(德)阿希姆·蒙斯 (德)賈恩·尼珀斯
由斯圖加特大學(xué)的計(jì)算設(shè)計(jì)與施工研究所(ICD)和建筑結(jié)構(gòu)與結(jié)構(gòu)設(shè)計(jì)研究所(ITKE)聯(lián)合設(shè)計(jì)與建造的研究展亭已于近日完成,展亭由玻璃和碳纖維復(fù)合材料建造而成。這種新的建造工藝充分利用纖維結(jié)構(gòu)獨(dú)一無二的功能和特性,由于這些材料質(zhì)輕且具有較高的抗拉強(qiáng)度,因此可采用一種完全不同的方法進(jìn)行制造—使用低有效載荷的遠(yuǎn)程機(jī)器,如功能強(qiáng)大精準(zhǔn),但到達(dá)范圍有限的工業(yè)機(jī)器人—無人機(jī)(UAV)。這種協(xié)作理念為實(shí)現(xiàn)長(zhǎng)跨度光纖復(fù)合結(jié)構(gòu)提供了可擴(kuò)展制造的可能。該研究建立在一系列成功建成的展亭之上,綜合了計(jì)算設(shè)計(jì)、工程和制造等學(xué)科,并探討了展亭的空間影響和施工可能性。該項(xiàng)目由學(xué)生、研究人員及一個(gè)由建筑師、工程師和生物學(xué)家組成的跨學(xué)科團(tuán)隊(duì)設(shè)計(jì)和建造。
1 具有2個(gè)機(jī)器人手臂和無人機(jī)的多機(jī)器制造設(shè)備Multi-machine fabrication set up utilizing two robotic arms and an autonomous drone
纖維復(fù)合材料在建筑領(lǐng)域中有著巨大的發(fā)展?jié)摿?。由于其性能特征,纖維復(fù)合材料易運(yùn)用于高度工程化的設(shè)計(jì)中,如汽車和航空航天工業(yè)等領(lǐng)域,但在建筑設(shè)計(jì)中,該材料的應(yīng)用潛力仍等待著人們?nèi)ヌ剿鳌T诮ㄖ?guī)模生產(chǎn)中,材料的自重是較大跨度結(jié)構(gòu)設(shè)計(jì)的關(guān)鍵,而輕質(zhì)纖維復(fù)合材料有著無與倫比的性能優(yōu)勢(shì),但目前仍缺乏成熟的纖維復(fù)合材料制造工藝,難以滿足建筑自身和設(shè)計(jì)行業(yè)所需的設(shè)計(jì)自由度以及系統(tǒng)適應(yīng)性。傳統(tǒng)的制造方法需要全尺寸的表面模具,并且通常為同一部件的序列化生產(chǎn)。ICD和ITKE在前期研究中,已經(jīng)對(duì)纖維復(fù)合材料的結(jié)構(gòu)進(jìn)行了探索,不再需要表面模具或昂貴的樣板。這些新穎的制造工藝已被用于建造高度差異化的多層結(jié)構(gòu)、功能集成的建筑系統(tǒng)及大型元件組件,同時(shí)這些相對(duì)可塑的材料已不再受傳統(tǒng)纖維復(fù)合材料制造工藝的限制。然而早期的調(diào)查顯示,建造規(guī)模仍受到工業(yè)機(jī)器人的手臂工作空間限制。2016—2017ICD/ITKE研究展亭的研究目標(biāo)是提出一個(gè)可擴(kuò)展的制造過程,并通過開發(fā)長(zhǎng)跨度連續(xù)纖維結(jié)構(gòu)的制造工藝來測(cè)試未來這項(xiàng)技術(shù)在建筑結(jié)構(gòu)應(yīng)用中的可能性。
2 2種“潛葉蟲”蠶及其顯微圖像,演示可見其體積結(jié)構(gòu)、纖維層次和方向性Two species of leaf miner moths and their microscopic image,illustrating volumetric structure, fiber hierarchy and directionality2-1 “潛葉蟲”蠶Lyonetiaprunifoliell, "Apple Leaf Miner" cocoon
2-2 “潛葉蟲”蠶Leucopteraerythrinella, Leaf miner cocoon
2-3 展現(xiàn)“潛葉蟲”蠶體積結(jié)構(gòu)的顯微圖像Microscopic image of "Apple Leaf Miner" cocoon,illustrating volumetric structure
2-4 展現(xiàn)“潛葉蟲”蠶纖維層次和方向性的顯微圖像Microscopic image of "Apple Leaf Miner" cocoon,illustrating fiber hierarchy and directionality
該項(xiàng)目的關(guān)鍵點(diǎn)有二:自下而上的平行設(shè)計(jì)策略,用于長(zhǎng)跨度纖維復(fù)合結(jié)構(gòu)的自然建造過程的仿生學(xué)研究;纖維增強(qiáng)聚合物結(jié)構(gòu)的創(chuàng)新型機(jī)器人制造方法的發(fā)展。研究期望開發(fā)一種更大跨度的纖維纏繞技術(shù),從而將所需的模板最小化,同時(shí)充分利用連續(xù)纖維的結(jié)構(gòu)性能。為此,項(xiàng)目團(tuán)隊(duì)和進(jìn)化與生態(tài)學(xué)研究所(Institute of Evolution and Ecology)及圖賓根大學(xué)古生物學(xué)系(The Department for Paleobiology of the University of Tübingen) 進(jìn)行了合作,對(duì)自然輕型結(jié)構(gòu)的功能原理和建造邏輯進(jìn)行了分析和抽象處理。研究確定了2種潛葉蛾,它們的幼蟲會(huì)在彎曲葉片的連接點(diǎn)之間吐絲形成“吊床”,這種結(jié)構(gòu)的形態(tài)和程序原理極有可能被模擬,從而運(yùn)用到長(zhǎng)跨度纖維的制造中。研究人員從生物學(xué)模型中抽象出幾個(gè)概念用于纖維材料的制造,包括:彎曲活性子結(jié)構(gòu)和無芯纏繞纖維增強(qiáng)件的組合,該組合結(jié)構(gòu)用以產(chǎn)生整體復(fù)合纏繞框架;長(zhǎng)跨度結(jié)構(gòu)上的纖維取向和層次結(jié)構(gòu);多級(jí)體積纖維鋪設(shè)工藝,用于生成復(fù)雜的三維幾何形狀。
創(chuàng)建一個(gè)超出標(biāo)準(zhǔn)設(shè)備制造工作空間的長(zhǎng)跨度結(jié)構(gòu),需要一個(gè)協(xié)作式的安裝設(shè)備—多個(gè)機(jī)器人系統(tǒng)可以在這里完成對(duì)接和通信,從而進(jìn)行無縫的纖維鋪設(shè)過程。纖維可以在多臺(tái)機(jī)器之間傳遞,以確保材料結(jié)構(gòu)的連續(xù)性。制造過程依托范圍有限、功能強(qiáng)大而精確的固定式機(jī)器與精度有限的移動(dòng)式遠(yuǎn)程機(jī)器之間的完美配合。在具體的建造過程中,2個(gè)固定式工業(yè)機(jī)器人手臂位于結(jié)構(gòu)的末端,保證了纖維纏繞工作所需的強(qiáng)度和精度,而纖維的傳遞工作依靠定制的無人機(jī),通過不太精確但可自主遠(yuǎn)距離傳遞的纖維運(yùn)輸系統(tǒng)完成。結(jié)合無人機(jī)和機(jī)器人的自由性與適應(yīng)性,使纖維鋪設(shè)成為可能,并開發(fā)出單獨(dú)使用機(jī)器人或無人機(jī)進(jìn)行材料安排和結(jié)構(gòu)性能探索的創(chuàng)新性方法。
項(xiàng)目開發(fā)并使用了自適應(yīng)的控制和通信系統(tǒng),使得多個(gè)工業(yè)機(jī)器人和無人機(jī)在整個(gè)纖維纏繞和鋪設(shè)過程中相互作用。集成傳感器接口使得機(jī)器人和無人機(jī)能夠在制造過程中進(jìn)行實(shí)時(shí)調(diào)整,以適應(yīng)環(huán)境變化。無人機(jī)可自主飛行,不需要人為控制。由于無人機(jī)和機(jī)器人的作用,纖維的張力得到了有效的適應(yīng)性控制。同時(shí),利用定位系統(tǒng)在機(jī)器人和無人機(jī)之間創(chuàng)建了一個(gè)數(shù)字物理“握手”程序,以完成整個(gè)纏繞過程中的纖維傳遞。一系列自適應(yīng)行為和集成傳感器裝置為開發(fā)多機(jī)操作,并用于大規(guī)模纖維復(fù)合材料生產(chǎn)的新型物理網(wǎng)絡(luò)制造工藝奠定了基礎(chǔ)。
2016—2017ICD/ITKE研究展亭是由184km長(zhǎng)的樹脂—浸漬玻璃和碳纖維制成的,采用輕質(zhì)材料系統(tǒng)創(chuàng)建了一個(gè)總長(zhǎng)度為12m的長(zhǎng)跨度懸臂梁,表面積約40m2,重量約1 000kg。由于這個(gè)結(jié)構(gòu)是非現(xiàn)場(chǎng)制造的,因此尺寸被限定在可運(yùn)輸范圍內(nèi)。經(jīng)研究發(fā)現(xiàn),該裝置更適合在現(xiàn)場(chǎng)或原位制造,這樣便可達(dá)到更長(zhǎng)的跨度和創(chuàng)造出更大的纖維復(fù)合結(jié)構(gòu)。
研究展亭的整體幾何結(jié)構(gòu)驗(yàn)證了通過多級(jí)體積纖維纏繞法制造結(jié)構(gòu)形態(tài)的可能性,該方法通過集成的可活動(dòng)彎曲復(fù)合框架減少了不必要的模板,并通過機(jī)器人和自主輕型無人機(jī)制造工藝提高了施工的規(guī)模和跨度。研究探索了未來的結(jié)構(gòu)構(gòu)建模式,包括分布式、協(xié)作式和自適應(yīng)性系統(tǒng)。該研究將結(jié)構(gòu)性能、材料特征、建造邏輯、生物原理和建筑設(shè)計(jì)等方面結(jié)合納入綜合計(jì)算設(shè)計(jì)與建構(gòu)中,深入挖掘了計(jì)算設(shè)計(jì)與施工的潛力。這個(gè)典型性展亭向我們證明,可擴(kuò)展的長(zhǎng)跨度纖維復(fù)合結(jié)構(gòu)的制造工藝可應(yīng)用于建筑領(lǐng)域。
3 展亭結(jié)構(gòu)發(fā)展過程圖Diagram of Research Pavillion structural development process
4顯示內(nèi)應(yīng)力軌跡的結(jié)構(gòu)模擬圖Diagram of structural simulation showing internal stress trajectories
(編輯/張?chǎng)┚辏?/p>
項(xiàng)目團(tuán)隊(duì):計(jì)算設(shè)計(jì)與施工研究所(ICD)—阿希姆·蒙斯教授,建筑結(jié)構(gòu)與結(jié)構(gòu)設(shè)計(jì)研究所(ITKE)—賈恩·尼珀斯教授
合作方:進(jìn)化與生態(tài)學(xué)研究所,飛機(jī)設(shè)計(jì)研究所(IFB)—米登多夫教授、馬庫斯·布蘭德、弗洛里安·格納丁格教授,工程大地測(cè)量研究所(IIGS)—沃爾克·施瓦格教授、奧托·拉克教授,圖賓根大學(xué)無脊椎動(dòng)物進(jìn)化生物學(xué)系—奧利弗·貝茨教授,圖賓根大學(xué)無脊椎動(dòng)物古生物學(xué)系—詹姆斯·納貝爾西克教授
合作成員:Benjamin Felbrich (德國(guó)), Nikolas Früh (德國(guó)),Marshall Prado (美國(guó)), Daniel Reist (澳大利亞), Sam Saffarian (伊朗), James Solly(英國(guó)), Lauren Vasey (美國(guó))
支持單位:大眾汽車基金會(huì)、GETTYLAB、庫卡機(jī)器人有限公司、派瑞有限公司、SGL技術(shù)有限公司、斯圖加特瀚森化工有限公司、埃德旭普林公司、龍?zhí)貭栍邢薰尽氐聽栦摻Y(jié)構(gòu)有限公司、徠卡測(cè)量系統(tǒng)有限公司、科菲有限公司
研究項(xiàng)目資金:來自2020歐盟地平線研究項(xiàng)目、瑪麗亞·斯克沃多夫斯卡·居里贈(zèng)款協(xié)議642877號(hào)創(chuàng)新計(jì)劃、德國(guó)研究基金會(huì)的合作研究中心CRC141項(xiàng)目和大眾基金會(huì)的實(shí)驗(yàn)資助計(jì)劃
項(xiàng)目位置:斯圖加特,開普勒街11-17號(hào),70174
建成時(shí)間:2017年3月
面積:26.5m2
體積:58m3
纖維總長(zhǎng):184km
重量:1 000kg
外形尺寸:12.0m x 2.6m x 3.1m
圖片來源:圖 1~4 ? ICD/ITKE,圖 5、8~9、11 ? 博格雷夫和賴克特,圖6~7、10 ? 勞里安·格尼托
翻譯:鄭黛丹
校對(duì):張希
5 研究展亭實(shí)景View of Research Pavilion
The Institute for Computational Design and Construction (ICD) and the Institute of Building Structures and Structural Design (ITKE)at the University of Stuttgart have completed a new research pavilion exploring building-scale fabrication of glass and carbon fibre-reinforced composites. The novel process is based on the unique affordances and characteristics of fibre construction. Because these materials are lightweight and have high tensile strength, a radically different approach to fabrication becomes possible, which combines low-payload yet longrange machines, such as unmanned aerial vehicles(UAV), with strong, precise, yet limited reach,industrial robots. This collaborative concept enables a scalable fabrication setup for long span fibre composite construction. The research builds on a series of successful pavilions, which investigate integrative computational design, engineering and fabrication, and explores their spatial rami fi cations and construction possibilities. The project was designed and fabricated by students and researchers within an interdisciplinary team of architects,engineers and biologists.
Fibre composite materials have tremendous potential in architectural applications. Due to performative material characteristics, they are readily used in highly engineered applications, such as in the automotive and aerospace industries. The potentials within architecture, however, remain still largely unexplored. Within architectural scale production, where material self-weight is of high concern for larger span structures,lightweight fibre composites provide unparalleled
performance. However, we currently lack adequate fibre composite fabrication processes to produce at this scale without compromising the design freedom and system adaptability required for the architecture and design industries. Traditional methods of fabrication require full-scale surface moulds and often restrict the process to serialized production of identical parts. Previous research at the ICD and ITKE has explored fibre composite construction without the need for surface moulds or costly formwork. These novel manufacturing processes have been utilized to create highly differentiated multi-layered structures, functionally integrated building systems and large element assemblies. They have freed the relatively formable material from the limitations of traditional fibre composite fabrication processes. However, the scale of these early investigations has been limited by the working space of the industrial robotic arms that were utilized. The goal of the ICD/ITKE Research Pavilion 2016-17 is to envision a scalable fabrication process and to test alternative scenarios for architectural application by developing a manufacturing process for long span continuous fi bre structures.
6~8 研究展亭實(shí)景View of Research Pavilion
The focus of the project is a parallel bottomup design strategy for the biomimetic investigation of natural construction processes of long span fi bre composite structures and the development of novel robotic fabrication methods for fibre reinforced polymer structures. The aim was to develop a fibre winding technique over a longer span, which reduces the required formwork to a minimum whilst taking advantage of the structural performance of continuous fi lament. Therefore, functional principles and construction logics of natural lightweight structures were analysed and abstracted in cooperation with the Institute of Evolution and Ecology and the department for Paleobiology of the University of Tübingen. Two species of leaf miner moths, the Lyonetiaclerkellaand the Leucopteraerythrinella,whose larvae spin silk “hammocks” stretching between connection points on a bent leaf, were identified as particularly promising for the transfer of morphological and procedural principles for long span fi brous construction. Several concepts were abstracted from the biological role models and transferred into fabrication and structural concepts, including: the combination of a bending-active substructure and coreless wound fibre reinforcement to create an integrated composite winding frame, fi bre orientation and hierarchy over a long span structure and multistage volumetric fibre laying processes for the generation of complex three dimensional geometries.
Creating a long span structure, beyond the working space of standard industrial fabrication equipment, required a collaborative setup where multiple robotic systems could interface and communicate to create a seamless fibre laying process. A fibre could be passed between multiple machines to ensure a continuous material structure.The concept of the fabrication process is based on the collaboration between strong and precise, yet stationary machines with limited reach and mobile,long-range machines with limited precision. In the speci fi c experimental set-up, two stationary industrial robotic arms with the strength and precision necessary for fibre winding work are placed at the extremities of the structure, while an autonomous, long range but less precise fi bre transportation system is utilized to pass the fibre from one side to the other, in this case a custom-built UAV. Combining the untethered freedom and adaptability of the UAV with the robots,opened up the possibilities for laying fi bres on, around or through a structure, creating the potential for material arrangements and structural performance not feasible with the robot or UAV alone.
10 研究展亭鳥瞰實(shí)景Aerial view of Research Pavilion
An adaptive control and communication system was developed to allow multiple industrial robots and a UAV to interact throughout the winding and fibre laying processes. An integrated sensor interface enabled the robots and UAV to adapt their behaviours, in real time, to the changing conditions during fabrication. The UAV could fly and land autonomously without the need of human pilots,the tension of the fibre was actively and adaptively controlled in response to both the UAV and robot behaviours. A localization system was utilized to create a digital and physical “handshake” between the robot and the UAV in order to pass the fi bre back and forth throug·hout the winding process. The series of adaptive behaviours and integrated sensors lay the foundation for developing novel multi-machine,cyber-physical fabrication processes for large scale if bre composite production.
The ICD/ITKE Research Pavilion 2016-17 was created by laying a combined total of 184km of resin-impregnated glass and carbon fibre. The lightweight material system was employed to create and test a single long spanning cantilever with an overall length of 12m as an extreme structural scenario. The surface covers an area of about 40m2and weighs roughly 1 000kg. The realized structure was manufactured offsite and thus the size was constrained to fit within an allowable transport volume. However, variations of the setup were found suitable for on-site or in situ fabrication,which could be utilized for much longer span and larger fi bre composite structures.
The pavilion’s overall geometry demonstrates the possibilities for fabricating structural morphologies through multi-stage volumetric fibre winding, reducing unnecessary formwork through an integrated bending-active composite frame, and increasing the possible scale and span of construction through integrating robotic and autonomous lightweight UAV fabrication processes. It explores how future construction scenarios may evolve to included distributed,collaborative and adaptive systems. This research showcases the potential of computational design and construction through the incorporation of structural capacities, material behaviour,fabrication logics, biological principles and architectural design constraints into integrative computational design and construction. The prototypical pavilion is a proof of concept for a scalable fabrication processes of long-span,fibre composite structural elements, suitable for architectural applications.
11 研究展亭夜景燈光效果Evening view of Research Pavilion
Project Team:Institute for Computational Design and Construction (ICD)—Prof. Achim Menges,Institute of Building Structures and Structural Design (ITKE)—Prof. Jan Knippers
In collaboration with:Institute of Evolution and Ecology; Institute of Aircraft Design (IFB)—Prof. Dr. Ing. P. Middendorf, Markus Blandl,Florian Gn?dinger; Institute of Engineering Geodesy(IIGS)—Prof. Dr.Ing. habil. Volker Schwieger, Otto Lerke;Department of Evolutionary Biology of Invertebrates,University of Tuebingen—Prof. Oliver Betz; Department of Palaeontology of Invertebrates, University of Tuebingen—Prof. James Nebelsick
Cooperator:Benjamin Felbrich (Germany), Nikolas Früh(Germany), Marshall Prado (USA), Daniel Reist(Austria), Sam Saffarian (Iran), James Solly(UK), Lauren Vasey (USA)
Supported by:Volkswagen Stiftung, GETTYLAB, KukaRoboter GmbH, Peri GmbH, SGL Technologies GmbH,Hexion Stuttgart GmbH, Ed. Züblin AG,Lange Ritter GmbH, StahlbauWendeler GmbH,Leica Geosystems GmbH, KOFI GmbH
Research Project Funds:Researchers on this project have received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodoska-Curie grant agreement No 642877, from the Collaborative Research Centre CRC 141 of the German Research Foundation and from the Volkswagen Stiftung's Experimentfunding programme
Address:Kepler str. 11-17, 70174, Stuttgart
Completion:March 2017
Area:26.5 m2