盧一鑫,楊森林,趙小俠,張變蓮
(西安文理學(xué)院 應(yīng)用物理研究所, 西安 710065)
基于三硼酸鋰晶體高功率紫外脈沖激光器
盧一鑫,楊森林,趙小俠,張變蓮
(西安文理學(xué)院 應(yīng)用物理研究所, 西安 710065)
為了獲得高功率、高重復(fù)頻率的紫外脈沖激光器,采用1064nm基頻光通過(guò)三硼酸鋰(LBO)晶體與3次諧波355nm進(jìn)行和頻得到4次諧波266nm紫外激光的方法,進(jìn)行了實(shí)驗(yàn)驗(yàn)證,取得了重復(fù)頻率為20kHz、紫外激光器的平均輸出功率為2.5W、紅外到紫外的轉(zhuǎn)換效率為12.5%的實(shí)驗(yàn)數(shù)據(jù)。結(jié)果表明,此脈沖激光器利用LBO晶體在高重復(fù)頻率下取得了較大的紫外平均輸出功率。
激光器;紫外;2次諧波;3次諧波;4次諧波;三硼酸鋰晶體
紫外激光器在醫(yī)療、科學(xué)研究、工業(yè)生產(chǎn)[1-5]等方面都有廣泛的應(yīng)用。相比于紅外和可見(jiàn)光波段的激光器,紫外激光具有較高的單光子能量和更小的光焦。為了得到高重復(fù)頻率、高單脈沖能量以及窄線寬的266nm紫外激光,采用1064nm的脈沖激光器利用三硼酸鋰(LiB3O5,LBO)或偏硼酸鋇(β-BaB2O4,BBO)晶體倍頻2次諧波(the second harmonic generation, SHG)得到532nm綠光,再通過(guò)工作在紫外波段的如RbBe2BO3F2(RBBF)[6],K2Al2B2O7(KABO)[7],KBe2BO3F2(KBBF)[8],BBO[9]角度相位匹配技術(shù)或者KD2PO4(KD*P)[10]非臨界相位匹配技術(shù)進(jìn)行倍頻,即4次諧波效應(yīng)(the fourth harmonic generation,F(xiàn)HG)獲得266nm的紫外激光輸出。常見(jiàn)的晶體主要有BBO和磷酸二氘鉀(KD2PO4,KD*P),但上述晶體在紫外波段都易于潮解,而且KD*P具有較低的熱傳導(dǎo)率,只能在重復(fù)頻率100Hz以下工作,BBO有較大的走離角、角度相位匹配范圍較窄、較高的吸收率通常在重復(fù)頻率10kHz以下可以得到較好的紫外光輸出。
LBO晶體的通光范圍在200nm以下,其光學(xué)均勻性好、損傷閾值高、非線性光學(xué)系數(shù)適中、走離角小、允許角大等優(yōu)點(diǎn),可以利用3次諧波技術(shù)(the third harmonic generation,THG)獲得355nm[11]的紫外光,由于雙折射效應(yīng),利用LBO晶體在Ⅰ類角度匹配條件下不能通過(guò)SHG得到的532nm四倍頻輸出266nm的紫外激光,通過(guò)四倍頻技術(shù)最短波長(zhǎng)只能達(dá)到277nm[12]。
本文中報(bào)道了利用基于電光調(diào)Q脈沖激光器1064nm基頻光通過(guò)LBO晶體與產(chǎn)生的3次諧波355nm進(jìn)行和頻得到266nm的紫外激光輸出。全固態(tài)紫外脈沖激光器在重復(fù)頻率為20kHz條件下獲得平均輸出功率為2.5W的266nm紫外光,其在1.5h內(nèi)測(cè)得輸出功率穩(wěn)定度為4.6%。
獲得266nm的紫外激光輸出需要具有高單脈沖能量,窄脈沖寬度1064nm基頻光。實(shí)驗(yàn)的光路如圖1所示?;贐right Solutions公司商用Onda電光(electro-optic,E-O)調(diào)Q脈沖激光器,可以獲得脈沖寬度為8ns的1064nm激光輸出,光束質(zhì)量因子M2<1.5,在重復(fù)頻率為20kHz時(shí)最大的平均輸出功率可達(dá)20W。
Fig.1 Experimental setup of 266nm UV pulsed laser
圖1中ω表示基頻的光波,2ω表示2次諧波,以此類推?;l光1064nm經(jīng)過(guò)透鏡L1在第1個(gè)LBO晶體進(jìn)行倍頻(SHG)得到532nm的輸出光,再通過(guò)透鏡L2后基頻光1064nm和倍頻光532nm經(jīng)過(guò)THG LBO晶體和頻得到3次諧波355nm,最后通過(guò)透鏡L3基頻光1064nm與3次諧波355nm在FHG LBO晶體相互作用得到4次諧波266nm的紫外激光輸出。SHG LBO晶體采用的相位匹配(phase-matching,PM)方式
是Ⅰ類非臨界相位匹配(non critical phase matc-hing,NCPM),匹配溫度是148℃,其走離角近似為0mrad,晶體尺寸為3mm × 3mm × 20mm;THG LBO是Ⅱ類角度相位匹配,匹配角θ=47°,φ=90°;FHG LBO是Ⅰ類角度相位匹配,匹配角θ=90°,φ=61°。3個(gè)晶體具體參量見(jiàn)表1,其中οz,ω表示入射光為慢光偏振態(tài),偏振方向沿著z軸;exy,2ω表示產(chǎn)生的2次諧波是快光偏振態(tài),偏振方向在x-y平面;下標(biāo)ω表示基頻的光波,2ω表示2次諧波,以此類推。
光束通過(guò)分光棱鏡后,基頻光1064nm、倍頻光532nm、3次諧波355nm被光學(xué)吸收器轉(zhuǎn)化為熱能,從而266nm紫外激光輸出,通過(guò)光電探測(cè)器和功率計(jì)測(cè)出266nm的脈沖寬度和平均輸出功率。L1,L2,L3聚焦透鏡的作用是把輸出光匯聚在LBO晶體的中心點(diǎn),LBO晶體和聚焦透鏡鍍減反膜(anti-reflection,AR)的參量見(jiàn)表2。SHG LBO晶體入射面和出射面鍍對(duì)1064nm/532nm波長(zhǎng)的減反膜,聚焦透鏡L1入射面和出射面鍍對(duì)1064nm波長(zhǎng)的減反膜,L2入射面和出射面鍍對(duì)1064nm/532nm波長(zhǎng)的減反膜,L3入射面和出射面鍍對(duì)355nm波長(zhǎng)的減反膜,THG LBO 和FHG LBO兩個(gè)晶體無(wú)需鍍膜。
Table 1 Characteristics of LBO crystal
Table 2 Antireflection coating of optical components
基頻光1064nm通過(guò)第1個(gè)LBO晶體進(jìn)行倍頻(SHG)得到532nm的輸出光,最大的平均輸出功率為14.5W,轉(zhuǎn)換效率為72.5%,通過(guò)調(diào)節(jié)SHG LBO晶體的溫度可以得到基頻光1064nm與倍頻(SHG)532nm不同的輸出比率,當(dāng)SHG LBO晶體溫度為148℃,通過(guò)SHG平臺(tái)后輸出的基頻光1064nm光功率與倍頻(SHG)532nm光功率的比值為1.2,即1064nm光功率10.8W,532nm光功率9W,可以得到3次諧波(THG)355nm最大輸出功率為6W,轉(zhuǎn)換效率為30%,如圖2所示。
Fig.2 Dependence of conversion efficiency of SHG(1064nm+1064nm→532nm) and THG(1064nm+532nm→355nm) on temperature of the SHG LBO crystal
基頻光1064nm和3次諧波(THG)355nm通過(guò)FHG LBO獲得266nm的激光輸出。分離出來(lái)的4次諧波266nm紫外激光在重復(fù)頻率20kHz時(shí)最大輸出功率為2.5W,轉(zhuǎn)換效率為12.5%,如圖3所示。
FHG LBO晶體Ⅰ類角度相位匹配角晶體溫度的關(guān)系通過(guò)基于KATO的LBO Sellmeier方程SNLO軟件計(jì)算得到溫度匹配帶寬為55℃,范圍很大,但是實(shí)際測(cè)量的溫度匹配帶寬比較窄,如圖4所示。這可能是由于在晶體溫度65℃~250℃變化范圍,Sellmeier方程中沒(méi)有考慮LBO晶體對(duì)于波長(zhǎng)200nm~400nm入射光的吸收損耗引起的。
Fig.3 Relationship between 266nm output UV power and 1064nm fundamental radiation power
Fig.4 The experimental and theoretical curves of relationship between FHG LBO temperature and acceptance bandwidth at 266nm
在重復(fù)頻率20kHz時(shí)測(cè)得輸出266nm紫外光的脈沖寬度為10ns,如圖5所示,較基頻光有一定的展寬。
Fig.5 Pulse width of 266nm ultraviolet light with repetition rate of 20kHz
由于FHG LBO的走離角比較小,在距離FHG LBO大約1m處測(cè)得266nm紫外光輸出的能量分布,如圖6所示。同時(shí)在1.5h內(nèi)測(cè)得輸出功率為0.5W以及1W的穩(wěn)定度分別好于1.2%和1.4% ,在最大輸出功率為2.5W時(shí),其穩(wěn)定度可以達(dá)到4.6%,如圖7所示。
高功率抽運(yùn)激光工作較長(zhǎng)時(shí)間情況下,THG LBO晶體出現(xiàn)了降解現(xiàn)象[14-15],通過(guò)帶有CMOS的數(shù)碼顯微鏡觀測(cè)到了具體的降解區(qū)域,如圖8所示。實(shí)驗(yàn)過(guò)程中發(fā)現(xiàn),出現(xiàn)降解現(xiàn)象的特征時(shí)間從幾個(gè)小時(shí)到幾百個(gè)小時(shí)不等,降解程度與激光以及晶體的諸多參量有關(guān),還需要進(jìn)一步地研究其原因,進(jìn)行改善。
Fig.6 Far-field energy distribution of 266nm UV beam
Fig.7 Power stability of the generated UV output power of 0.5W, 1W and 2.5W based on LBO
Fig.8 Magnified image of the degraded LBO crystals
采用電光調(diào)Q獲得了脈寬為8ns的高質(zhì)量1064nm基頻光,通過(guò)LBO晶體與產(chǎn)生的3次諧波355nm進(jìn)行和頻得到266nm的紫外激光輸出。在重復(fù)頻率為20kHz時(shí),紫外光最大平均輸出功率為2.5W,脈沖寬度10ns,相應(yīng)的紅外到紫外的轉(zhuǎn)換效率為12.5%,其穩(wěn)定度可以達(dá)到4.6% 。同時(shí),后續(xù)可以通過(guò)增大基頻光的峰值功率提高轉(zhuǎn)換效率。此外,長(zhǎng)時(shí)間工作導(dǎo)致LBO晶體出現(xiàn)了降解現(xiàn)象,還需進(jìn)一步研究。
[1] LI Q, THOMAS RUCKSTUHL A, SEEGER S. Deep-UV laser-based fluorescence lifetime imaging microscopy of single molecules[J]. Journal of Physical Chemistry, 2004, B108(24):8324-8329.
[2] LE H R, K?NIG K, WüLLNER C,etal. Ultraviolet femtosecond laser creation of corneal flap[J]. Journal of Refractive Surgery, 2009, 25(4):383-389.
[3] PARK S J, SONG J H, LEE G A. Analysis of UV laser machining process for high density embedded IC substrates[J].Advanced Materials Research, 2012,630(5):171-174.
[4] ORTHAUS S, K?NIG M, SCH?NAU T,etal. Crossing the limit towards deep UV[J]. Optik & Photonik, 2013, 8(1):33-36.
[5] KONG L R, ZHANG F, DUAN J,etal. Research of water-assisted laser etching of alumina ceramics[J]. Laser Technology, 2014,38(3): 330-334(in Chinese).
[6] CHEN C, LUO S, WANG X,etal. Deep UV nonlinear optical crystal: RbBe2BO3F2[J]. Journal of the Optical Society of America, 2009, B26(8):1519-1525.
[7] WANG Y, WANG L, GAO X,etal. Growth, characterization and the fourth harmonic generation at 266nm of K2Al2B2O7crystals without UV absorptions and Na impurity[J]. Journal of Crystal Growth, 2012, 348(1):1-4.
[8] WANG L, ZHAI N, LIU L,etal. High-average-power 266nm generation with a KBe2BO3F2prism-coupled device[J]. Optics Express, 2014, 22(22):27086-27090.
[9] CHAITANYA K S, CANALS C J, SANCHEZ B E,etal. Yb-fiber-laser-based, 1.8W average power, picosecond ultraviolet source at 266nm[J]. Optics Letters, 2015, 40(10):2397-2400.
[10] YANG S T, HENESIAN M A, WEILAND T L,etal. Noncritically phase-matched fourth harmonic generation of Nd∶glass lasers in partially deuterated KDP crystals[J]. Optics Letters, 2011, 36(10):1824-1828.
[11] ZHENG B R,YAO Y Ch,HUANG Ch Y. Experiment of double-end-pumped intra-cavity triple frequency ultraviolet laser[J].Laser Technology, 2013, 37(2): 155-157 (in Chinese).
[12] CHEN C. Chinese lab grows new nonlinear optical borate crystals[J]. Laser Focus World, 1989, 25(11):129-137.
[13] SMITH A V. Software for calculated “SNLO version_52.”[CP/OL]. (2000-02-15)[2009-06-12]. http://www.sandia.gov/pcnsc/departments/lasers/snlo-software.html.
[14] M?LLER S, ANDRESEN A, MERSCHJANN C,etal. Insight to UV-induced formation of laser damage on LiB3O5optical surfaces during long-term sum-frequency generation[J]. Optics Express, 2007, 15(12):7351-7356.
[15] HONG H, LIU Q, HUANG L,etal. Improvement and formation of UV-induced damage on LBO crystal surface during long-term high-power third-harmonic generation[J]. Optics Express, 2013, 21(6):7285-7293.
HighpowerultravioletpulsedlasersbasedonLBOcrystal
LUYixin,YANGSenlin,ZHAOXiaoxia,ZHANGBianlian
(Institute of Applied Physics, Xi’an University, Xi’an 710065, China)
In order to achieve the ultraviolet pulsed laser with the high power and high frequency, the fourth harmonic 266nm in LiB3O5(LBO)crystal was generated by frequency mixing of the fundamental(1064nm) and third harmonic (355nm) of electro-opticalQ-switched laser,and experiment verification was carried out. Deep ultraviolet (UV) output power of 2.5W at 266nm with the repetition rate at 20kHz and 12.5% infrared(IR)-to-UV conversion efficiency were achieved. The result show that the pulse laser has achieved a large average output power at high repetition frequency by using LBO crystal.
lasers; ultraviolet; the second harmonic generation; the third harmonic generation; the fourth harmonic generation; LiB3O5crystal
1001-3806(2018)01-0100-04
國(guó)家自然科學(xué)基金資助項(xiàng)目(61401356)
盧一鑫(1982-),男,實(shí)驗(yàn)師,現(xiàn)從事非線性光學(xué)、光電子器件的研究工作。
E-mail:tongy1982@163.com
2017-02-20;
2017-03-09
TN248.1; O437.1
A
10.7510/jgjs.issn.1001-3806.2018.01.019