亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        On JR-rings

        2017-12-25 03:28:20HUXiaomeiChenHuanyin
        關(guān)鍵詞:理學(xué)院正則性質(zhì)

        HU Xiaomei, Chen Huanyin

        (School of Science, Hangzhou Normal University, Hangzhou 310036, China)

        On JR-rings

        HU Xiaomei, Chen Huanyin

        (School of Science, Hangzhou Normal University, Hangzhou 310036, China)

        A ringRis called to be a JR-ring if every elementa∈Rcan be written in the form ofa=r+jwhereris a regular element andjbelongs to the Jacobson radicalJ(R). This article gives many properties of JR-rings, and proves thatRis a JR-ring if and only ifR/J(R) is regular and regular elements lift moduleJ(R). A ringRis a Boolean ring if and only if every element inRcan uniquely be represented as the sum of a regular element and an element in Jacobson radical. Further, it investigates the hereditary property of the relevant ring extensions.

        regular element; extension ring; JR-ring; Jacobson radical

        0 Introduction

        A ringRis regular provided that for everya∈Rthere existsb∈Rsuch thata=aba. A ring is called a (S,n)-ring if every element is either a unit or a sum of no more thannunits. Following [1], a ringRis UR-ring if every elementa∈Rcan be written in the form ofa=r+uforris a regular element anduis a unit. These rings are shown to be a unifying generalization of regular rings, clean rings and (S,2)-rings. Following [2], a ringRis a NR-clean ring if every elementa∈Rcan be written in the form ofa=r+bwhereris a regular element andbis a nilpotent. Inspired by these articles and combining the notion of J-clean (a ring is called J-clean if each elementa∈Rcan be written in the form ofa=e+jwhereeis an idempotent andjbelongs to the Jacobson radical), we call an elementa∈Ris JR ifa=r+jwherer∈reg(R) andj∈J(R).Ris called a JR-ring if every element inRis JR.

        In this article, we give many properties of JR-rings. We prove thatRis a JR-ring if and only ifR/J(R) is regular and regular elements lift moduleJ(R). A ringRis a Boolean ring if and only if every element inRis uniquely the sum of a regular element and an element inJ(R). Further, we investigate the behavior of these properties under various ring extensions. Throughout this paper, reg(R) denotes the set of all regular elements ofR,J(R) denotes the Jacobson radical ofR,U(R) denotes the set of units ofR.

        1 Equivalent Characterizations

        Definition1LetRbe a ring. An elementa∈Ris called JR ifa=r+jwherer∈reg(R) andj∈J(R).Ris called a JR-ring if every element inRis JR.

        Proposition1EveryJ-clean ring is JR-clean.

        ProofThis is obvious.

        Proposition2Every JR-ring is a UR-ring.

        ProofLeta∈R, chooser∈reg(R) andj∈J(R) such thata+1=r+j,a=r+j-1 wherej-1∈U(R). Henceais UR.

        The converse of Proposition 2 need not be true in general.

        Example1(3)∩(5)is a JR-ring.

        For an one-sided idealIofR, we say that regular elements lift moduloIif whenevera-aba∈Iwitha,b∈R, there exists a regular elementdofRsuch thata-d∈I.

        Theorem1LetRbe a ring. Then the following are equivalent:

        1)Ris a JR-ring;

        2)R/J(R) is regular and regular elements lift moduloJ(R).

        Lemma1LetIbe an ideal ofRwithI?J(R). Then idempotents lift moduloIif regular elements lift moduloI.

        ProofSee [1, Lemma 2.4].

        Corollary1LetRbe an exchange ring. Then the following are equivalent:

        1)Ris a JR-ring;

        2)R/J(R) is regular.

        Proof1)?2). That is obvious by Theorem 1.

        2)?1). SupposeRis an exchange ring, then idempotents can be modulo every left ideal by [3, Corollary 1.3]. Hence every regular element lifts moduloJ(R) by Lemma 1. SoRis a JR-ring.

        Theorem2LetRbe a ring. Then the following are equivalent:

        1)Ris a Boolean ring;

        2) Everya∈Ris uniquely the sum of a regular element and an element inJ(R).

        Proof1)?2). For everyx∈R,x=x+0. SinceRis Boolean,x2=x. Soxis regular. Clearly, the representation ofxas the sum of a regular element and an element inJ(R) is unique becauseJ(R)=0.

        2)?1). Leta∈R. Thena+1=r+jis unique, soa=r+j-1 is unique. Clearly,a∈Ris uniquely the sum of a regular element and a unit. HenceRis a Boolean ring by [1, Theorem 3.6].

        Proposition3Any homomorphic image of a JR-ring is a JR-ring.

        ProofLetφ:R→Sbe a ring epimorphism and supposeRis a JR-ring. Lets∈Sand choosea∈Rsuch thatφ(a)=s. Then we can writea=r+jfor somer∈reg(R) andj∈J(R). Hence,s=φ(a)=φ(r)+φ(j) where clearlyφ(r)∈reg(S) andφ(j)∈J(S). Thus,Sis a JR-ring.

        Proposition4LetR=Πα∈IRα. ThenRis a JR-ring if and only ifRαis JR-ring for allα∈I.

        Proof(?). Suppose thatR=Πα∈IRαis JR. By Proposition 3, it follows that eachRαis a homomorphic image ofR, henceRαis a JR-ring for allα∈I.

        (?). SupposeRαis JR-ring for eachαand letx=(xi)∈R=Πα∈IRα. Chooseri∈reg(Ri) andji∈J(Ri) such thatxi=ri+ji. Now clearly,r=(ri)∈reg(R) andj=(ji)∈J(R) whichx=r+j. Hence,Ris JR-ring.

        Proposition5LetRbe a ring with no non-trivial idempotents. IfRis JR-ring, then it is a (S,2)-ring.

        ProofWe firstly verify that reg(R)=U(R)∪{0}. Letr∈reg(R) and writer=ryrfor somey∈R. Sinceryandyrare idempotents inR, then eitherry=yr=1 or at least one ofyrandryis zero. In the first case we getr∈U(R) and the second case implies thatr=0. Now, supposeRis a JR-ring and leta∈R. Writea-1=r+jwherer∈reg(R) andj∈J(R). Ifr=0, thena=j+1 is a unit and ifr∈U(R), thenais a sum of two units. Therefore,Ris a (S,2)-ring.

        Proposition6LetRbe a JR-ring and leta∈R. IfaRcontains no nonzero idempotents, thenais the sum of an element in its Jacobson radical and a right unit.

        ProofSupposeaRcontains no non zero idempotents. Chooser∈reg(R) andj∈J(R) such thata-1=r+j. Thena=r+(j+1) wherej+1∈U(R) andr=ryrfor somey∈R. Sinceayr=r+(j+1)yr, thena(1-yr)=(j+1)(1-yr). So, (j+1)(1-yr)(j+1)-1∈aR. Since (j+1)(1-yr)(j+1)-1∈Id(R), then by assumption, (j+1)(1-yr)(j+1)-1=0. Hence, 1-yr=0 and thenyr=1. Therefore,ais the sum of an element in its Jacobson radical and a right unit.

        Theorem3LetRbe a ring andebe a central idempotent ofR. ThenRis a JR-ring if and only ifeReand (1-e)R(1-e) are JR.

        Consider idempotenteinRis central. So

        There existy1∈R,y2∈Rsuch thatr1y1r1=r1,r2y2r2=r2. Therefore

        2 Related Rings

        Letφbe an endomorphism ofR. We denote the skew power series ring

        where addition is naturally defined and multiplication is defined by using the relationxr=φ(r)xfor allr∈R. The power series ringR[[x]] is just the skew power series ring whenφis the identity endomorphism.

        Proposition7LetRbe a ring. ThenR[[x,φ]] is a JR-ring if and only ifRis a JR-ring.

        ProofSuppose thatR[[x,φ]] is a JR-ring. Then it follows by the isomorphismR?R[[x]]/(x) and Proposition 3 thatRis JR.

        Conversely, suppose thatRis JR-ring. Let

        f(x)=a0+a1x+a2x2+…=r0+j0+a1x+a2x2+…

        wherer0∈reg(R) andj0∈J(R). Sincer0∈reg(R[[x,φ]]) andj0+a1x+a2x2+…∈J(R[[x,φ]]), soR[[x,φ]] is JR.

        Corollary2LetRbe a ring. ThenR[[x]] is a JR-ring if and only ifRis a JR-ring.

        Proposition8LetRbe a commutative ring. ThenR[x] is not a JR-ring.

        ProofIfxis JR, thenx=r(x)+j(x) for somer(x)∈reg(R[x]) andj(x)∈J(R[x]). By [1, Lemma 4.3],r(x)=eu(x) for somee∈Id(R) andu(x)∈U(R[x]). Now by [4, Lemma 3.5],u(x)=a0+a1x+…+anxn, wherea0∈U(R), anda1,a2,…,an∈N(R),n∈. Setj(x)=b0+b1x+…+bmxm, and we can easy knowb1∈N(R). Thus,

        x=e(a0+a1x+…+anxn)+(b0+b1x+…+bmxm).

        We have 1=ea1+b1. Henceea1=1-b1∈U(R) and (1-e)ea1=0, 1-e=0. Soa1=ea1∈U(R), a contradiction. ThusR[x] is not a JR-ring.

        Theorem4LetRbe a ring. Then the following are equivalent:

        1)Ris a JR-ring;

        2) The ringTn(R) of alln×nupper triangular matrices overRis a JR-ring.

        Since there existsyii∈Rsuch thatriiyiirii=rii. Therefore

        2)?1). SupposeTn(R) is a JR-ring. For anya∈R, diag(a,…,a)∈Tn(R) can be written in the form of

        LetRbe a ring and letMbe a (R,R)-bimodule. The trivial extension ofRbyMis the ringR∝M=R⊕Mwith the usual addition and multiplication (r1,m1)(r2,m2)=(r1r2,r1m2+m1r2).

        Corollary3For a ringRand a (R,R)-bimoduleM,Ris a JR-ring if and only ifR∝Mis a JR-ring.

        Given a groupGand a ringA, the group ringR=AGconsists of all functionsr:G→Awith finite support. The support ofris {g∈G|r(g)≠0}.Ris endowed with ring operation by defining:

        0(g)=0.

        (-r)g=-(r)g.

        ThenR(0,1,+,·) forms a ring.

        We first consider some cases where a group ring is isomorphic (as a ring) to a direct product of copies of its coefficient ring.

        Proposition9LetRbe a ring and let 2 be a unit inR. ThenRis a JR-ring if and only ifRC2is a JR-ring.

        ProofLetC2={x|x2=1} and define φ:RC2→R×Rby φ(a+bx)=(a+b,a-b) wherea,b∈R. Thenψis a ring homomorphism. Since 2 is a unit inR, we have thatψis bijective. Therefore,RC2?R×Rby [5, Proposition 3]. It follows by Proposition 4 thatRis a JR-ring if and only ifRC2?R×Ris a JR-ring.

        Corollary4LetRbe a ring and let 2 be a unit inR. Then for any positive integersk, the following are equivalent:

        1)Ris a JR-ring;

        [1] YING Z L, CHEN J L. On UR-rings[J]. J Math Res Expos,2009,29(2):355-361.

        [2] KHASHAN H A. NR-clean rings[J]. Vietnam J Math,2016,44(4):749-759.

        [3] NICHOLSON W K. Lifting idempotents and exchange rings[J]. Trans Amer Math Soc,1977,229(5):269-278.

        [4] XIAO G S, TONG W T. N-clean rings[J]. Algebra Colloq,2006,13(4):599-606.

        [5] HAN J, NICHOLSON W K. Extension of clean rings[J]. Comm Algebra,2001,29(6):2589-2595.

        關(guān)于JR環(huán)

        胡小美,陳煥艮

        (杭州師范大學(xué)理學(xué)院,浙江 杭州 310036)

        一個環(huán)R叫做JR 環(huán),如果R中的每一個元素都可以寫成a=r+j的形式,其中r是正則元,j屬于Jacobson 根.文章給出了JR環(huán)的相關(guān)性質(zhì).證明了R是一個JR環(huán)當且僅當R/J(R)是正則元并且正則元關(guān)于J(R) 可以提升;R是布爾環(huán)當且僅當每個a∈R都可以唯一地表示成一個正則元和Jacobson 根中元之和的形式.并探究了在相關(guān)環(huán)擴張上的遺傳性質(zhì).

        正則元;環(huán)的擴張;JR環(huán);Jacobson根

        date:2016-10-07

        Supported by the Natural Science Foundation of Zhejiang Province(LY17A010018).

        CHEN Huanyin(1963-),male,Professor,Ph.D.,majored in algebra of basic mathematics.E-mail:huanyinchen@aliyun.com

        10.3969/j.issn.1674-232X.2017.06.011

        O153.3MSC201016E50;16N20;16S70ArticlecharacterA

        1674-232X(2017)06-0628-05

        猜你喜歡
        理學(xué)院正則性質(zhì)
        昆明理工大學(xué)理學(xué)院學(xué)科簡介
        昆明理工大學(xué)理學(xué)院簡介
        隨機變量的分布列性質(zhì)的應(yīng)用
        完全平方數(shù)的性質(zhì)及其應(yīng)用
        九點圓的性質(zhì)和應(yīng)用
        剩余有限Minimax可解群的4階正則自同構(gòu)
        類似于VNL環(huán)的環(huán)
        厲害了,我的性質(zhì)
        西安航空學(xué)院專業(yè)介紹
        ———理學(xué)院
        有限秩的可解群的正則自同構(gòu)
        无遮挡中文毛片免费观看| 337p人体粉嫩胞高清视频| 国产无遮挡无码视频免费软件| 人妻无码一区二区| 日本精品国产1区2区3区| 邻居人妻的肉欲满足中文字幕| 国99久9在线 | 免费| 中国极品少妇videossexhd| 国产无遮挡又黄又爽无VIP| 国产一区二区三免费视频| 色爱av综合网站| 欧美婷婷六月丁香综合色| 无码8090精品久久一区| 成av人片一区二区久久| 精品久久久久久久无码人妻热| 婷婷四房色播| 久久久精品国产亚洲麻色欲 | 乱色精品无码一区二区国产盗| 欧美极品少妇性运交| 欧洲无码一级毛片无遮挡| 国产丝袜爆操在线观看| 中文字幕乱码无码人妻系列蜜桃| 日韩欧美亚洲综合久久影院d3| 国产大陆av一区二区三区| 国产一区二区三区在线观看第八页| 中国女人做爰视频| 国产精品九九九久久九九| 手机在线中文字幕av| 欧洲美女熟乱av| 亚洲色大成网站www永久一区| 亚洲色四在线视频观看| 亚洲国产av一区二区三区| 一本久久伊人热热精品中文字幕| 秋霞影院亚洲国产精品| 久久蜜桃一区二区三区| 精品午夜福利在线观看| 少妇厨房愉情理伦片免费| 亚洲国产AⅤ精品一区二区久| gg55gg国产成人影院| 久久www色情成人免费观看| 一区二区三区不卡在线|