多是通過盆栽試驗(yàn)所得,在實(shí)際生產(chǎn)中水稻生長大都是一個(gè)間歇灌溉的過程。通過間歇灌溉和全生育期淹水2種水分管理措施與石灰聯(lián)用對(duì)農(nóng)田土壤中Cd的有效性及水稻對(duì)鎘的吸收與運(yùn)移的影響等較少報(bào)道。
本文通過大田試驗(yàn),在間歇灌溉和全生育期淹水2種水分管理措施與石灰施用組合條件下,研究水稻不同生育期土壤pH值、Cd在土壤中生物有效性以及在水稻植株各器官中累積和運(yùn)移特征;評(píng)估間歇灌溉和全淹水與石灰組合施用對(duì)Cd在水稻中累積和運(yùn)移的影響。為中國南方Cd污染稻田土壤治理過程中實(shí)現(xiàn)邊修復(fù)邊生產(chǎn)同時(shí)又避免稻米減產(chǎn)提供一定技術(shù)支撐。
供試田間試驗(yàn)點(diǎn)位于湖南省湘潭市郊區(qū)某Cd污染稻田。供試稻田土壤基本理化性質(zhì)見表1。供試水稻品種為五豐優(yōu)569()。田間試驗(yàn)用石灰為市售商品,其中總Cd質(zhì)量分?jǐn)?shù)為0.47 mg/kg。
表1 供試土壤基本理化性質(zhì)
田間試驗(yàn)按照全生育期淹水和間歇灌溉2種水分管理模式,以及分別施用石灰進(jìn)行設(shè)計(jì),共4個(gè)處理。即1)間歇灌溉(WCK):田間灌水后保持3~5 cm表水層直到水稻分蘗后期落干1次,在灌漿結(jié)實(shí)期進(jìn)行2次“淹水-落干”,田間土壤落干5~7 d達(dá)到田面有微裂痕跡,即土壤含水率在70%~90%,呈“濕硬”狀態(tài)[18];2)間歇灌溉+石灰(WL);3)全生育期淹水(FCK):全生育期淹水為在整個(gè)生育期保持3~5 cm田間表水層;4)全生育期淹水+石灰(FL)。每處理3個(gè)重復(fù),共12個(gè)試驗(yàn)小區(qū)。每個(gè)試驗(yàn)小區(qū)面積為5 m×7 m,隨機(jī)排列。試驗(yàn)小區(qū)周邊設(shè)保護(hù)行,小區(qū)間田埂用塑料薄膜覆蓋,防止小區(qū)間竄水。基肥組成N∶P2O5∶K2O=1∶0.5∶1,以尿素、磷酸二氫鉀和氯化鉀形式加入,穩(wěn)定7 d后于2015年7月20日移栽秧苗,水稻行距為10 cm×15 cm。分別在水稻種植至分蘗期(8月18日)、灌漿期(10月13日)和成熟期(11月10日)采集水稻和土壤樣品。在分蘗期采集樣品后第2天(8月19日)施石灰到表層土壤中,石灰用量1 500 kg/hm2。其他施肥(追肥)、病蟲害防治等管理措施均按當(dāng)?shù)鼐用窳?xí)慣進(jìn)行。
采集水稻根區(qū)土壤樣品,在室溫下自然風(fēng)干,剔除土壤中雜物,將土壤碾碎,充分混勻后,分別過20目和100目篩后保存至封口塑料袋中備用。水稻樣品帶回實(shí)驗(yàn)室先用自來水沖洗,再用去離子水沖洗干凈,將鮮樣分為根、莖葉和籽粒裝紙袋,105 ℃殺青1 h后,再于60 ℃烘至恒質(zhì)量,稱其質(zhì)量后,粉碎裝入自封口塑料袋中備用。
土壤pH值采用1∶2.5水土比浸提,pH計(jì)(雷磁,PHS-3C)測(cè)定。土壤有機(jī)質(zhì)含量采用重鉻酸鉀容量法測(cè)定;堿解氮采用堿解擴(kuò)散法測(cè)定;有效磷采用碳酸氫鈉提取-釩鉬黃比色法測(cè)定;速效鉀采用醋酸銨-火焰光度計(jì)法測(cè)定;土壤中有效態(tài)Cd含量采用《土壤質(zhì)量有效態(tài)鉛和鎘的測(cè)定原子吸收法GB/T 23739-2009》測(cè)定;土壤中Cd的賦存形態(tài)采用改進(jìn)的BCR法提取[19]。土壤樣品用HF-HNO3-HClO4法消解,水稻植株和糙米樣品采用HNO3-HClO4法消解,消解液中Cd含量采用ICP-MS(美國,Thermo FisherX2)測(cè)定。土壤顆粒表面形貌及能譜采用掃描電子顯微鏡(日本,JSM-6360)進(jìn)行掃描分析。
水稻中Cd的生物富集系數(shù)[20]和轉(zhuǎn)運(yùn)系數(shù)[21]按照如下公式進(jìn)行計(jì)算:
BCF=M/soil(1)
TFrs=shoot/root;TFsbr=rice/shoot(2)
式中M分別代表水稻根系、莖葉和稻米中Cd質(zhì)量分?jǐn)?shù),mg/kg;soil為土壤中Cd質(zhì)量分?jǐn)?shù),mg/kg;shoot為水稻莖葉中Cd質(zhì)量分?jǐn)?shù),mg/kg;rice糙米中Cd質(zhì)量分?jǐn)?shù),mg/kg。
所有試驗(yàn)數(shù)據(jù)采用Microsoft Excel 2010進(jìn)行分析處理。采用SPSS 18.0 統(tǒng)計(jì)軟件進(jìn)行單因素方差分析(One-way ANOVA)比較各處理間的差異,顯著性水平為<0.05。
水分管理和施用石灰能夠影響土壤pH值和土壤中有效態(tài)Cd含量。從圖1a可知,未施石灰處理下,整個(gè)水稻生育期內(nèi),間歇灌溉(WCK)處理下,土壤pH值無明顯變化;與WCK相比,全淹水(FCK)處理?xiàng)l件下,土壤pH值從分蘗期5.7升高到成熟期6.0。在全生育期淹水和間歇灌溉條件下,在稻田土壤中施用石灰,均能顯著增加土壤pH值。從圖1a中可以進(jìn)一步可知,在水稻生殖生長期土壤pH值均得到不同程度的升高,而在這一生育期對(duì)水稻吸收Cd有較大影響[9]。
注:同一生育期不同字母表示具有顯著差異(P<0.05)。WCK、WL、FCK和FL分別表示間歇灌溉、間歇灌溉+石灰、全淹水和全淹水+石灰,下同。
水分管理使土壤中Cd有效態(tài)含量呈降低趨勢(shì)(圖1b)。隨著水稻生長,WCK處理與其他處理相比,在水稻各生育期土壤中有效態(tài)Cd含量均較高,其原因可能是在落干過程中形成的氧化環(huán)境有利于土壤中有效態(tài)Cd含量升高[16]。除分蘗期外,和WCK處理相比,F(xiàn)CK處理下土壤有效態(tài)Cd含量均呈降低趨勢(shì),其原因可能是FCK條件下土壤形成的還原環(huán)境,使Cd2+通過還原作用取代FeS中的Fe元素生成CdS沉淀,降低土壤中Cd的有效性[22]。施用石灰后土壤中有效態(tài)Cd含量均有不同程度的降低。和WCK相比,WL處理分別使水稻灌漿期和成熟期土壤有效態(tài)Cd含量分別顯著降低20.6%(<0.05)和22.2%(<0.05);和FCK相比,F(xiàn)L處理灌漿期土壤有效態(tài)Cd含量變化不明顯,使成熟期土壤有效態(tài)Cd含量顯著降低22.5%(<0.05)。有文獻(xiàn)報(bào)道施用石灰能增加土壤pH值和土壤顆粒表面負(fù)電荷數(shù),增強(qiáng)對(duì)Cd2+的吸附,為Cd2+的氫氧化物或碳酸鹽沉淀的形成提供了便利條件[9,23]。
土壤樣品中Cd形態(tài)分析采用改進(jìn)的歐共體標(biāo)準(zhǔn)物質(zhì)局提出的BCR連續(xù)提取法。與WCK相比,F(xiàn)CK處理能降低土壤中Cd有效性,其中在成熟期降低程度最大,可使酸可提取態(tài)Cd所占比例降低44.4%,可還原態(tài)和可氧化態(tài)所占比例分別增加56%和75%(圖2)。與Arao等報(bào)道的土壤淹水處理能夠促進(jìn)酸可提取態(tài)Cd轉(zhuǎn)換為可還原態(tài)Cd和可氧化態(tài)Cd的結(jié)果相一致[16]。施用石灰后,能夠進(jìn)一步降低土壤中酸可提取態(tài)Cd所占比例,增加可還原態(tài)、可氧化態(tài)及殘?jiān)鼞B(tài)所占比例;和灌漿期相比,成熟期土壤中Cd酸可提取態(tài)所占比例降低幅度較大。在成熟期,和WCK相比,WL處理使Cd酸可提取態(tài)所占比例降低11.8%,相應(yīng)的殘?jiān)鼞B(tài)比例增加15%;和FCK相比,F(xiàn)L處理下土壤中Cd的酸可提取態(tài)比例降低8.9%,而Cd的還原態(tài)和可氧化態(tài)和殘?jiān)鼞B(tài)分別增加60%、78%和18%。表明田間水分管理結(jié)合石灰施用可促進(jìn)土壤中有效態(tài)Cd向無效態(tài)的轉(zhuǎn)化。Bolan和Guo等也報(bào)道施用石灰將會(huì)降低土壤中有效態(tài)Cd和提高土壤中殘?jiān)鼞B(tài)Cd的結(jié)果[9,24]。
圖2 不同生育期土壤中Cd形態(tài)所占比例
水稻成熟期土壤顆粒的SEM/EDS分析結(jié)果如圖3所示。在WCK處理下,土壤顆粒較大且表面出現(xiàn)明顯絮狀物;在FCK處理下土壤顆粒較小,表面較光滑(圖3a,3c),且土壤顆粒間排列較致密,其可能會(huì)降低土壤通透性,影響農(nóng)作物的生長。施用石灰處理,土壤表面出現(xiàn)較少絮狀物且在較大土壤顆粒表面附著細(xì)小光滑顆粒(圖3b、3d),其中在FL處理下土壤中細(xì)小光滑顆粒數(shù)量明顯多于WL處理。
注:圖中方框代表能譜掃描位點(diǎn)。 Note: Box in the figures is the EDS scanning point.
土壤顆粒表面的光滑顆粒形成可能是淹水處理下土壤溶液中土壤膠體沉積到土壤基質(zhì)表面所致。此外,施用石灰會(huì)增加土壤中的Ca2+,進(jìn)而促進(jìn)土壤中礦物(如鐵礦物)表面膠體的形成[25]。土壤中膠體的增多會(huì)增強(qiáng)對(duì)土壤中Cd的吸附。通過EDS結(jié)果可知,F(xiàn)CK處理下土壤中Fe的質(zhì)量分?jǐn)?shù)高于WCK處理。張雪霞等[14]也報(bào)道全淹水條件下能適當(dāng)增加土壤中Fe含量。有研究表明土壤中Fe含量與有效態(tài)Cd含量呈負(fù)相關(guān)[26]。施用石灰后,土壤中Fe的質(zhì)量百分比有所降低,其原因可能是土壤中陽離子增多與其競(jìng)爭吸附位點(diǎn),導(dǎo)致土壤中Fe沉積在水稻根表面形成根表鐵膜,具體過程有待進(jìn)一步研究。
2.4.1 不同生育期水稻生物量
由表2可知,和FCK相比,WCK處理能增加水稻生物量,其原因可能是在稻田落干的過程中,增加了根系活力,促使了葉片光合作用,其有利于水稻生物量的增加。與Muehe等[27]和Won等[28]發(fā)現(xiàn)在種植水稻過程中間歇灌溉能夠提高水稻產(chǎn)量的結(jié)果一致。在WCK和FCK條件下施用石灰,對(duì)水稻各生育期生物量影響不同,在灌漿期,除淹水條件下施用石灰使根部生物量降低外,其他水稻各部位生物量均呈增加趨勢(shì);在成熟期,水稻各部位生物量總體上呈降低趨勢(shì),但稻米產(chǎn)量均增加10%左右。表明田間水分管理結(jié)合石灰施用有利于水稻生物量的增加。
表2 不同處理及生育期水稻生物量的影響
注:同一列中不同字母表示不同水平處理間存在顯著差異(<0.05),下同。
Note: Different letters in same row indicate significant difference in different treatment (<0.05), the same as below.
2.4.2 不同生育期水稻各器官中Cd的含量和累積量
在水稻各生育期內(nèi),WCK與FCK處理水稻各器官中Cd含量差異不顯著(表3),與先前已有報(bào)道在全生育期淹水條件下處理能降低植物中Cd含量[29-30]結(jié)論不一致。兩種水分管理?xiàng)l件下,施用石灰后,在灌漿期水稻根部的Cd含量顯著降低(<0.05),在成熟期水稻莖葉Cd含量顯著降低(<0.05)。和WCK相比,WL處理下糙米中Cd質(zhì)量分?jǐn)?shù)從0.86 mg/kg降低到0.56 mg/kg;和FCK相比,F(xiàn)L處理下糙米中Cd質(zhì)量分?jǐn)?shù)從0.77 mg/kg降低到0.36 mg/kg。表明全生育期淹水并施用石灰,對(duì)降低糙米中Cd含量的協(xié)同作用更明顯。
表3 不同生育期水稻各器官中Cd的含量
表4是4種處理對(duì)不同生育期水稻地上部和地下部Cd累積量的影響。和WCK相比,F(xiàn)CK處理下,在灌漿期顯著降低水稻地下部和地上部Cd累積量(<0.05)。和不施用石灰相比,施用石灰后在各生育期水稻地上部和地下部Cd的累積量均降低。其中在灌漿期水稻地下部Cd累積量顯著降低(<0.05);在成熟期,水稻地上部和地下部Cd累積量均顯著降低(<0.05)。
表4 不同生育期水稻地下部與地上部Cd累積量的變化
2.4.3 水稻對(duì)Cd的轉(zhuǎn)運(yùn)和富集特征
采用生物富集系數(shù)(BCF)可以評(píng)價(jià)水稻各器官對(duì)土壤重金屬的吸收情況[31]。由表5可知,4種處理?xiàng)l件下,水稻各器官生物富集系數(shù)均隨著水稻生長而升高。在水稻各生育期中,F(xiàn)CK處理下BCF值略低于WCK處理。在水稻灌漿期,和WCK相比,WL處理下莖葉富集系數(shù)(BCFfs)顯著降低;和FCK相比,F(xiàn)L處理下根部富集系數(shù)(BCFfr)和莖葉富集系數(shù)(BCFfs)均顯著降低。在水稻成熟期,WCK和FCK條件下,施用石灰均顯著降低根部富集系數(shù)(BCFmr)和糙米富集系數(shù)(BCFmbr)。
轉(zhuǎn)運(yùn)系數(shù)(TF)指植物后一部位中Cd 含量與前一部位中Cd 含量的比值,轉(zhuǎn)運(yùn)系數(shù)越大,則表明該部位對(duì)Cd 的轉(zhuǎn)運(yùn)能力越強(qiáng)[32-33]。TFmsbr代表莖葉到糙米中Cd的轉(zhuǎn)運(yùn)系數(shù)。4種處理對(duì)根系到莖葉中Cd的轉(zhuǎn)運(yùn)系數(shù)和莖葉到糙米中轉(zhuǎn)運(yùn)系數(shù)(TFmsbr)均小于1。這說明盡管水稻根系富集大量Cd,但是,僅有一少部分的Cd通過根系轉(zhuǎn)運(yùn)到了莖葉中。根系是阻礙Cd的天然屏障,在根系表面形成的根表鐵膜是抑制土壤中Cd轉(zhuǎn)運(yùn)的關(guān)鍵[11]。從分蘗期到成熟期根到莖葉的轉(zhuǎn)運(yùn)系數(shù)逐漸升高。但是和WCK相比,F(xiàn)CK處理在一定程度上能降低轉(zhuǎn)運(yùn)系數(shù)和TFmsbr。在WCK和FCK兩種條件下,施用石灰均能夠降低在水稻各生育期的轉(zhuǎn)運(yùn)系數(shù)和TFmsbr,其中在成熟期,和FCK相比,F(xiàn)L處理使水稻TFmrs和TFmsbr分別顯著降低34.5%和33.3%(<0.05)。上述結(jié)果說明,全生育期淹水處理在水稻各生育期能降低水稻中Cd的TF和BCF。在全生育期淹水和間歇灌溉2種水分管理?xiàng)l件下,施用石灰是顯著降低Cd在水稻中轉(zhuǎn)運(yùn)系數(shù)和富集系數(shù)的重要措施。
表5 不同生育期水稻根、莖葉和稻米中Cd的富集系數(shù)和轉(zhuǎn)運(yùn)系數(shù)
注:BCFtr和BCFts分別為水稻分蘗期根和莖葉富集系數(shù),BCFfr和BCFfs分別為水稻灌漿期根和莖葉富集系數(shù),BCFmr、BCFms和BCFmbr分別為水稻成熟期根、莖葉和糙米的富集系數(shù)。TFtrs、TFfrs和TFmrs分別代表水稻分蘗期、灌漿期和成熟期根系到莖葉中Cd的轉(zhuǎn)運(yùn)系數(shù)。
Note: BCFtrand BCFtsare the bioconcentration factors of root, shoot and leaf in tillering stage, respectively; BCFfrand BCFfsare the bioconcentration factors of root and shoot and leaf in filling stage, respectively; BCFmr, BCFmsand BCFmbrare the bioconcentration factors of root, shoot and leaf, rice in maturity stage, respectively; TFtrs, TFfrsand TFmrsare the translation factors from root to shoot and leaf in whole stages, respectively.
通過相關(guān)性分析進(jìn)一步表明,糙米Cd的含量與土壤Cd總含量、有效態(tài)Cd含量和地上部Cd累積量呈正相關(guān),尤其是與有效態(tài)Cd含量與糙米中Cd含量和地上部分Cd累積量顯著正相關(guān)(<0.05),說明降低土壤有效態(tài)Cd含量能減緩糙米對(duì)Cd的吸收和累積。土壤中有效態(tài)Cd含量與糙米中Cd含量相關(guān)系數(shù)為0.911,說明土壤有效態(tài)Cd含量是影響糙米吸收Cd的關(guān)鍵因素。除此之外,土壤pH值與有效態(tài)Cd含量和糙米中Cd含量呈極顯著負(fù)相關(guān)(<0.01)。
1)在間歇灌溉和全生育期淹水條件下結(jié)合在水稻分蘗期施用石灰均能降低Cd有效態(tài)含量、促進(jìn)土壤中酸可提取態(tài)Cd向氧化態(tài)和殘?jiān)鼞B(tài)轉(zhuǎn)化,同時(shí)有效降低稻米中Cd含量且不會(huì)導(dǎo)致水稻減產(chǎn)。
2)灌漿期到成熟期是控制水稻吸收Cd的關(guān)鍵階段。在灌漿期主要降低水稻莖葉Cd的富集系數(shù),在成熟期主要降低水稻莖葉Cd的轉(zhuǎn)運(yùn)系數(shù)。全生育期淹水條件下施用石灰能顯著降低Cd在水稻中的轉(zhuǎn)運(yùn)系數(shù)和富集系數(shù),相應(yīng)的水稻地上部和地下部Cd累積量也顯著減少。
3)糙米中Cd含量與土壤中有效態(tài)Cd含量和地上部分Cd累積量呈顯著正相關(guān)(<0.05),與土壤pH呈極顯著負(fù)相關(guān)(<0.01)。而有效態(tài)Cd含量與土壤pH呈極顯著負(fù)相關(guān)(<0.01)。通過水分管理結(jié)合在分蘗期施用石灰措施升高土壤pH值是降低糙米中Cd含量的有效措施。
[1] 余守武,劉宜柏. 土壤-水稻系統(tǒng)重金屬污染的研究現(xiàn)狀和展望[J]. 江西農(nóng)業(yè)學(xué)報(bào),2004,16(1):41-48.
Yu Shouwu, Liu Yibai. Current situation and prospects of researches on heavy metals pollution in soil-rice system[J]. Acta Agriculture of Jiangxi, 2004, 16(1): 41-48. (in Chinese with English abstract)
[2] Yang Y, He Y M, Luan J L, et al. Comprehensive analysis on soil remediation technologies of international contaminated sites[J]. Environmental Science and Technology, 2012, 35(10): 92-98.
[3] Tang H, Liu Y, Gong X, et al. Effects of selenium and silicon on enhancing antioxidative capacity in ramie ((L.) Gaud.) under cadmium stress[J]. Environmental Science and Pollution Research International, 2015, 22(13): 1-10.
[4] Characterization of Cd translocation and accumulation in 19 maize cultivars grown on Cd-contaminated soil: Implication of maize cultivar selection for minimal risk to human health and for phytoremediation[J]. Environmental Science and Pollution Research, 2016, 23(6): 5410-5419.
[5] 陳少毅,許超,張文靜,等. 生物質(zhì)炭與氮肥配施降低水稻重金屬含量的盆栽試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(14):189-197.
Chen Shaoyi, Xu Chao, Zhang Wenjing, et al. Combined application of biochar and nitrogen fertilizers reducing heavy metals contents in potted rice planted in contaminated soil[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2014, 30(14): 189-197. (in Chinese with English abstract)
[6] Simón M, Diez M, González V, et al. Use of liming in the remediation of soils polluted by sulphide oxidation: A leaching-column study[J]. Journal of Hazardous Materials, 2010, 180(1/2/3): 241-246.
[7] Moreno-Jiménez E, Esteban E, Carpena-Ruiz R O, et al. Phytostabilisation with Mediterranean shrubs and liming improved soil quality in a pot experiment with a pyrite mine soil[J]. Journal of Hazardous Materials, 2012, 201/202(2): 52-59.
[8] Hale B, Evans L, Lambert R. Effects of cement or lime on Cd, Co, Cu, Ni, Pb, Sb and Zn mobility in field-contaminated and aged soils[J]. Journal of Hazardous Materials, 2012(199/200): 119-127.
[9] Bolan N S, Adriano D C, Mani P A, et al. Immobilization and phytoavailability of cadmium in variable charge soils. II. Effect of lime addition[J]. Plant and Soil, 2003, 251(1): 187-198.
[10] Rafiq M T, Aziz R, Yang X, et al. Cadmium phytoavailability to rice (L.) grown in representative Chinese soils. A model to improve soil environmental quality guidelines for food safety[J]. Ecotoxicology and Environmental Safety, 2014, 103(1): 101-107.
[11] Li H, Luo N, Li Y W, et al. Cadmium in rice: Transport mechanisms, influencing factors, and minimizing measures[J]. Environmental Pollution, 2017(224): 622-630.
[12] 李劍睿,徐應(yīng)明,林大松,等. 水分調(diào)控和鈍化劑處理對(duì)水稻土鎘的鈍化效應(yīng)及其機(jī)理[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2014,33(7):1316-1321.
Li Jianrui, XuYingming, Lin Dasong, et al. Immobilization of cadmium in a paddy soil using moisture management and amendments[J].Journal of Agro-Environment Science, 2014, 33(7): 1316-1321. (in Chinese with English abstract)
[13] 沈欣,朱奇宏,朱捍華,等. 農(nóng)藝調(diào)控措施對(duì)水稻鎘積累的影響及其機(jī)理研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2015,34(8):1449-1454.
Shen Xin, Zhu Qihong, Zhu Hanhua, et al. Effects of agronomic measures on accumulation of Cd in rice[J]. Journal of Agro-Environment Science, 2015, 34(8): 1449-1454. (in Chinese with English abstract)
[14] 張雪霞,張曉霞,鄭煜基,等. 水分管理對(duì)硫鐵鎘在水稻根區(qū)變化規(guī)律及其在水稻中積累的影響[J]. 環(huán)境科學(xué),2013,34(7):2837-2846.
Zhang Xuexia, Zhang Xiaoxia, Zheng Yuji, et al. Accumulation of S, Fe and Cd in rhizosphere of rice and their uptake in rice with different watermanagements[J]. Environmental Science, 2013, 34(7): 2837-2846. (in Chinese with English abstract)
[15] Chen Y, Xie T, Liang Q, et al. Effectiveness of lime and peat applications on cadmium availability in a paddy soilunder various moisture regimes[J]. Environmental Science and Pollution Research, 2016, 23(8): 7757-7766.
[16] Arao T, Kawasaki A, Baba K, et al. Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice[J]. Environmental Science and Technology, 2009, 43(24): 9361-9367.
[17] Hu P, Li Z, Yuan C, et al. Effect of water management on cadmium and arsenic accumulation by rice with different metal accumulation capacities[J]. Journal of Soils and Sediments, 2013, 13(5): 916-924.
[18] 黃樹輝. 裂縫條件下稻田土壤中的釋放和氮溶質(zhì)運(yùn)移的機(jī)理研究[D]. 杭州:浙江大學(xué),2005.
Huang Shuhui. Study on N2O Emissions and Nitrogen Transformation in Leaching Solution in Cracking Paddy[D]. Hangzhou: Zhejiang University, 2005. (in Chinese with English abstract)
[19] Cheng Y, Guo Z, Liu X, et al. The bioleaching feasibility for Pb/Zn smelting slag and community characteristics of indigenous moderate-thermophilic bacteria[J].Bioresource Technology, 2009, 100(10): 2737-2740.
[20] Ajm B, Reeves R D, Asm H. Heavy metal accumulation and tolerance in British populations of the metallophyteJ. & C. Presl ()[J]. New Phytologist, 2010, 127(1): 61-68.
[21] 杜天慶,楊錦忠,郝建平,等. Cd、Pb、Cr三元脅迫對(duì)小麥幼苗生理生化特性的影響[J]. 生態(tài)學(xué)報(bào),2009,29(8):4475-4482.
Du Tianqing, Yang Jinzhong, Hao Jianping, et al. Influences of multiple stress by Cd, Pb and Cr on physiological- biochemical characters of wheat seedlings[J]. Acta Ecologica Sinica, 2009, 29(8): 4475-4482. (in Chinese with English abstract)
[22] Bolan N S, Makino T, Kunhikrishnan A, et al. Chapter Four-Cadmium contamination and its risk management in rice ecosystems[J]. Advances in Agronomy, 2013, 119(47): 183-273.
[23] Hamon R E, Mclaughlin M J, Cozens G. Mechanisms of attenuation of metal availability in in situ remediation treatments[J]. Environmental Science and Technology, 2002, 36(18): 3991-3996.
[24] Guo X, Wei Z, Penn C J, et al. Effect of soil washing and liming on bioavailability of heavy metals in acid contaminated soil[J]. Soil Science Society of America Journal, 2013, 77(2): 432-441.
[25] And R K, Sticher H. Transport of humic-coated Iron oxide colloids in a sandy Soil: Influence of Ca2+and trace metals[J]. Environmental Science and Technology, 1997, 31(12): 3497-3504.
[26] Yu H Y, Liu C, Zhu J, et al. Cadmium availability in rice paddy fields from a mining area: The effects of soil properties highlighting iron fractions and pH value[J]. Environmental Pollution, 2016, 209(1): 38-45.
[27] Muehe E M, Adaktylou I J, Obst M, et al. Organic carbon and reducing conditions lead to cadmium immobilization by secondary Fe mineral formation in a pH-neutral soil[J]. Environmental Science and Technology, 2013, 47(23): 13430-13439.
[28] Won J G, Choi J S, Lee S P, et al. Water saving by shallow intermittent irrigation and growth of rice[J]. Plant Production Science, 2005, 8(4): 487-492.
[29] 肖思思,李戀卿,潘根興,等. 持續(xù)淹水和干濕交替預(yù)培養(yǎng)對(duì)2種水稻土中Cd形態(tài)分配及高丹草Cd吸收的影響[J]. 環(huán)境科學(xué),2006,27(2):351-355.
Xiao Sisi, Li Lianqing, Pan Genxing, et al. Effect of submerging and wetting-redrying on Cd speciation and uptake by sorghum hybrid sudangrass in two paddy soils under spiked Cd[J]. Environmental Science, 2006, 27(2): 351-355. (in Chinese with English abstract)
[30] 彭世彰,喬振芳,徐俊增. 控制灌溉模式對(duì)稻田土壤-植物系統(tǒng)鎘和鉻累積的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(6):94-99. Peng Shizhang, Qiao Zhenfang, Xu Junzeng. Effect of controlled irrigation on accumulation of heavy metal Cd, Cr in soil-plant system in rice paddy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(6): 94-99. (in Chinese with English abstract)
[31] Uraguchi S, Mori S, Kuramata M, et al. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice[J]. Journal of Experimental Botany, 2009, 60(9): 2677-2688.
[32] Ueno D, Koyama E, Yamaji N, et al. Physiological, genetic, and molecular characterization of a high-Cd-accumulating rice cultivar, Jarjan[J]. Journal of Experimental Botany, 2011, 62(7): 2265-2272.
[33] 周航. 組配改良劑對(duì)土壤:水稻中重金屬遷移累積的影響[D]. 長沙:湖南農(nóng)業(yè)大學(xué),2014.
Zhou Hang. Effect of Combined Amendments on Heavy Metal Mobilization and Accumulation in Soil-Rice Systems[D]. Changsha: Hunan Agricultural University, 2014. (in Chinese with English abstract)
Effects of lime and water management on uptake and translocation of cadmium in rice
Shi Lei, Guo Zhaohui※, Liang Fang, Peng Chi, Xiao Xiyuan, FengWenli
(,,410083,)
Cadmium (Cd) is a highly toxic element, and can be readily accumulated in crops and thus harm human health by food chain. Agricultural paddy soil contaminated by Cd has become very obvious environmental problem in South China. Rice (L.) is a kind of important crop and main daily diet and has been considered to be a major source of Cd intake by humans in some parts of southern China. The accumulation of Cd in rice in Cd contaminated paddy field easily exceeds 0.2 mg/kg, which is the limit according to the(GB 2762-2012). In order to reduce the effect of Cd on human body, animal and plant, a field experiment was conducted to evaluate the effect of liming application at rice tillering stage on the distribution and migration characteristics of Cd in organs of rice at the different growth stages under the treatment of intermittent irrigation and flooding in whole growth period. The 4 treatments were designed as follows: 1) Intermittent irrigation treatment, and the plot was irrigated following the local conventional irrigation method to maintain being flooded with 3-5 cm water above the soil surface until the late tillering stage and then was drained, followed by intermittent irrigation 2 times (WCK); 2) intermittent irrigation + lime (WL); 3) flooding in whole cultivation, and the plot was flooded during the whole period of crop growth, in which water was kept at a height of 3-5 cm above the soil surface (FCK); 4) flooding in whole cultivation + lime (FL). Lime (1 500 kg/hm2) was applied to the paddy soil after the samples were collected at tillering stage. The samples were collected at stages of tillering, filling and maturity, respectively. The results showed that the intermittent and continuous flooding treatment combined with lime application at rice tillering stage increased significantly the soil pH values and decreased the available Cd mass fraction in the soil. Application of lime caused the transforming of acid-soluble Cd into oxidizable, reducible and residual states. Moreover, application of lime in the treatment of flooding in whole growth period could increase iron (Fe) mass fraction in the soil. After liming, the Cd mass fraction of brown rice significantly reduced from 0.86 to 0.56 mg/kg under intermittent irrigation treatment and from 0.77 to 0.34 mg/kg under the treatment of flooding in whole growth period. Meanwhile lime application reduced significantly the bioconcentration factor of Cd in shoot at filling stage (<0.05), while the bioconcentration factor of Cd in root and brown rice at maturity stage was also decreased significantly (<0.05). In addition, at maturity stage the translocation factor from root to shoot and that from shoot to brown rice decreased significantly under the treatment of flooding in whole growth period combined with lime application (<0.05). The rice yield averagely increased by 10% with lime application. Correlation analysis indicated that Cd mass fraction in brown rice was significantly positively correlated with the available Cd mass fraction in soil and the Cd accumulation in aboveground part of rice, and was significantly negatively correlated with soil pH value. In all, the results indicated that the intermittent irrigation and flooding in whole growth period combined with lime application at tillering stage were effective ways to reduce uptake of Cd in rice in contaminated paddy soil without yield loss, especially the flooding treatment combined with lime application.
water management; lime; heavy metal; rice; cadmium; bioconcentration factor; translocation factor
10.11975/j.issn.1002-6819.2017.24.015
X131; S274
A
1002-6819(2017)-24-0111-07
2017-07-19
2017-10-26
國家科技支撐計(jì)劃課題(2015BAD05B02);重金屬污染耕地修復(fù)機(jī)理及技術(shù)模式優(yōu)化集成項(xiàng)目(農(nóng)辦財(cái)函〔2016〕6號(hào))
史 磊,男,河南開封人,博士生,主要從事土壤重金屬污染控制與修復(fù)研究。Email:shilei1121@126.com
郭朝暉,男,湖南寧鄉(xiāng)人,教授,博士生導(dǎo)師,主要從事土壤污染控制與修復(fù)研究。Email:zhguo@csu.edu.cn
史 磊,郭朝暉,梁 芳,彭 馳,肖細(xì)元,封文利. 水分管理和施用石灰對(duì)水稻鎘吸收與運(yùn)移的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(24):111-117. doi:10.11975/j.issn.1002-6819.2017.24.015 http://www.tcsae.org
Shi Lei, Guo Zhaohui, Liang Fang, Peng Chi, Xiao Xiyuan, Feng Wenli. Effects of lime and water management on uptake and translocation of cadmium in rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(24): 111-117. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.24.015 http://www.tcsae.org