亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        高時(shí)空分辨的神經(jīng)遞質(zhì)電化學(xué)傳感檢測(cè)技術(shù)發(fā)展與展望*

        2018-01-02 09:35:41張?jiān)略?/span>左小磊樊春海
        中國(guó)科學(xué)院院刊 2017年12期
        關(guān)鍵詞:囊泡微電極神經(jīng)遞質(zhì)

        張?jiān)略?左小磊 樊春海**

        1 中國(guó)科學(xué)院上海應(yīng)用物理研究所 上海 201800

        2 中國(guó)科學(xué)院大學(xué) 北京 100049

        高時(shí)空分辨的神經(jīng)遞質(zhì)電化學(xué)傳感檢測(cè)技術(shù)發(fā)展與展望*

        張?jiān)略?,2左小磊1樊春海1**

        1 中國(guó)科學(xué)院上海應(yīng)用物理研究所 上海 201800

        2 中國(guó)科學(xué)院大學(xué) 北京 100049

        目前,實(shí)現(xiàn)對(duì)細(xì)胞神經(jīng)遞質(zhì)釋放過(guò)程的高時(shí)空分辨實(shí)時(shí)監(jiān)測(cè),仍存在諸多挑戰(zhàn)。近些年來(lái),通過(guò)發(fā)展不同的電化學(xué)檢測(cè)技術(shù)實(shí)現(xiàn)了對(duì)細(xì)胞胞吐(exocytosis)釋放以及細(xì)胞內(nèi)部囊泡的定量化分析;一些研究使用這些技術(shù),進(jìn)行了細(xì)胞釋放模式的探究。通過(guò)在電極表面修飾小分子或者調(diào)控電極尺寸,可實(shí)現(xiàn)高分辨率和高靈敏度的監(jiān)測(cè)。文章重點(diǎn)介紹了神經(jīng)遞質(zhì)電化學(xué)檢測(cè)的機(jī)理、微米電極以及納米電極檢測(cè)技術(shù)的發(fā)展,對(duì)電化學(xué)傳感與成像技術(shù)的聯(lián)用進(jìn)行了評(píng)述,并對(duì)電化學(xué)傳感檢測(cè)技術(shù)未來(lái)發(fā)展方向進(jìn)行了展望。在此基礎(chǔ)上,文章綜合各種不同監(jiān)測(cè)技術(shù)的優(yōu)點(diǎn),提出構(gòu)建納米電極與成像以及其他檢測(cè)手段的聯(lián)用技術(shù),以大幅提高納米電極在神經(jīng)遞質(zhì)檢測(cè)方面的能力。

        神經(jīng)遞質(zhì),高時(shí)空分辨率,囊泡釋放,納米電極,電化學(xué)

        DOI 10.16418/j.issn.1000-3045.2017.12.003

        胞吐(exocytosis)是神經(jīng)細(xì)胞之間信息交流的基本方式,作為生物體內(nèi)一項(xiàng)非常重要的生物進(jìn)程,胞吐以及它的分子機(jī)制引起人們廣泛的關(guān)注。細(xì)胞通過(guò)胞吐釋放直徑 50—1 000 nm 的囊泡到環(huán)境中,這些囊泡中的物質(zhì)組成以及他們的釋放動(dòng)力學(xué)主要取決于細(xì)胞的種類和活性狀態(tài),這也就導(dǎo)致了細(xì)胞內(nèi)部的囊泡在不同時(shí)間段、通過(guò)不同檢測(cè)方式所得到的結(jié)果在性質(zhì)以及數(shù)量上存在很大的差異和不均勻性[1-4]。囊泡膜是由磷脂層構(gòu)成的復(fù)雜結(jié)構(gòu),其中包含一些跨膜蛋白和來(lái)自于細(xì)胞膜表面的親水化合物,其非正常釋放會(huì)影響相鄰受體細(xì)胞的正常生理機(jī)能[5]。

        磷脂與不同的蛋白、信號(hào)復(fù)合物發(fā)生作用,調(diào)節(jié)囊泡裂變、融合、釋放位點(diǎn)上特異性酶的活性以及蛋白質(zhì)的運(yùn)輸和補(bǔ)充[6-9]。α- 突觸核蛋白(α-synuelein)的異常聚集和基因突變與家族性帕金森?。≒D)有密切關(guān)系。有報(bào)道指出,α- 突觸核蛋白通過(guò)調(diào)控突觸末端的囊泡儲(chǔ)存池來(lái)控制囊泡運(yùn)輸動(dòng)力學(xué),從而控制在神經(jīng)遞質(zhì)釋放期間??吭诩?xì)胞膜表面的囊泡數(shù)量[10,11],而 β- 淀粉樣蛋白也會(huì)對(duì)阿爾茨海默病(AD)的發(fā)病存在類似的影響。這些蛋白通常會(huì)處于神經(jīng)細(xì)胞末端,在神經(jīng)遞質(zhì)釋放中所發(fā)揮的作用尚不明確。但有些研究表明,在神經(jīng)細(xì)胞或者嗜鉻細(xì)胞中,這些蛋白的表達(dá)量提高會(huì)導(dǎo)致囊泡融合孔擴(kuò)大從而加速囊泡的釋放,降低胞吐釋放事件的數(shù)目[12]。tau 蛋白在病理狀態(tài)下會(huì)產(chǎn)生累積,引起突觸前端功能障礙,進(jìn)而導(dǎo)致肌動(dòng)蛋白聚合,使得囊泡之間產(chǎn)生交聯(lián)并抑制囊泡在細(xì)胞膜上面的??浚瑢?dǎo)致細(xì)胞無(wú)法正常胞吐釋放以及疾病發(fā)生[13-16]。

        綜上所述,能夠及時(shí)、準(zhǔn)確、快速地對(duì)胞內(nèi)囊泡及其釋放情況進(jìn)行檢測(cè),是近些年來(lái)神經(jīng)科學(xué)領(lǐng)域面臨的一個(gè)非常重大的問(wèn)題。電化學(xué)技術(shù)由于其快速便捷的特點(diǎn),可以實(shí)現(xiàn)對(duì)生物系統(tǒng)中快速胞吐釋放過(guò)程的實(shí)時(shí)定量分析[17,18],大幅度提高疾病早期檢測(cè)的能力,其中微電極電化學(xué)能夠在實(shí)現(xiàn)單細(xì)胞監(jiān)測(cè)的基礎(chǔ)上提升檢測(cè)的靈敏度、特異性以及抗干擾能力。但是,由于胞吐囊泡通常比較?。ㄖ睆揭话銥?30—100 nm)且聚集狀態(tài)不固定,亟需一種更高分辨率的技術(shù)來(lái)優(yōu)化檢測(cè)效率與分辨率之間的關(guān)系。在這方面,納米電化學(xué)技術(shù)的出現(xiàn)為納米尺度囊泡的傳感檢測(cè)帶來(lái)了新機(jī)遇,納米電化學(xué)技術(shù)與生物傳感技術(shù)的有機(jī)結(jié)合,可以在深入研究納米尺度囊泡碰撞作用機(jī)制的基礎(chǔ)上,針對(duì)生物傳感領(lǐng)域面臨的挑戰(zhàn)性問(wèn)題,達(dá)到單囊泡、單分子水平的分析,實(shí)現(xiàn)高靈敏度、高特異性以及高時(shí)空分辨率的檢測(cè)。

        1 微電極監(jiān)測(cè)機(jī)理

        信息以極快的速度通過(guò)神經(jīng)突觸進(jìn)行傳輸[19],大多數(shù)突觸的傳遞時(shí)間雖然只有幾毫秒,但是這個(gè)速度對(duì)于大腦的整體運(yùn)作至關(guān)重要。當(dāng)動(dòng)作電位沿軸突末梢傳導(dǎo)時(shí),它會(huì)使神經(jīng)末梢去極化并打開突觸前膜的 Ca2+通道,Ca2+內(nèi)流后 1 ms 內(nèi)觸發(fā)神經(jīng)遞質(zhì)釋放。

        突觸前端的神經(jīng)遞質(zhì)釋放是膜介導(dǎo)的,突觸前端內(nèi)部充滿囊泡,尺寸不等(30—100 nm),每個(gè)囊泡中包含高濃度的神經(jīng)遞質(zhì)。當(dāng) Ca2+誘發(fā)囊泡膜與突觸前端細(xì)胞膜的特異性區(qū)域(俗稱活性區(qū)域)快速融合的同時(shí),釋放發(fā)生(圖 1)?;钚詤^(qū)域通常位于突觸后端包含神經(jīng)遞質(zhì)受體較為密集方位的對(duì)面區(qū)域。囊泡在整個(gè)突觸前端的膜運(yùn)輸循環(huán)過(guò)程包括:(1)突觸前端循環(huán)囊泡形成,以及填充神經(jīng)遞質(zhì)(NT);(2)囊泡運(yùn)輸?shù)浇咏挥|前端細(xì)胞膜的位置,并在此聚集等待胞吐發(fā)生;(3)在囊泡膜上的蛋白以及細(xì)胞膜活性區(qū)域蛋白的共同作用下,囊泡??坎⒈豢刂圃卺尫呕钚詤^(qū)域;(4)囊泡處于待融合階段;(5)Ca2+引發(fā)融合孔打開,神經(jīng)遞質(zhì)釋放。胞吐過(guò)程中,囊泡存在不同的釋放方式,包括:囊泡完全與細(xì)胞膜融合的全釋放模式,融合孔閃爍開關(guān)導(dǎo)致的“kiss and stay”(部分融合且停留)模式,以及依賴于網(wǎng)格蛋白的“kiss and run”(部分融合即離開)模式[20-25]。

        圖1 突觸部位囊泡釋放以及循環(huán)圖[25,36](a)囊泡從突觸前端運(yùn)輸至突觸間隙產(chǎn)生釋放的過(guò)程;(b)神經(jīng)細(xì)胞突觸間隙中胞吐釋放的神經(jīng)遞質(zhì)分子數(shù)統(tǒng)計(jì)結(jié)果

        神經(jīng)遞質(zhì)釋放過(guò)程包含了復(fù)雜的物理化學(xué)過(guò)程[26-28],亦有不同檢測(cè)方法。本文針對(duì)不同的胞吐釋放模式,以碳纖維納米電極對(duì)細(xì)胞胞吐的實(shí)時(shí)監(jiān)測(cè)為例進(jìn)行介紹。理想狀態(tài)下,外界對(duì)單細(xì)胞某個(gè)部位施加刺激,使細(xì)胞表面活性區(qū)域的囊泡發(fā)生釋放,囊泡中的分子碰撞到位于細(xì)胞表面的電極界面,在一定氧化電壓的作用下失去電子發(fā)生氧化。同時(shí),電化學(xué)設(shè)備將這種失電子行為轉(zhuǎn)化為電信號(hào)輸出。在細(xì)胞內(nèi)部的監(jiān)測(cè)中,電極表面存在一些羧基官能團(tuán),由于靜電吸引作用,這些羧基官能團(tuán)容易與親水性的囊泡發(fā)生碰撞,導(dǎo)致囊泡破裂同時(shí)釋放出其內(nèi)部的分子,而這些分子在電極表面發(fā)生氧化[29-31]。

        因此,碳纖維納米電極在納米囊泡監(jiān)測(cè)方面的應(yīng)用,不僅克服了電極與細(xì)胞內(nèi)蛋白之間的非特異性吸附,同時(shí)也提高了檢測(cè)的分辨率和靈敏度。神經(jīng)細(xì)胞內(nèi)部囊泡中包含各種不同類型的神經(jīng)遞質(zhì),包括多巴胺、羥色胺、腎上腺素、去腎上腺素等,嗜鉻細(xì)胞中囊泡主要包含多巴胺,而巨噬細(xì)胞中則包含一些活性氧以及活性氮成分[32],這些分子都很容易發(fā)生氧化。在監(jiān)測(cè)過(guò)程中,只有超過(guò)監(jiān)測(cè)對(duì)象的氧化電壓才能將其氧化,并產(chǎn)生電化學(xué)信號(hào)。通過(guò)調(diào)整電極所加電壓或者細(xì)胞類型來(lái)控制可檢測(cè)的分子種類,通過(guò)在電極表面修飾特定分子增加電極與待測(cè)對(duì)象之間的相互作用力[33-38],均可使檢測(cè)具有更高的靈敏度、特異性以及更低的檢測(cè)限。

        影響胞吐釋放的因素也是多種多樣的,研究人員通常對(duì)細(xì)胞作一系列處理來(lái)控制細(xì)胞釋放分子的數(shù)量或釋放事件的多少。比如:利血平可以使囊泡釋放分子數(shù)減小[39];L-DOPA作為多巴胺的前體,可以增加釋放的分子數(shù);順鉑在不同濃度下對(duì)細(xì)胞釋放的影響有顯著差別,高濃度抑制,低濃度促進(jìn),這可能與細(xì)胞內(nèi)的某種蛋白作用有關(guān)[40];鋅離子不會(huì)改變釋放分子數(shù),但是它會(huì)使融合孔減小,改變釋放動(dòng)力學(xué)的速度,并引起更高的釋放比例[41]。單個(gè)囊泡的電化學(xué)信號(hào)非常微弱,在皮安(pA)級(jí)別,很容易導(dǎo)致信號(hào)湮沒(méi),因此在監(jiān)測(cè)過(guò)程中合理選用處理細(xì)胞的方法對(duì)于細(xì)胞實(shí)時(shí)監(jiān)測(cè)來(lái)說(shuō)同樣重要。

        2 基于高時(shí)空分辨率的囊泡檢測(cè)方法

        關(guān)于細(xì)胞的實(shí)時(shí)監(jiān)測(cè),現(xiàn)在最普遍的方法是成像,但是成像方法雖然比較直觀,也存在諸多挑戰(zhàn)[42-47],例如:細(xì)胞胞吐釋放神經(jīng)遞質(zhì)的實(shí)時(shí)監(jiān)測(cè),成像技術(shù)在時(shí)間以及空間分辨率上還存在一定的局限性[48]。對(duì)于單細(xì)胞而言,特別是在神經(jīng)科學(xué)中神經(jīng)遞質(zhì)的釋放研究中,微電極的應(yīng)用已經(jīng)相對(duì)成熟。微電極相對(duì)于宏觀尺寸電極而言具有更小的尖端尺寸以及更高的靈敏度,非常適合單細(xì)胞研究,現(xiàn)在已經(jīng)成功應(yīng)用于檢測(cè)蛋白[49]、小分子[50]以及一些離子[41]和病毒等[51-54]。Wightman 等最先開展通過(guò)電化學(xué)方式進(jìn)行細(xì)胞胞吐的實(shí)時(shí)監(jiān)測(cè)工作,通過(guò)制備直徑為 2 μm 的碳纖維微米電極,監(jiān)測(cè)嗜鉻細(xì)胞表面若干個(gè)微米區(qū)域的胞吐釋放情況[55-58]。后來(lái),越來(lái)越多的研究者針對(duì)不同種類的細(xì)胞以及人工制備的囊泡進(jìn)行檢測(cè)并加以分析。近些年隨著囊泡檢測(cè)工作的不斷進(jìn)行,檢測(cè)對(duì)象也在發(fā)生變化,從最初的單細(xì)胞到單囊泡以及單分子[59-63]。與此同時(shí),檢測(cè)方式也在發(fā)生變化,逐漸影響了檢測(cè)的分辨率以及靈敏度[41,64-66]。

        1.突發(fā)性。事件的發(fā)生是高校師生事前都沒(méi)有預(yù)想到的,其發(fā)生原因、造成的影響、發(fā)生地點(diǎn)等較為特殊。對(duì)于該類型事件通常在前期需要經(jīng)過(guò)較長(zhǎng)時(shí)間的醞釀,只是被人們所忽視,然后由較小的事件轉(zhuǎn)變?yōu)閲?yán)重事件,在某一因素作用下突然爆發(fā)出來(lái),使得學(xué)校教師和管理者感到措手不及。

        2.1 微米電極

        微米電極尺寸在微米級(jí)別,尖端足夠覆蓋整個(gè)細(xì)胞體,具有高的信噪比,可以測(cè)量非常小的電流強(qiáng)度并保證監(jiān)測(cè)的效率。在細(xì)胞以及活體檢測(cè)中所用的微米電極主要有金屬電極和碳纖維電極兩種,其中碳纖維微米電極是微電極中非常重要的一個(gè)組成部分,自從應(yīng)用以來(lái),微電極伏安法就被認(rèn)為是研究大腦中神經(jīng)遞質(zhì)傳遞的一項(xiàng)不可或缺的技術(shù),一直在生物學(xué)領(lǐng)域發(fā)揮重要作用(圖 2)[49,50,52,53,67,68]。通過(guò)碳纖維微米電極,可以從單細(xì)胞水平對(duì)神經(jīng)遞質(zhì)的釋放進(jìn)行監(jiān)測(cè)[69-75]。

        圖2 微電極監(jiān)測(cè)的相關(guān)應(yīng)用(a)微流控芯片監(jiān)測(cè)細(xì)胞團(tuán)簇受刺激后的釋放[67];(b)鍍金的碳纖維微電極檢測(cè)小鼠腦中的神經(jīng)遞質(zhì)[68];(c)微電極監(jiān)測(cè)液滴中的電化學(xué)活性物質(zhì)[52];(d)微電極監(jiān)測(cè)病毒顆粒[53];(e)微電極監(jiān)測(cè)細(xì)胞內(nèi)部的低拷貝數(shù)蛋白[49];(f)微電極監(jiān)測(cè)單細(xì)胞中的葡萄糖[50]

        通過(guò)微電極電化學(xué)檢測(cè)單細(xì)胞釋放事件是非常強(qiáng)有力的方法,它可以實(shí)時(shí)監(jiān)測(cè)分子釋放過(guò)程并且提供囊泡釋放事件的動(dòng)力學(xué)信息,實(shí)現(xiàn)在單細(xì)胞水平的定量分析。傳統(tǒng)微米電極使用環(huán)氧樹脂封閉玻璃管尖端,然后用膠體石墨回填玻璃管,該方法存在 4 個(gè)缺點(diǎn):(1)會(huì)導(dǎo)致玻璃/碳纖維的接觸面都存在環(huán)氧樹脂,嚴(yán)重影響了電極性能;(2)不可避免的封閉不完全甚至泄露,會(huì)導(dǎo)致低信噪比、低靈敏度、低電極壽命以及液體污染;(3)不能保證膠體石墨的填充成功率,電極制作成品率比較低;(4)環(huán)氧樹脂可以溶解在有機(jī)溶劑中,因而不能在有機(jī)溶劑中監(jiān)測(cè)或者進(jìn)行特殊修飾。為了克服這些缺點(diǎn),Strein 和 Ewing[76]、Malinski 和 Taha[77]用火焰刻蝕法制備電極。但是,電極尖端仍然存在環(huán)氧樹脂,增加了刻蝕難度并且難以調(diào)控刻蝕進(jìn)程,電極表面不夠平滑。在此方法的基礎(chǔ)上,黃衛(wèi)華課題組[74]報(bào)道了一種新的改進(jìn)方式,其中沒(méi)有環(huán)氧樹脂對(duì)尖端的處理,通過(guò)火焰熔融將玻璃管和碳纖維融合在一起,形成了比較高效的封閉,這樣制備的電極尖端比較平滑,具有很好的電化學(xué)特性,電化學(xué)檢測(cè)中檢測(cè)靈敏度高,主要應(yīng)用于監(jiān)測(cè)細(xì)胞胞吐釋放神經(jīng)遞質(zhì)以及活體研究。

        細(xì)胞釋放有很多種模式,要正確判斷當(dāng)前的模式種類,需要分別對(duì)細(xì)胞內(nèi)部囊泡以及細(xì)胞胞吐釋放的囊泡進(jìn)行監(jiān)測(cè)。對(duì)細(xì)胞內(nèi)囊泡中分子的準(zhǔn)確定量,最常用的方法是將細(xì)胞裂解后進(jìn)行檢測(cè)[73]。細(xì)胞裂解釋放和超速離心分離出囊泡,然后通過(guò)微米電極進(jìn)行電化學(xué)檢測(cè),檢測(cè)結(jié)果可以得到若干個(gè)信號(hào)峰,而其中每個(gè)峰都代表一個(gè)囊泡的碰撞破裂后的氧化事件。很多研究都發(fā)現(xiàn),胞吐過(guò)程中,囊泡僅僅釋放一部分神經(jīng)遞質(zhì)[78],剩余未釋放部分以另一種形式循環(huán)或者繼續(xù)釋放,而神經(jīng)細(xì)胞中大多為“kiss and run”模式。

        微電極在活體檢測(cè)中的應(yīng)用已經(jīng)有幾十年的歷史,將碳纖維微米電極或者鍍金的微電極通過(guò)顯微操控技術(shù)置于小鼠大腦中進(jìn)行實(shí)驗(yàn),可以在整個(gè)時(shí)間范圍內(nèi)進(jìn)行高靈敏檢測(cè)。這種設(shè)計(jì)被廣泛應(yīng)用于神經(jīng)生物學(xué)中,尤其是紋狀體中多巴胺的檢測(cè)。最初 Adams 研究發(fā)現(xiàn)活體電化學(xué)分析技術(shù)非常適用于實(shí)時(shí)監(jiān)測(cè)大腦中的神經(jīng)遞質(zhì)[71]。后來(lái),很多研究人員也對(duì)大腦中多種神經(jīng)遞質(zhì)(羥色胺、多巴胺等)進(jìn)行檢測(cè)并分析[68,79-85]。

        2.2 納米電極

        化學(xué)突觸之間信息的正常傳遞對(duì)于腦功能運(yùn)行具有非常重要的作用。突觸是由突觸前端、突觸后端以及之間的間隙(20—50 nm)組成。納米尺度的間隙使得實(shí)時(shí)監(jiān)測(cè)細(xì)胞之間神經(jīng)遞質(zhì)的突觸釋放成為巨大的挑戰(zhàn)。在過(guò)去很多年里,人們很少關(guān)注到電極尺寸和電極表面的幾何形狀對(duì)電化學(xué)過(guò)程帶來(lái)的影響,以及尺寸和檢測(cè)信號(hào)之間的直接性關(guān)系。細(xì)胞大小通常在幾微米到幾十微米之間,每個(gè)細(xì)胞中包含上千個(gè)納米級(jí)別的囊泡[2,5,86-88],每個(gè)囊泡中儲(chǔ)存著大量的信息傳遞分子。傳統(tǒng)的微米電極可以反映整個(gè)細(xì)胞表面一部分區(qū)域的胞吐特性,但是并不適用于區(qū)分每一個(gè)單獨(dú)釋放位點(diǎn)的性質(zhì)[75],也不能探測(cè)納米尺寸突觸間隙之間神經(jīng)遞質(zhì)釋放的機(jī)理(圖 3a)[89]。納米電極的發(fā)展為高分辨率的檢測(cè)帶來(lái)了機(jī)遇,很多報(bào)道[90-92]已經(jīng)指出了小尺寸的納米電極在神經(jīng)科學(xué)以及生命科學(xué)中的應(yīng)用潛力。

        胞吐實(shí)時(shí)監(jiān)測(cè)過(guò)程中,納米電極與細(xì)胞之間的距離控制在 5 μm 以內(nèi),這樣能夠最小化擴(kuò)散產(chǎn)生的影響。通過(guò)人工模擬細(xì)胞以及囊泡[93,94]發(fā)現(xiàn),細(xì)胞膜與電極之間的距離會(huì)影響單囊泡釋放的瞬時(shí)電流(圖 3b)[95]。假如囊泡尺寸比電極小且囊泡融合區(qū)域沒(méi)有靠近電極表面邊緣區(qū)域,則我們假設(shè)的定量氧化行為完全有效,但是現(xiàn)實(shí)監(jiān)測(cè)中往往沒(méi)有如此精確。監(jiān)測(cè)過(guò)程中,神經(jīng)遞質(zhì)通過(guò)流動(dòng)和擴(kuò)散到達(dá)膜外區(qū)域,它們從釋放位點(diǎn)釋放并呈半球幾何形狀稀釋并碰撞氧化。在此過(guò)程中,大電極可以有效封阻分子在 X 軸方向上面的傳遞,只能在膜和電極之間移動(dòng),檢測(cè)效率非常高[95-97]。但是,電極增加會(huì)大大降低電極的時(shí)間和空間分辨率,以至于難以區(qū)分單一囊泡和多個(gè)囊泡聚集體的情況。因此,選擇一種與囊泡相匹配的電極,并調(diào)控好檢測(cè)效率與時(shí)空分辨率之間的關(guān)系,在細(xì)胞監(jiān)測(cè)中是重要且具有挑戰(zhàn)性的問(wèn)題。

        利用碳纖維納米電極進(jìn)行實(shí)時(shí)監(jiān)測(cè)可以得到囊泡中分子的定量化信息以及動(dòng)力學(xué)參數(shù)(圖3c)[90,92]。一個(gè)正常的信號(hào)峰是由峰腳、上升階段和下降階段組成。峰腳是囊泡與細(xì)胞膜開始融合階段,此時(shí)融合孔比較小,因此釋放速度比較慢;上升階段是融合孔張開,大規(guī)模釋放神經(jīng)遞質(zhì)并氧化的過(guò)程,初期因?yàn)槟遗葜羞f質(zhì)含量比較高,通常上升階段比較陡峭;下降階段是囊泡監(jiān)測(cè)后期,分子濃度降低,氧化進(jìn)程變慢,表現(xiàn)為比較平緩和更延展的曲線形式,通過(guò)對(duì)信號(hào)峰進(jìn)行積分以及數(shù)學(xué)運(yùn)算可以得到囊泡尺寸、包裹分子數(shù)以及分子濃度信息[89,98-100]。半峰寬為峰高一半時(shí)候的峰寬度,表明囊泡從釋放初始階段到釋放完畢速率的大小,是釋放動(dòng)力學(xué)的體現(xiàn),半峰寬的大小與監(jiān)測(cè)囊泡大小及內(nèi)部包裹神經(jīng)遞質(zhì)的量直接相關(guān)。

        圖3 納米電極在細(xì)胞監(jiān)測(cè)中的應(yīng)用(a)不同的細(xì)胞胞吐釋放模式猜想[89];(b)模擬細(xì)胞和囊泡體系,探索電極尺寸與信號(hào)之間的關(guān)系[95];(c)納米電極監(jiān)測(cè)神經(jīng)細(xì)胞突觸部位胞吐釋放的神經(jīng)遞質(zhì)以及動(dòng)作電位,得到其釋放的定量信息以及動(dòng)力學(xué)參數(shù)[90];(d)微米電極與納米電極監(jiān)測(cè)細(xì)胞覆蓋位點(diǎn)對(duì)比[75];(e)納米電極在細(xì)胞外部監(jiān)測(cè)以及穿透細(xì)胞進(jìn)行內(nèi)部監(jiān)測(cè)[41]

        納米電極研究表明,細(xì)胞表面存在活性區(qū)域和非活性區(qū)域,而其中大部分表面都是非活性的[74,75]。同時(shí)在活性區(qū)域還存在特殊活性位點(diǎn),同一個(gè)位點(diǎn)可能存在多個(gè)囊泡連續(xù)釋放的情況,只有納米電極恰好處于活性位點(diǎn)位置時(shí)才能監(jiān)測(cè)到信號(hào)(圖 3d)。黃衛(wèi)華課題組首次報(bào)道了通過(guò)納米電化學(xué)方法,利用納米電極在同一釋放位點(diǎn)監(jiān)測(cè)到多個(gè)囊泡釋放出多巴胺的情況[75],這主要?dú)w因于納米電極的高分辨率,可以區(qū)分多個(gè)囊泡連續(xù)釋放。后來(lái)他們又對(duì)神經(jīng)細(xì)胞之間連接部位的神經(jīng)遞質(zhì)釋放進(jìn)行監(jiān)測(cè)并分析[92],得到囊泡中分子含量以及釋放動(dòng)力學(xué)方面的信息。納米電極尖端尺寸只有 100 nm 左右,既滿足了與囊泡之間的匹配性質(zhì),穿透細(xì)胞膜的同時(shí)又不會(huì)對(duì)細(xì)胞造成傷害。因此,納米電極在外部監(jiān)測(cè)的同時(shí),還可以實(shí)現(xiàn)對(duì)細(xì)胞內(nèi)部囊泡的實(shí)時(shí)監(jiān)測(cè)。Majdi 等通過(guò)碳纖維納米電極穿透細(xì)胞膜檢測(cè)了單細(xì)胞內(nèi)部囊泡中的神經(jīng)遞質(zhì)含量[101],并將之與外部監(jiān)測(cè)對(duì)比,發(fā)現(xiàn)胞吐釋放的量確實(shí)少于囊泡中實(shí)際量[102](圖 3e),當(dāng)然胞外擴(kuò)散也占一定的比重。相對(duì)于細(xì)胞裂解的方法,現(xiàn)在可以直接在細(xì)胞環(huán)境中進(jìn)行檢測(cè),這是一種更為準(zhǔn)確和直接的對(duì)細(xì)胞內(nèi)囊泡中分子定量的手段。金屬電極[51,103,104]在納米電極中也占了很大的比重,如施國(guó)躍等[105]用金納米電極(尖端尺寸 3 nm)對(duì)細(xì)胞的胞吐釋放進(jìn)行研究。金電極電子傳輸速率快,檢測(cè)靈敏度高,但是也容易吸附細(xì)胞內(nèi)部的復(fù)雜蛋白,造成污染,嚴(yán)重影響電極壽命。目前,碳纖維納米電極在單細(xì)胞乃至單囊泡檢測(cè)領(lǐng)域仍占有至關(guān)重要的地位。

        2.3 其他聯(lián)用技術(shù)

        納米電極具有很高的空間分辨率以及與胞吐釋放動(dòng)力學(xué)相匹配的毫秒級(jí)別以下的時(shí)間分辨率,但是缺乏一定的直觀性(圖 4a)[73],無(wú)法準(zhǔn)確定位細(xì)胞表面的釋放位點(diǎn);微流控具有很好的控制性能,但是分辨率通常比較低[67,106](圖 2a);全內(nèi)反射熒光顯微鏡(TIRFM)具有一定的空間分辨率,借助熒光可以實(shí)現(xiàn)囊泡釋放位點(diǎn)的追蹤,卻缺乏探索動(dòng)力學(xué)參數(shù)以及定量分析所需要的時(shí)間分辨率,另外其他的一些細(xì)胞監(jiān)測(cè)手段也同樣存在優(yōu)勢(shì)和局限性[107,108]??紤]到這些方法之間的互補(bǔ)性,如果將兩種或兩種以上的技術(shù)聯(lián)用,就能夠更直觀且高分辨率的對(duì)胞吐事件進(jìn)行監(jiān)測(cè)。

        圖4 細(xì)胞內(nèi)部囊泡不同檢測(cè)方法聯(lián)用展示(a)碳纖維微米電極通過(guò)細(xì)胞裂解法檢測(cè)完整囊泡中的分子量[73];(b)全內(nèi)反射熒光顯微鏡(TIRFM)與微流控芯片連用監(jiān)測(cè)囊泡釋放[64];(c)基于等離子體的電化學(xué)阻抗顯微鏡成像[65];(d)掃描電化學(xué)顯微鏡成像[66]

        微流控通量高,通過(guò)設(shè)計(jì)通道寬度,檢測(cè)限可以達(dá)到單細(xì)胞水平;而電化學(xué)檢測(cè)方法靈活性強(qiáng),兩者與碳纖維微電極聯(lián)用,可對(duì)細(xì)胞中裂解的囊泡進(jìn)行快速檢測(cè)。因?yàn)闄z測(cè)過(guò)程中囊泡會(huì)不斷碰撞到電極表面,檢測(cè)效率高[72]。將 TIRFM 與微流控芯片以及電化學(xué)技術(shù)相結(jié)合(圖 4b)[64],可以通過(guò)記錄熒光強(qiáng)度來(lái)觀察囊泡分泌過(guò)程,通過(guò)對(duì)比產(chǎn)生的氧化電流峰的不同對(duì)整個(gè)釋放事件定量,兩者相關(guān)聯(lián)能夠獲得具有高時(shí)空分辨率并且可視化的表征[64]。

        基于等離子體的電化學(xué)阻抗成像技術(shù)[65],將等離子體成像與電化學(xué)阻抗結(jié)合在一起(圖 4c),能夠在不需要標(biāo)記的情況下對(duì)神經(jīng)細(xì)胞在刺激狀態(tài)下的動(dòng)作電位成像。同時(shí),簡(jiǎn)化了樣品準(zhǔn)備時(shí)間,并且排除在神經(jīng)細(xì)胞上面標(biāo)記熒光基團(tuán)對(duì)相關(guān)功能帶來(lái)的不良影響,可以與傳統(tǒng)的膜片鉗以及熒光顯微鏡相媲美。

        掃描電化學(xué)顯微鏡(SECM),是一種掃描探針顯微技術(shù)[66,109,110],利用高分辨率的微電極作為測(cè)量工具(圖 4d),已經(jīng)應(yīng)用于細(xì)胞的新陳代謝、呼吸作用以及細(xì)胞膜對(duì)化學(xué)試劑的滲透作用等研究,并且能夠作用于單個(gè)細(xì)胞。研究過(guò)程中盤狀微電極放置在一個(gè)包含氧化還原物質(zhì)的溶液中,在超過(guò)其氧化電壓的條件下,能夠得到典型的 S 型循環(huán)伏安曲線和穩(wěn)態(tài)電流。電極位于非??拷鼧悠返奈恢?,根據(jù)樣品性質(zhì)的不同分為負(fù)反饋和正反饋,得到微電流減小或增大的曲線。而反饋的程度取決于電極與細(xì)胞之間的距離,可以同時(shí)對(duì)細(xì)胞表面的形態(tài)以及釋放的化學(xué)分子進(jìn)行掃描。

        綜上所述,聯(lián)用技術(shù)可以發(fā)揮多種不同檢測(cè)手段的優(yōu)勢(shì),克服單一技術(shù)的不足,也將是未來(lái)檢測(cè)發(fā)展的一種主流趨勢(shì)。

        3 總結(jié)與展望

        近些年來(lái),人們已經(jīng)發(fā)展了多種檢測(cè)方法,包括微流控、微米電極、納米電極、熒光、高效液相色譜、TIRFM、SECM 等。其中,電化學(xué)方法具有快速、便捷、檢測(cè)效率高以及靈敏度高等特點(diǎn),應(yīng)用最為廣泛。細(xì)胞內(nèi)部囊泡尺寸非常小,隨著技術(shù)的不斷進(jìn)步,單純熒光的方法已經(jīng)不足以滿足研究的需求,納米電極的出現(xiàn)為囊泡的高時(shí)空分辨率傳感檢測(cè)創(chuàng)造了條件。納米電極尖端尺寸非常小,并且能夠可控的進(jìn)行調(diào)整,可以與囊泡達(dá)成很好的匹配性,在不損失分辨率的狀態(tài)下盡量保持高的檢測(cè)效率,實(shí)現(xiàn)真正意義上的單囊泡檢測(cè)。同時(shí),納米電化學(xué)技術(shù)還可以提供較為詳細(xì)的分子數(shù)、濃度以及尺寸等定量化信息,通過(guò)調(diào)整電極表面所加電壓,來(lái)調(diào)控檢測(cè)的分子種類。

        基于高時(shí)空分辨率的實(shí)時(shí)監(jiān)測(cè)以及可視化的需求,監(jiān)測(cè)方式不再只是局限于單一的某種技術(shù),迫切需要發(fā)展多種技術(shù)聯(lián)用方法,在滿足分辨率的同時(shí)又能直觀觀察到目標(biāo)所在的具體方位。為了能夠適應(yīng)當(dāng)前需求,未來(lái)繼續(xù)發(fā)展高分辨率的成像技術(shù),并且在納米電極制備方面進(jìn)行更精確的調(diào)整,實(shí)現(xiàn)檢測(cè)過(guò)程可視化,檢測(cè)結(jié)果定量化,并能將其一一對(duì)應(yīng)。

        1 Borgonovo B, Cocucci E, Racchetti G, et al. Regulated exocytosis:a novel, widely expressed system. Nature Cell Biology, 2002,4(12): 955-962.

        2 van der Vlist E J, Nolte H E, Stoorvogel W, et al. Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nature Protocals, 2012, 7(7): 1311-1326.

        3 Kavalali E T. The mechanisms and functions of spontaneous neurotransmitter release. Nature Review Neuroscience, 2015,16(1): 5-16.

        4 Sezgin E, Levental I, Mayor S, et al. The mystery of membrane organization: composition, regulation and roles of lipid rafts.Nature Review Molecular Cell Biology, 2017, 18(6): 361-374.

        5 Thery C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nature Review Immunology, 2009, 9(8):581-593.

        6 Grover A, Schmidt B F, Salter R D, et al. Genetically encoded pH sensor for tracking surface proteins through endocytosis.Angewandte Chemie International Edition, 2012, 51(20): 4838-4842.

        7 Salem N, Faúndez V, Horng J T, et al. A v-SNARE participates in synaptic vesicle formation mediated by the AP3 adaptor complex.Nature Neuroscience, 1998, 1(7): 551-556.

        8 Sprong H, Sluijs P V, Meer G V. How proteins move lipids and lipids move proteins. Nature Reviews Molecular Cell Biology,2001, 2(7): 504-513.

        9 Zhou Q, Lai Y, Bacaj T, et al. Architecture of the synaptotagmin— SNARE machinery for neuronal exocytosis. Nature, 2015,525(7567): 62-67.

        10 Fusco G, Pape T, Stephens A D, et al. Structural basis of synaptic vesicle assembly promoted by α-synuclein. Nature Communications, 2017, 7: 12563.

        11 Roetne R J, Jacobsen H. Alzheimer’s disease: from pathology to therapeutic approaches. Angewandte Chemie International Edition,2009, 48(17): 3030-3059.

        12 Selkoe D J. Showing transmitters the door: synucleins accelerate vesicle release. Nature Neuroscience, 2017, 20(5): 629-631.

        13 Boulanger C M, Loyer X, Rautou P E, et al. Extracellular vesicles in coronary artery disease. Nature Review Cardiology, 2017,14(5): 259-272.

        14 Buzas E I, Gyorgy B, Nagy G, et al. Emerging role of extracellular vesicles in inflammatory diseases. Nature Review Rheumatology,2014, 10(6): 356-364.

        15 Kolter T, Sandhoff K. Sphingolipids - Their metabolic pathways and the pathobiochemistry of neurodegenerative diseases.Angewandte Chemie International Edition, 2010, 38(11): 1532-1568.

        16 Zhou L J, McInnes J, Wierda K, et al. Tau association with synaptic vesicles causes presynaptic dysfunction. Nature Communications,2017, 8: 15295.

        17 Najafinobar N, Mellander L J, Kurczy M E, et al. Cholesterol alters the dynamics of release in protein independent cell models for exocytosis. Scientific Reports, 2016, 6: 33702.

        18 Mellander L J, Kurczy M E, Najafinobar N, et al. Two modes of exocytosis in an artificial cell. Scientific Reports, 2014, 4: 3847.

        19 Rohrbough J, Broadie K. Lipid regulation of the synaptic vesicle cycle. Nature Review Neuroscience, 2005, 6(2): 139-150.

        20 Bacia K. Intracellular transport mechanisms: Nobel Prize for Medicine 2013. Angewandte Chemie International Edition, 2013,52(48): 12486-12488.

        21 Fernandez T F, Grover L M, Stephenson B A, et al. Vesicles in nature and the laboratory: elucidation of their biological properties and synthesis of increasingly complex synthetic vesicles.Angewandte Chemie International Edition, 2017, 56(12): 3142-3160.

        22 Flagmeier P, De S, Wirthensohn D C, et al. Ultrasensitive measurement of Ca2+influx into lipid vesicles induced by protein aggregates. Angewandte Chemie International Edition, 2017,56(27): 7750-7754.

        23 McMahon H T, Boucrot E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nature Review Molecular Cell Biology, 2011, 12(8): 517-533.

        24 Rothman J E. The principle of membrane fusion in the cell (Nobel Lecture). Angewandte Chemie International Edition, 2014, 53(47):12676-12694.

        25 Sudhof T C. The molecular machinery of neurotransmitter release(Nobel Lecture). Angewandte Chemie International Edition, 2014,53(47): 12696-12717.

        26 Ahmed W W, Saif T A. Active transport of vesicles in neurons is modulated by mechanical tension. Scientific Reports, 2014, 4:4481.

        27 Gruenberg J. The endocytic pathway: a mosaic of domains. Nature Reviews Molecular Cell Biology, 2001, 2(10): 721-730.

        28 Thery C, Zitvogel L, Amigorena S. Exosomes: composition,biogenesis and function. Nature Review Immunology, 2002, 2(8):569-579.

        29 Bath B D, Michael D J, Trafton B J, et al. Subsecond adsorption and desorption of dopamine at carbon-fiber microelectrodes.Analytical Chemistry, 2000, 72(24): 5994-6002.

        30 Runnels P L, Joseph J D, Logman M J, et al. Effect of pH and surface functionalities on the cyclic voltammetric responses of carbon-fiber microelectrodes. Analytical Chemistry, 1999, 71(14):2782-2789.

        31 Cahill P S, Walker Q D, Finnegan J M, et al. Microelectrodes for the measurement of catecholamines in biological systems.Analytical Chemistry, 1996, 68(18): 3180-3186.

        32 Wang Y, Amatore C. Nanoelectrodes for determination of reactive oxygen and nitrogen species inside murine macrophages. PNAS,2012, 109(29): 11534-11539.

        33 Chen R S, Huang W H, Tong H, et al. Carbon fiber nanoelectrodes modified by single-walled carbon nanotubes. Analytical Chemistry,2003, 75(22): 6341-6345.

        34 Huang W H, Cheng W, Zhang Z, et al. Transport, location, and quantal release monitoring of single cells on a microfluidic device.Analytical Chemistry, 2004, 76(2): 483-488.

        35 Wang J H, Huang W H, Liu Y M, et al. Capillary electrophoresis immunoassay chemiluminescence detection of zeptomoles of bone morphogenic protein-2 in rat vascular smooth muscle cells.Analytical Chemistry, 2004, 76(18): 5393-5398.

        36 Bath B D , Martin H B, Wightman R M, et al. Dopamine adsorption at surface modified carbon-fiber electrodes. Langmuir,2001, 17(22): 7032-7039.

        37 Hermans A, Seipel A T, Miller C E, et al. Carbon-fiber microelectrodes modified with 4-sulfobenzene have increased sensitivity and selectivity for catecholamines. Langmuir the Acs Journal of Surfaces & Colloids, 2006, 22(5): 1964-1969.

        38 Hashemi P, Walsh P L, Guillot T S, et al. Chronically implanted,nafion-coated Ag/AgCl reference electrodes for neurochemical applications. ACS Chemical Neuroscience, 2011, 2(11): 658-666.

        39 Omiatek D M, Dong Y, Heien M L, et al. Only a fraction of quantal content is released during exocytosis as revealed by electrochemical cytometry of secretory vesicles. ACS chemical neuroscience, 2010, 1(3): 234-245.

        40 Li X C, Dunevall J, Ewing A G. Using single-cell amperometry to reveal how cisplatin treatment modulates the release of catecholamine transmitters during exocytosis. Angewandte Chemie International Edition, 2016, 55(31): 9041-9044.

        41 Ren L, Pour M D, Majdi S, et al. Zinc regulates chemicaltransmitter storage in nanometer vesicles and exocytosis dynamics as measured by amperometry. Angewandte Chemie International Edition, 2017, 56(18): 4970-4975.

        42 Spicer C D, Triemer T, Davis B G. Palladium-mediated cellsurface labeling. Journal of the American Chemical Society, 2012,134(2): 800-803.

        43 Tokunaga T, Namiki S, Yamada K, et al. Cell surface-anchored fluorescent aptamer sensor enables imaging of chemical transmitter dynamics. Journal of the American Chemical Society,2012, 134(23): 9561-9564.

        44 Liu Y, Zhang X, Chen W T, et al. Fluorescence turn-on folding sensor to monitor proteome stress in live cells. Journal of the American Chemical Society, 2015, 137(35): 11303-11311.

        45 Qiu L P, Zhang T, Jiang J H, et al. Cell membraneanchored biosensors for real-time monitoring of the cellular microenvironment. Journal of the American Chemical Society,2014, 136(38): 13090-13093.

        46 Porterfield W B, Jones K A, McCutcheon D C, et al. A “Caged”luciferin for imaging cell-cell contacts. Journal of the American Chemical Society, 2015, 137(27): 8656-8659.

        47 Sasmal D K, Yadav R, Lu H P. Single-molecule patch-clamp FRET anisotropy microscopy studies of NMDA receptor ion channel activation and deactivation under agonist ligand binding in living cells. Journal of the American Chemical Society, 2016, 138(28):8789-8801.

        48 Kruss S, Salem D P, Vukovic L, et al. High-resolution imaging of cellular dopamine efflux using a fluorescent nanosensor array.PNAS, 2017, 114(8): 1789-1794.

        49 Liu J, Yin D Y, Wang S S, et al. Probing low-copy-number proteins in a single living cell. Angewandte Chemie International Edition,2016, 55(42): 13215-13218.

        50 Pan R R, Xu M C, Jiang D C, et al. Nanokit for single-cell electrochemical analyses. PNAS, 2016, 113(41): 11436-11440.

        51 Park J H, Thorgaard S N, Zhang B, et al. Single particle detection by area amplification: single wall carbon nanotube attachment to a nanoelectrode. Journal of the American Chemical Society, 2013,135(14): 5258-5261.

        52 Dick J E, Renault C, Kim B K, et al. Simultaneous detection of single attoliter droplet collisions by electrochemical and electrogenerated chemiluminescent responses. Angewandte Chemie International Edition, 2014, 53(44): 11859-11862.

        53 Dick J E, Hilterbrand A T, Boika A, et al. Electrochemical detection of a single cytomegalovirus at an ultramicroelectrode and its antibody anchoring. PNAS, 2015, 112(17): 5303-5308.

        54 Lebegue E, Anderson C M, Dick J E, et al. Electrochemical detection of single phospholipid vesicle collisions at a Pt ultramicroelectrode. Langmuir, 2015, 31(42): 11734-11739.

        55 Troyer K P, Wightman R M. Temporal separation of vesicle release from vesicle fusion during exocytosis. Journal of Biological Chemistry, 2002, 277(32): 29101-29107.

        56 Troyer K P, Wightman R M. Dopamine Transport into a Single Cell in a Picoliter Vial. Analytical Chemistry, 2002, 74(20): 5370-5375.

        57 Hochstetler S E, Puopolo M, Gustincich S, et al. Real-time amperometric measurements of zeptomole quantities of dopamine released from neurons. Analytical Chemistry, 2000, 72(3): 489-496.

        58 Xin Q, Wightman R M. Simultaneous detection of catecholamine exocytosis and Ca2+release from single bovine chromaffin cells using a dual microsensor. Analytical Chemistry, 1998, 70(9):1677-1681.

        59 Wang P, Ge Z L, Pei H, et al. Quartz crystal microbalance studies on surface-initiated DNA hybridization chain reaction. Acta Chimica Sinica, 2012, 70(20): 2127-2132.

        60 Liu B, Ouyang X, Chao J, et al. Self-assembly of DNA origami using rolling circle amplification based DNA nanoribbons. Chinese Journal of Chemistry, 2014, 32(2): 137-141.

        61 Justin G J. Single entity electrochemistry progresses to cell counting. Angewandte Chemie International Edition, 2016, 55(42):12956-12958.

        62 Sepunaru L, Sokolov S V, Holter J, et al. Electrochemical red blood cell counting: one at a time. Angewandte Chemie International Edition, 2016, 55(33): 9768-9771.

        63 Laforge F O, Carpino J, Rotenberg S A, et al. Electrochemical attosyringe. PNAS, 2007, 104(29): 11895-11900.

        64 Liu X Q, Savy A, Maurin S, et al. A dual functional electroactive and fluorescent probe for coupled measurements of vesicular exocytosis with high spatial and temporal resolution. Angewandte Chemie International Edition, 2017, 56(9): 2366-2370.

        65 Liu X W, Yang Y Z, Wang W, et al. Plasmonic-based electrochemical impedance imaging of electrical activities in single cells. Angewandte Chemie International Edition, 2017,56(30): 8855-8859.

        66 Takahashi Y, Shevchuk A I, Novak P, et al. Topographical and electrochemical nanoscale imaging of living cells using voltageswitching mode scanning electrochemical microscopy. PNAS,2012, 109(29): 11540-11545.

        67 Abe H, Ino K, Li C, et al. Electrochemical imaging of dopamine release from three-dimensional-cultured PC12 cells using large-scale integration-based amperometric sensors. Analytical Chemistry, 2015, 87(12): 6364-6370.

        68 Dong H, Zhang L M, Liu W, et al. Label-free electrochemical biosensor for monitoring of chloride ion in an animal model of Alzhemier’s disease. ACS Chemical Neuroscience, 2017, 8(2):339-346.

        69 Herr N R, Belle A M, Daniel K B, et al. Probing presynaptic regulation of extracellular dopamine with iontophoresis. ACS Chemical Neuroscience, 2010, 1(9): 627-638.

        70 Kile B M, Walsh P L, McElligott Z A, et al. Optimizing the temporal resolution of fast-scan cyclic voltammetry. Chemical Neuroscience, 2012, 3(4): 285-292.

        71 Rice M E, Oke A F, Bradberry C W, et al. Simultaneous voltammetric and chemical monitoring of dopamine release in situ. Brain Research, 1985, 340(1): 151-155

        72 Omiatek D M, Bressler A J, Cans A S, et al. The real catecholamine content of secretory vesicles in the CNS revealed by electrochemical cytometry. Scientific Reports, 2012, 3(3):1447.

        73 Dunevall J, Fathali H, Najafinobar N, et al. Characterizing the catecholamine content of single mammalian vesicles by collisionadsorption events at an electrode. Journal of the American Chemical Society, 2015, 137(13): 4344-4346.

        74 Huang W H, Pang D W, Tong H, et al. A method for the fabrication of low-noise carbon fiber nanoelectrodes. Analytical Chemistry,2001, 73(5): 1048-1052.

        75 Wu W Z, Huang W H, Wang W, et al. Monitoring dopamine release from single living vesicles with nanoelectrodes. Journal of the American Chemical Society, 2005, 127(25): 8914-8915.

        76 Strein T G, Ewing A G. Characterization of submicron-sized carbon electrodes insulated with a phenol-allylphenol copolymer.Analytical Chemistry, 1992, 64(13): 1368-1373.

        77 Malinski T, Taha Z. Nitric oxide release from a single cell measured in situ by a porphyrinic-based microsensor. Nature,1992, 358(6388): 676-678.

        78 Dernick G, Gong L W, Tabares L, et al. Patch amperometry: highresolution measurements of single-vesicle fusion and release.Nature Methods, 2005, 2(9): 699-708.

        79 Hashemi P, Dankoski E C, Petrovic J, et al. Voltammetric detection of 5-hydroxytryptamine release in the rat brain. Analytical Chemistry, 2009, 81(22): 9462.

        80 Hashemi P, Dankoski E C, Wood K M, et al. In vivo electrochemical evidence for simultaneous 5-HT and histamine release in the rat substantia nigra pars reticulata following medial forebrain bundle stimulation. Journal of Neurochemistry, 2011,118(5): 749-759.

        81 Zachek M K, Takmakov P, Moody B, et al. Simultaneous decoupled detection of dopamine and oxygen using pyrolyzed carbon microarrays and fast-scan cyclic voltammetry. Analytical Chemistry, 2009, 81(15): 6258-6265.

        82 Zachek M K, Takmakov P, Park J, et al. Simultaneous monitoring of dopamine concentration at spatially different brain locations in vivo. Biosensors and Bioelectronics, 2010, 25(5): 1179-1185.

        83 Parent K L, Hill D F, Crown L M, et al. Platform to enable combined measurement of dopamine and neural activity.Analytical Chemistry, 2017, 89(5): 2790-2799.

        84 Zhang L M, Liu F L, Sun X M, et al. Engineering carbon nanotube fiber for real-time quantification of ascorbic acid levels in a live rat model of Alzheimer’s disease. Analytical Chemistry, 2017, 89(3):1831-1837.

        85 Rodeberg N T, Sandberg S G, Johnson J A, et al. Hitchhiker’s guide to voltammetry: acute and chronic electrodes for in vivo fast-scan cyclic voltammetry. ACS Chemical Neuroscience, 2017,8(2): 221-234.

        86 Rey S A, Smith C A, Fowler M W, et al. Ultrastructural and functional fate of recycled vesicles in hippocampal synapses.Nature Communications, 2015, 6: 8043.

        87 Giuliana F, Tillmann P, Stephens A D, et al. Structural basis of synaptic vesicle assembly promoted by α-synuclein. Nature Communications, 2016, 7: 12563.

        88 Hinckelmann M V, Virlogeux A, Niehage C, et al. Self-propelling vesicles define glycolysis as the minimal energy machinery for neuronal transport. Nature Communications, 2016, 7: 13233.

        89 Staal R G, Mosharov E V, Sulzer D. Dopamine neurons release transmitter via a flickering fusion pore. Nature Neuroscience,2004, 7(4): 341-346.

        90 Li Y T, Zhang S H, Wang L, et al. Nanoelectrode for amperometric monitoring of individual vesicular exocytosis inside single synapses. Angewandte Chemie International Edition, 2014,53(46): 12456-12460.

        91 Liu J T, Hu L S, Liu Y L, et al. Real-time monitoring of auxin vesicular exocytotic efflux from single plant protoplasts by amperometry at microelectrodes decorated with nanowires.Angewandte Chemie International Edition, 2014, 53(10): 2643-2647.

        92 Li Y T, Zhang S H, Wang X Y, et al. Real-time monitoring of discrete synaptic release events and excitatory potentials within self-reconstructed neuromuscular junctions. Angewandte Chemie International Edition, 2015, 54(32): 9313-9318.

        93 Cheng W, Compton R G. Investigation of single-drugencapsulating liposomes using the nano-impact method.Angewandte Chemie International Edition, 2014, 53(50): 13928-13930.

        94 Najafinobar N, Lovric J, Majdi S, et al. Excited fluorophores enhance the opening of vesicles at electrode surfaces in vesicle electrochemical cytometry. Angewandte Chemie International Edition, 2016, 55(48): 15081-15085.

        95 Cans A S, Wittenberg N, Eves D, et al. Amperometric detection of exocytosis in an artificial synapse. Analytical Chemistry, 2003,75(16): 4168-4175.

        96 Anderson B B, Chen G Y, Gutman D A, et al. Demonstration of two distributions of vesicle radius in the dopamine neuron of Planorbis corneus from electrochemical data. Journal of Neuroscience Methods, 1999, 88(2): 153-161.

        97 Anderson B B, Zerby S E, Ewing A G. Calculation of transmitter concentration in individual PC12 cell vesicles with electrochemical data and a distribution of vesicle size obtained by electron microscopy.Journal of Neuroscience Methods, 1999, 88(2): 163-170.

        98 Wightman R M, Jankowski J A, Kennedy R T, et al. Temporally resolved catecholamine spikes correspond to sigle vesicle release from individual chromaffin cells. PNAS, 1991, 88(23): 10754-10758.

        99 Heinze J. Ultramicroelectrodes in electrochemistry. Angewandte Chemie International Edition, 1993, 32(9): 1268–1288.

        100 Mosharov E V, Sulzer D. Analysis of exocytotic events recorded by amperometry. Nature Methods, 2005, 2(9): 651-658.

        101 Majdi S, Berglund E C, Dunevall J, et al. Electrochemical measurements of optogenetically stimulated quantal amine release from single nerve cell varicosities in Drosophila larvae.Angewandte Chemie International Edition, 2015, 127(46): 13609-13612.

        102 Li X C, Majdi S, Dunevall J, et al. Quantitative measurement of transmitters in individual vesicles in the cytoplasm of single cells with nanotip electrodes. Angewandte Chemie International Edition, 2015, 54(41): 11978-11982.

        103 Jena B K, Percival S J, Zhang B. Au disk nanoelectrode by electrochemical deposition in a nanopore. Analytical Chemistry,2010, 82(15): 6737-6743.

        104 Li Y X, Bergman D, Zhang B. Preparation and electrochemical response of 1-3 nm Pt disk electrodes. Analytical Chemistry, 2009,81(13): 5496-5502.

        105 Liu Y Z, Li M N, Zhang F, et al. Development of Au disk nanoelectrode down to 3 nm in radius for detection of dopamine release from a single cell. Analytical Chemistry, 2015, 87(11):5531-5538.

        106 Gholizadeh A, Shahrokhian S, Iraji zad A, et al. Fabrication of sensitive glutamate biosensor based on vertically aligned CNT nanoelectrode array and investigating the effect of CNTs density on the electrode performance. Analytical Chemistry, 2012, 84(14):5932-5938.

        107 Lu N, Gao A R, Dai P F, et al. The application of silicon nanowire field-effect transistor-based biosensors in molecular diagnosis.Chinese Journal, 2015, 61(4-5): 442-452.

        108 Zhu D, Zuo X L, Fan C H. Fabrication of nanometer-sized gold flower microelectrodes for electrochemical biosensing applications. Scientia Sinica, 2015, 45(11): 1214-1219.

        109 Bergner S, Palatzky P, Wegener J, et al. High-resolution imaging of nanostructured Si/SiO2substrates and cell monolayers using scanning electrochemical microscopy. Electroanalysis, 2011,23(1): 196–200.

        110 Koch J A, Baur M B, Woodall E L, et al. Alternating current scanning electrochemical microscopy with simultaneous fast-scan cyclic voltammetry. Analytical Chemistry, 2012, 84(21): 9537-9543.

        Electrochemical Sensing of Neurotransmitters with High Temporal and Spatial Resolution

        Zhang Yueyue1,2Zuo Xiaolei1Fan Chunhai1
        (1 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;2 University of Chinese Academy of Sciences, Beijing 100049, China)

        Currently, real time monitoring the release of neurotransmitters from living cells with high temporal and spatial resolution remains challenging. In recent years, quantitative analysis of neurotransmitter releasing has been achieved by developing different electrochemical monitoring techniques, and cell release patterns have been investigated. In addition, monitoring with high resolution and sensitivity can be achieved by modifying the electrode surface or regulating the electrode dimensions. The combining of different monitoring techniques can further improve the monitoring capability. This paper reviews the mechanism of electrochemical detection of neurotransmitter, the development of microelectrode and nanoelectrode for neurotransmitter detection, the coupling of electrochemical technology and imaging technology to realize the high temporal and spatial resolution. The paper also provides some outlooks in the future direction. Based on these reviews and future perspectives, taking the advantages of different monitoring techniques, the paper proposes the coupling among the nanoelectrode and imaging technology, as well as other monitoring techniques, aiming at greatly elevating the capability of nanoelectrode in neurotransmitter monitoring.

        neurotransmitter, high temporal and spatial resolution, vesicle release, nanoelectrode, electrochemical

        張?jiān)略?中科院上海應(yīng)用物理所物理生物學(xué)研究室博士研究生,主要研究方向?yàn)榧{米電極的制備、細(xì)胞間神經(jīng)遞質(zhì)的實(shí)時(shí)監(jiān)測(cè)。E-mail: acszyue@163.com

        Zhang Yueyue Ph.D. student at Division of Physical Biology, Shanghai Institute of Applied Physics (SINAP), Chinese Academy of Sciences(CAS). Her research interests cover the preparation of nanoelectrode and their applications in real-time monitoring of neurotransmitters.

        E-mail: acszyue@163.com

        樊春海 中科院上海應(yīng)用物理所研究員、博士生導(dǎo)師,物理生物學(xué)研究室和上海光源國(guó)家科學(xué)中心(籌)生物成像中心主任。主要研究方向?yàn)樯飩鞲信c成像、DNA納米技術(shù)與DNA計(jì)算和生物光子學(xué)。E-mail: fchh@sinap.ac.cn

        Fan Chunhai Professor and Chief of the Division of Physical Biology and the Bioimaging Center at Shanghai Institute of Applied Physics(SINAP), Chinese Academy of Sciences (CAS). He is also the associate editor of ACS Applied Materials & Interfaces, and the editorial board member of several international journals. His research focuses on biosensors and bioimaging, DNA nanotechnology, DNA computing, and biophotonics. E-mail: fchh@sinap.ac.cn

        *資助項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(21422508、314709 60)

        **通訊作者

        修改稿收到日期:2017年12月2日

        猜你喜歡
        囊泡微電極神經(jīng)遞質(zhì)
        槐黃丸對(duì)慢傳輸型便秘大鼠結(jié)腸神經(jīng)遞質(zhì)及SCF/c-kit通路的影響
        快樂(lè)不快樂(lè)神經(jīng)遞質(zhì)說(shuō)了算
        大眾健康(2021年2期)2021-03-09 13:32:23
        聚二乙炔囊泡的制備及其在醫(yī)療檢測(cè)領(lǐng)域的應(yīng)用
        應(yīng)用于電阻抗測(cè)量的表面微電極研究
        人教版高中生物教材中囊泡的作用及功能行使過(guò)程
        怡神助眠湯治療失眠癥的療效及對(duì)腦內(nèi)神經(jīng)遞質(zhì)的影響
        微電極陣列檢測(cè)細(xì)胞電生理仿真與設(shè)計(jì)
        電子器件(2015年5期)2015-12-29 08:42:31
        SDS/DTAB/堿金屬氯化鹽復(fù)配囊泡為模板制備PMMA微球
        周圍型肺癌伴囊泡形成12例的高分辨率CT表現(xiàn)
        SiO2球腔微電極陣列過(guò)氧化氫傳感器制備及應(yīng)用
        亚洲中文一本无码AV在线无码| 国产av一区二区三区国产福利| 亚洲一区二区三区免费的视频| 午夜视频国产在线观看| 国产肉体xxxx裸体784大胆| 摸进她的内裤里疯狂揉她动图视频 | 国产成人夜色在线视频观看| 女同在线视频一区二区| 五月婷婷开心五月激情| 伊甸园亚洲av久久精品| 亚洲色成人网站www永久四虎| 久久久久国产一区二区三区| 国产99r视频精品免费观看| 中文字幕久热精品视频免费| 日韩av一区二区三区在线观看 | 丁香五月缴情综合网| 亚洲日韩成人无码不卡网站| 人妻av中文字幕精品久久| 日本a级一级淫片免费观看| 免费人成视频x8x8入口| 欧美日本亚洲国产一区二区| 成av人片一区二区三区久久| 男人的天堂一区二av| 欧美大屁股xxxx高跟欧美黑人 | 日韩av中文字幕波多野九色| av无码一区二区三区| 吃奶还摸下面动态图gif| 91爱爱视频| 中文字幕人妻激情在线视频| 粉嫩av国产一区二区三区| 无码专区天天躁天天躁在线| 丝袜 亚洲 另类 欧美| 久久亚洲中文字幕精品熟| 国产尤物av尤物在线观看| 亚洲人成网站77777在线观看| 久久99亚洲综合精品首页| 国产精品女同一区二区软件| 免费网站看av片| 最新国产在线精品91尤物| 亚洲精品国产二区在线观看| 亚洲成av人片不卡无码|