郭全恩,南麗麗,李保國,曹詩瑜
?
灌溉水鹽分組成對土壤水鹽遷移參數(shù)的影響
郭全恩1,2,3,南麗麗4,李保國3,曹詩瑜1,2
(1. 甘肅省農(nóng)業(yè)科學院土壤肥料與節(jié)水農(nóng)業(yè)研究所,蘭州 730070;2. 農(nóng)業(yè)部甘肅耕地保育與農(nóng)業(yè)環(huán)境科學觀測實驗站,武威 733017;3. 中國農(nóng)業(yè)大學資源與環(huán)境學院,北京 100193;4. 甘肅農(nóng)業(yè)大學草業(yè)學院,蘭州 730070)
淡水資源不足和鹽漬化是干旱地區(qū)農(nóng)業(yè)生產(chǎn)的限制因子。研究水鹽遷移參數(shù)是水鹽調(diào)控的重要目標。為此,該研究以甘肅省秦安縣興國鎮(zhèn)果園土樣為研究對象,采用水平土柱入滲法,探討不同鹽溶液(氯化鈉、氯化鈉和氯化鎂、氯化鈉和氯化鈣、氯化鈉和氯化鉀)在礦化度均為3 g/L的條件下對土壤水分擴散率和鹽分離子水平遷移的影響。結(jié)果表明:不同鹽分組成的灌溉水質(zhì)和含水率對土壤水分擴散率的影響均達極顯著水平(<0.01)。在灌溉水礦化度均為3 g/L的條件下,氯化鈉鹽溶液傳輸水分的潛在能力最大,加入一定的復(fù)鹽對水分的傳導(dǎo)起到阻滯作用,阻滯能力的大小是:氯化鈣>氯化鉀>氯化鎂。不同鹽分組成的灌溉水對土壤碳酸氫根和硫酸根的水平遷移具有顯著的影響(<0.05),對鹽分、鈣離子和鈉離子水平遷移具有極顯著的影響(<0.01)。入滲距離對土壤pH的影響以及灌溉水鹽分組成對土壤鈉吸附比的影響均達顯著水平(<0.05)。灌溉水鹽分組成對模型參數(shù)初始值和終止值有顯著的影響,參數(shù)初始值和終止值均呈現(xiàn):氯化鈉>氯化鈉和氯化鎂>氯化鈉和氯化鉀>氯化鈉和氯化鈣。因此,從微咸水利用和鹽漬化土壤改良的角度考慮,在微咸水灌溉中加入一定量的鈣制劑可抑制水分擴散和降低土壤鹽分含量;從灌溉方法來看,需從地塊的兩端輪換灌溉可預(yù)防地塊一端脫鹽而另一端積鹽的現(xiàn)象。這一研究結(jié)果對于指導(dǎo)干旱、半干旱地區(qū)微咸水利用具有重要的科學意義。
灌溉;鹽分;土壤水分;擴散率;水平遷移;Boltzmann函數(shù)
中國西北旱區(qū)水源短缺已成為農(nóng)業(yè)生產(chǎn)的重要限制因素。如何有效開發(fā)利用咸水資源已成為科研和政府部門迫切需要解決的難題。據(jù)統(tǒng)計,中國礦化度為2~5 g/L的地下微咸水資源為200億m3/a[1],大多位于較為干旱的西北地區(qū)和華北平原[2],若能合理開采利用,可有效彌補該地區(qū)降雨量少、地面灌溉水資源不足的劣勢。因此,微咸水的合理開發(fā)利用已成為緩解水資源緊缺的重要途徑之一。
近年來眾多學者就微咸水灌溉進行了研究[3-8],適宜的微咸水灌溉不僅能補充作物生長所需水分,而且能淋洗掉土壤剖面多余的鹽分,有利于作物生長[9-10]。方生等[11]用微咸水(礦化度2~4 g/L)和半咸水(礦化度4~6 g/L)灌溉的小麥玉米,比不灌的雨養(yǎng)農(nóng)業(yè)增產(chǎn)1.2~1.6倍。張展羽等[12]對玉米苗期進行微咸水灌溉,礦化度低于3 g/L時,對幼苗生長沒有影響甚至有促進作用,當微咸水礦化度大于3 g/L時,光合作用明顯受到抑制。陳素英等[13]對冬小麥在拔節(jié)期和灌漿期用微咸水灌溉,結(jié)果表明利用礦化度小于5 g/L的微咸水灌溉,不會使冬小麥產(chǎn)量降低,灌溉1次微咸水比雨養(yǎng)旱作處理增產(chǎn)10%~30%。
長期以來,一些學者只關(guān)注灌溉水的礦化度[14-16],而對灌溉水的化學組成重視不夠。灌溉過程中土壤水分入滲會驅(qū)逐土壤空氣,可能導(dǎo)致土壤出現(xiàn)周期性的滯水,這時土壤膠體中的某些鹽分離子與灌溉水質(zhì)中的鹽分離子發(fā)生化學反應(yīng),容易造成土壤結(jié)構(gòu)的崩解。因此,灌溉水離子組成對土壤理化性狀的影響應(yīng)當引起重視。
甘肅省秦安縣興國鎮(zhèn)果園長期利用微咸水灌溉,導(dǎo)致果園土壤次生鹽漬化的發(fā)生,特別是鈉鹽的危害[17]。由于土壤鈉質(zhì)(堿)化,干時收縮堅硬板結(jié),濕時膨脹泥濘;結(jié)構(gòu)性差,通透性不良,嚴重妨礙果樹的正常生長。為此,本研究從微咸水利用和土壤改良的角度出發(fā),在陪伴陰離子均為Cl-的條件下,研究灌溉水質(zhì)中添加等摩爾量的陽離子(K+、Ca2+、Mg2+)對鹽漬化土壤水鹽遷移參數(shù)的影響,旨在為農(nóng)業(yè)生產(chǎn)管理提供科學依據(jù)。
供試土壤取自甘肅中東部地區(qū)的秦安縣興國鎮(zhèn)果園,土壤電導(dǎo)率為0.43 mS/cm,pH值為8.54,有機質(zhì)質(zhì)量分數(shù)為10.52 g/kg,碳酸鈣質(zhì)量分數(shù)為134.8 g/kg。土壤顆粒分析采用MS2000激光粒度儀(英國馬爾文儀器有限公司),黏粒(<0.002 mm)質(zhì)量分數(shù)為208.7 g/kg,粉砂粒(0.002~0.02 mm)質(zhì)量分數(shù)為539.3 g/kg,砂粒(>0.02~2 mm)質(zhì)量分數(shù)為252.0 g/kg,屬粉砂黏壤土。土壤鹽分離子含量見表1。
本試驗設(shè)4個處理:Ⅰ NaCl;Ⅱ NaCl∶MgCl2摩爾比=1∶1;Ⅲ NaCl∶CaCl2摩爾比=1∶1;Ⅳ NaCl∶KCl摩爾比=1∶1,每個處理重復(fù)3次。所有處理的質(zhì)量濃度均為3 g/L。
試驗是在水平土柱中進行的,柱體分為3段:水室段、濾層段和試樣段。水室段連接馬氏瓶,控制水室內(nèi)液面與試樣段土樣的高度相同;濾層段,內(nèi)填石英砂緩沖水流;試樣段,總長度為40 cm,填裝供試土樣。供試驗裝置如圖1所示。
圖1 試驗裝置
土壤浸提液用1∶5土水比提取,鹽分離子的測定均用常規(guī)方法[19],電導(dǎo)率的測定用電導(dǎo)儀(DDS-11A,),鹽分的計算用如下公式(1)換算:
土壤全鹽(%)=電導(dǎo)率(mS/cm)′溫度校正系數(shù)()′
電極常數(shù)()′水土比 (1)
土壤鈉吸附比(sodium absorption ratio,SAR)的計算參考俞仁培等[20]方法。土壤水分擴散率的計算參考雷志棟等[18]方法。
采用Origin8.0軟件,對不同灌溉水質(zhì)土壤鹽分水平遷移進行模型擬合,研究發(fā)現(xiàn)Boltzmann函數(shù)擬合度最高,適合模擬鹽分的水平遷移。Boltzmann方程式[21]為:
式中1和2是該曲線的2條漸近線(初始值與終止值),0是曲線對稱軸的橫坐標(即中心),d是曲線傾斜的斜率;為土壤鹽分含量,g/kg;為水平入滲距離,cm。
土壤水分擴散率與體積含水率之間的關(guān)系通常符合=e,模型參數(shù)的物理意義是指當含水率為0時的土壤水分擴散能力,取決于土壤基模特性[22];模型參數(shù)表示土壤水分擴散率隨含水率的變化速率,取決于液體性質(zhì)。由圖2可知,對于4個處理的值比較,處理Ⅰ(2×10-4)>處理Ⅱ(7×10-5)>處理Ⅳ(4×10-6)>處理Ⅲ(3×10-10),這說明單鹽NaCl的鹽溶液傳輸水分的潛在能力最大,加入一定的復(fù)鹽對水分的傳導(dǎo)起到阻滯作用,阻滯能力的大小是:CaCl2>KCl>MgCl2。
注:灌溉水鹽分質(zhì)量濃度為3 g×L-1。下同。
對4個處理的值進行比較(圖2),處理Ⅲ(67.372)>處理Ⅳ(37.518)>處理Ⅱ(27.685)>處理Ⅰ(24.57),這說明加入一定的復(fù)鹽對土壤水分擴散率隨含水率的變化速率有明顯的影響,影響能力的大小同樣是:CaCl2>KCl>MgCl2。這一研究結(jié)果與張繼紅等[23-24]報道的土壤水分擴散率隨著石膏(CaSO4)施量增加而減小的規(guī)律相一致。
對灌溉水離子組成和不同入滲距離時的土壤含水率進行雙因素方差分析,表明灌溉水鹽分組成和土壤含水率極顯著地影響土壤水分擴散率(<0.01)。
不同鹽分組成的灌溉水處理下土壤鹽分、SO42-、Ca2+、K+、Na+含量隨著入滲距離的增加大多數(shù)呈現(xiàn)增大的趨勢,而HCO3-的含量隨著入滲距離的增加而呈現(xiàn)減小的趨勢,Cl-和Mg2+的含量隨著入滲距離的增加沒有明顯的規(guī)律性(圖3)。方差分析結(jié)果表明:不同鹽分組成的灌溉水對土壤HCO3-和SO42-的水平遷移具有顯著的影響(<0.05),對鹽分、Ca2+和Na+水平遷移的影響達極顯著水平(<0.01)。從不同灌溉水處理來看,在礦化度均為3g/L的情況下,處理Ⅰ(單鹽NaCl)土壤鹽分和Na+的含量在整個入滲過程中均最高,且在濕潤鋒末端(入滲距離26~32cm之間),土壤鹽分和Na+的含量均呈現(xiàn)規(guī)律性的變化,即:處理Ⅰ>處理Ⅱ>處理Ⅳ>處理Ⅲ。這說明加入鈣鹽可減小土壤鹽分含量,同時也證明鈣制劑在土壤鹽分改良中的作用。這與羅小東等[25]報道的施用石膏(鈣制劑)有助于土壤脫鹽結(jié)果一致。
注:H代表不同入滲距離間比較;T代表不同處理間比較;*,P<0.05;**,P<0.01;下同。
由圖4a可知,對于處理Ⅰ,隨著入滲距離的增加,土壤pH值呈現(xiàn)依次減小的趨勢,而對于處理Ⅱ、Ⅲ、Ⅳ來說,土壤pH值隨著入滲距離的增加呈現(xiàn)波動式的減小趨勢。對影響土壤pH值和SAR的灌溉水鹽分組成以及水平入滲距離進行方差分析,結(jié)果表明:水平入滲距離對土壤pH值的影響達顯著水平(<0.05),多重比較發(fā)現(xiàn),入滲距離8cm處和32cm處土壤pH值差異顯著,其他不同入滲距離間土壤pH值差異不顯著(>0.05);灌溉水鹽分組成對土壤pH的影響不顯著(>0.05)。
鈉吸附比值法是美國農(nóng)田灌溉水質(zhì)評價中常采用的方法[26]。本研究進一步對土壤鈉吸附比SAR值進行分析,結(jié)果見圖4b,對于處理Ⅰ,土壤SAR值隨著入滲距離增加呈現(xiàn)明顯的減小趨勢,且在整個入滲過程中,處理Ⅰ的SAR值明顯高于其他處理,而處理Ⅱ、Ⅲ、Ⅳ的SAR值隨入滲距離的增加呈現(xiàn)波動式增加的趨勢。對影響SAR值的灌溉水鹽分組成和入滲距離進行方差分析,結(jié)果表明:灌溉水鹽分組成對土壤SAR值的影響達顯著水平(<0.05)。
圖4 灌溉水鹽分組成對不同入滲距離土壤pH和鈉吸附比(SAR)的影響
基于Boltzmann函數(shù)擬合土壤鹽分含量與水平運移距離的關(guān)系,結(jié)果見表2。
表2 土壤鹽分含量與運移距離關(guān)系的模擬
所有處理的擬合均取得了很好的效果,2>0.89(0.05)。灌溉水鹽分組成對模型參數(shù)1(初始值)和2(終止值)影響較大,對于處理Ⅰ,參數(shù)1和2值分別為0.152和0.517,明顯高于其他處理,且不同處理之間,參數(shù)1和2值均呈現(xiàn):處理Ⅰ>處理Ⅱ>處理Ⅳ>處理Ⅲ,這說明處理Ⅰ函數(shù)在縱向的分布寬度最大,而處理Ⅲ函數(shù)在縱向的分布寬度最小。函數(shù)在縱向的分布寬度大說明土壤鹽分含量高,寬度小說明土壤鹽分含量低,這與圖3的結(jié)果一致。參數(shù)0值在28.488~28.700之間變化,不同處理之間差別不大。而參數(shù)d在不同處理之間沒有變化,均為1.2,這說明曲線的傾斜程度相同。
微咸水灌溉導(dǎo)致土壤剖面鹽分含量增加,土壤鹽分的累積量隨著礦化度的增加而增大[27-29]。在垂直剖面,土壤鹽分隨著土層深度的增加而增加[30];在水平面,本研究結(jié)果表明土壤鹽分隨著入滲距離的增加而增大,而土壤pH隨著入滲距離的增加呈現(xiàn)減小的趨勢。這也證明土壤脫鹽堿化這一現(xiàn)象。這與郭全恩等[31]報道土壤pH隨著NaCl加入量的增加而減小基本一致。
由于農(nóng)田灌溉水中不僅含有鹽分離子,還有氮、磷、鉀、重金屬、有機化合物以及微生物等。本研究主要從咸水灌溉對土壤鹽漬化影響的角度出發(fā),探討咸水中的鹽分離子和土壤中的鹽分離子之間的相互作用,別的元素或化合物暫且沒有考慮。
在試驗設(shè)計過程中只選擇了4種鹽(NaCl、MgCl2、CaCl2和KCl),而沒有選擇MgSO4、CaSO4、Na2CO3等,這是因為在鹽漬化土壤常見的陽離子有K+、Na+、Ca2+、Mg2+這4種離子,一方面想探討在陪伴陰離子類型相同的情況下,不同陽離子對土壤鹽分離子遷移的影響;另一方面想忽略次要離子,放大主要離子的效應(yīng)。
從灌溉水不同鹽分的配比來看,本研究從等量代換的角度考慮了礦化度相同的條件下同一配比鹽溶液的陽離子摩爾濃度相同,如在3 g/L氯化鈉和氯化鎂混合的鹽溶液中,Na+和Mg2+的摩爾濃度相同,均為0.019 7 mol/L,Cl-的摩爾濃度為0.059 1 mol/L;在3 g/L氯化鈉和氯化鉀混合的鹽溶液中,Na+和K+的摩爾濃度相同,均為0.022 6 mol/L,Cl-的摩爾濃度為0.045 2 mol/L。可以看出陪伴陰離子Cl-類型相同,而濃度不同。因此,對于設(shè)置陪伴陰離子類型和濃度相同,而陽離子的摩爾濃度不同的試驗有待于今后進一步去研究。
設(shè)置4個鹽分組成處理,研究灌溉水組成對土壤水分擴散、鹽分離子遷移、pH和鈉吸附比(sodium absorption ratio,SAR)的影響,結(jié)果表明:
1)灌溉水鹽分組成和含水率對土壤水分擴散率的影響均達極顯著水平(<0.01)。在灌溉水礦化度均為3 g/L的條件下,NaCl的鹽溶液傳輸水分的潛在能力最大,加入一定的復(fù)鹽對水分的傳導(dǎo)起到阻滯作用,阻滯作用的大小是:CaCl2>KCl>MgCl2。因此,這一結(jié)果啟示我們在微咸水灌溉或鹽漬化土壤改良中可適當加入鈣制劑,抑制鹽漬化土壤水分的快速遷移。
2)不同鹽分組成的灌溉水對土壤HCO3-和SO42-的水平遷移具有顯著的影響(<0.05),對鹽分、Ca2+和Na+水平遷移的影響達極顯著水平(<0.01)。說明微咸水灌溉時不能經(jīng)常從同一地塊的同一方向灌溉,這樣長期灌溉會導(dǎo)致地塊兩端鹽分離子分布不均,一端產(chǎn)生脫鹽現(xiàn)象,而另一端產(chǎn)生積鹽現(xiàn)象。
3)對于單鹽NaCl處理,土壤pH值隨著入滲距離的增加呈現(xiàn)減小的趨勢,而對于復(fù)鹽(處理Ⅱ、Ⅲ、Ⅳ),土壤pH值隨著入滲距離的增加呈現(xiàn)波動式的減小趨勢。入滲距離對土壤pH的影響達顯著水平(<0.05),而灌溉水鹽分組成對土壤SAR值的影響達顯著水平(<0.05)。
4)基于Boltzmann函數(shù)擬合表明,灌溉水鹽分組成對模型參數(shù)有顯著影響(<0.05)。
[1] 劉友兆,付光輝. 中國微咸水資源化若干問題研究[J]. 地理與地理信息科學,2004,20(2):57-60. Liu Youzhao, Fu Guanghui. Utilization of gentle salty water resource in China[J]. Geography and Geo-Information Scie-nce, 2004, 20(2): 57-60. (in Chinese with English abstract)
[2] 賴永明,洪林,陳浩,等. 咸水灌溉影響及改善措施研究進展[J]. 節(jié)水灌溉,2015(12):55-59. Lai Yongming, Hong Lin, Chen Hao, et al. Research advances in impacts and improvement measures of irrigation with saline water[J]. Water Saving Irrigation, 2015(12): 55-59. (in Chinese with English abstract)
[3] Incrocci L, Malorgio F, Della Bartola A, et al. The influence of drip irrigation or subirrigation on tomato grown in closed- loop substrate culture with saline water[J]. Scientia Horticul-turae, 2006, 107: 365-372.
[4] Malash N, Flowers T J, Ragab R. Effect of irrigation systems and water management practices using saline and non-saline water on tomato production[J]. Agricultural Water Mana-gement, 2005, 78: 25-38.
[5] 雪靜,王全九,畢遠杰. 微咸水間歇供水土壤入滲特征[J]. 農(nóng)業(yè)工程學報,2009,25(5):14-19. Xue Jing, Wang Quanjiu, Bi Yuanjie. Soil infiltration properties with saline water intermittent application[J]. Tr-ans-actions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(5): 14-19. (in Chinese with English abstract)
[6] 萬書勤,康躍虎,王丹,等. 微咸水滴灌對黃瓜產(chǎn)量及灌溉水利用效率的影響[J]. 農(nóng)業(yè)工程學報,2007,23(3):30-35. Wan Shuqin, Kang Yuehu, Wang Dan, et al. Effects of saline water on cucumber yields and irrigation water use efficiency under drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(3): 30-35. (in Chinese with English abstract)
[7] 王全九,單魚洋. 微咸水灌溉與土壤水鹽調(diào)控研究進展[J].農(nóng)業(yè)機械學報,2015,46(12):117-127. Wang Quanjiu, Shan Yuyang. Review of research develop-ment on water and soil regulation with brackish water irrig-ation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(12): 117-127. (in Chinese with English abstract)
[8] 雷廷武,肖娟,王建平,等. 地下咸水滴灌對內(nèi)蒙古河套地區(qū)蜜瓜用水效率和產(chǎn)量品質(zhì)影響的試驗研究[J]. 農(nóng)業(yè)工程學報,2003,19(2):80-84. Lei Tingwu, Xiao Juan, Wang Jianping, et al. Experimental investigation into effects of drip irrigation with saline groundwater on water use efficiency and quality of honeydew melons in Hetao Region, Inner Mongolia[J]. Transactions of the Chinese Society of Agricultural Engineering (Trans-actions of the CSAE), 2003, 19(2): 80-84. (in Chinese with English abstract)
[9] 李法虎,Benhur M,Keren R. 劣質(zhì)水灌溉對土壤鹽堿化及作物產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學報,2003,19(1):63-66. Li Fahu, Benhur M,Keren R. Effect of marginal water irrigation on soil salinity, sodicity and crop yield[J]. Trans-actions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003, 19(1): 63-66. (in Chinese with English abstract)
[10] Moreno F, Cabrera F, Fernandez-Boy E. Irrigation with saline water in the reclaimed marsh soils of south-west spain: Impact on soil properties and cotton and sugar beet crops[J]. Agricultural Water Management, 2001, 48: 133-150.
[11] 方生,陳秀玲. 農(nóng)業(yè)節(jié)水灌溉與咸水利用淡化[M]. 北京:中國農(nóng)業(yè)技術(shù)出版社,2008.
[12] 張展羽,郭相平. 微咸水灌溉對苗期玉米生長和生理性狀的影響[J]. 灌溉排水,1999,18(1):18-22. Zhang Zhanyu, Guo Xiangping. Effects of NaCl on growth and physiological processes of maize seedlings[J]. Irrigation and Drainage, 1999,18(1): 18-22. (in Chinese with English abstract)
[13] 陳素英,邵立威,孫宏勇,等. 微咸水灌溉對土壤鹽分平衡與作物產(chǎn)量的影響[J]. 中國生態(tài)農(nóng)業(yè)學報,2016,24(8): 1049-1058. Chen Suying, Shao Liwei, Sun Hongyong, et al. Effect of brackish water irrigation on soil salt balance and yield of both winter wheat and summer maize[J]. Chinese Journal of Eco- Agriculture, 2016, 24(8): 1049-1058. (in Chinese with English abstract)
[14] 郭仁松,林濤,徐海江,等. 微咸水滴灌對綠洲棉田水鹽運移特征及棉花產(chǎn)量的影響[J]. 水土保持學報,2017, 31(1):211-216. Guo Rensong, Lin Tao, Xu Haijiang, et al. Effect of saline water drip irrigation on water and salt transport features and cotton yield of oasis cotton field[J]. Journal of Soil and Water Conservation, 2017, 31(1): 211-216. (in Chinese with English abstract)
[15] 張珂萌,牛文全,汪有科,等. 微咸水微潤灌溉下土壤水鹽運移特性研究[J]. 農(nóng)業(yè)機械學報,2017, 48(1):175-182. Zhang Kemeng, Niu Wenquan, Wang Youke, et al. Characteristics of water and salt movement in soil under moisture-irrigation with brackish water[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(1): 175-182. (in Chinese with English abstract)
[16] 王全九,許紫月,單魚洋,等. 磁化微咸水礦化度對土壤水鹽運移的影響[J]. 農(nóng)業(yè)機械學報,2017,48(1):1-14. Wang Quanjiu, Xu Ziyue, Shan Yuyang, et al. Experiment on salt and water movement affected by salinity of magnetized brackish water[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(1): 1-14. (in Chinese with English abstract)
[17] 郭全恩,王益權(quán),南麗麗,等. 灌水定額對旱區(qū)蘋果園土壤水鹽再分布的影響[J]. 應(yīng)用生態(tài)學報,2013,24(7):1863-1870. Guo Quanen, Wang Yiquan, Nan Lili, et al. Effects of irrigation quota on moisture and salt redistribution in apple orchard soil in arid region[J]. Chinese Journal of Applied Ecology, 2013, 24(7): 1863-1870. (in Chinese with English abstract)
[18] 雷志棟,楊詩秀,謝森傳. 土壤水動力學[M]. 北京:清華大學出版社,1988:231-234.
[19] 魯如坤. 土壤農(nóng)業(yè)化學分析方法[M]. 北京:中國農(nóng)業(yè)科技出版社,2000:140.
[20] 俞仁培,尤文瑞.土壤鹽化、堿化的監(jiān)測與防治[M]. 北京:科學出版社,1993.
[21] 于成龍,郝欣,沈清. Origin 8.0應(yīng)用實例詳解[M]. 北京:化學工業(yè)出版社,2010:198.
[22] 郭全恩,王益權(quán),馬忠明,等. 溶質(zhì)類型與礦化度對土壤水分擴散率的影響[J]. 干旱區(qū)地理,2011,34(1):86-90. Guo Quanen,Wang Yiquan, Ma Zhongming, et al. Effect of solute type and mineralizations on soil moisture diffusivity[J]. Arid Land Geography, 2011, 34(1): 86-90. (in Chinese with English abstract)
[23] 張繼紅,王全九,譚帥,等. 微咸水入滲下施加石膏對鹽堿土水分運動特征的影響[J]. 水土保持學報,2016,30(4):130-134. Zhang Jihong, Wang Quanjiu, Tan Shuai, et al. Effects of gypsum on water movement characteristics of saline alkali soil under brackish water infiltration[J].Journal of Soil and Water Conservation, 2016, 30(4):130-134. (in Chinese with English abstract)
[24] 梁嘉平,史文娟,王全九. 石膏對土壤水分入滲特性的影響[J]. 水土保持通報,2016,36(6):160-164. Liang Jiaping, Shi Wenjuan, Wang Quanjiu. Effects of gypsum on soil water infiltration characteristics[J]. Bulletin of Soil and Water Conservation, 2016, 36(6): 160-164. (in Chinese with English abstract)
[25] 羅小東,王全九,譚帥. 基于土壤鈉離子含量的不同施用量石膏改良劑改良效果[J]. 干旱地區(qū)農(nóng)業(yè)研究,2016,34(1):288-292. Luo Xiaodong, Wang Quanjiu, Tan Shuai. The effect of gypsum improver based on Na+concentration in soil[J]. Agricultural Research in the Arid Areas, 2016, 34(1): 288-292. (in Chinese with English abstract)
[26] Christiansen J E, Olsen E C, Willardson L S. Irrigation water quality evaluation[J].Journal of the Irrigation and Drainage Division, 1977, 103(2): 155-169.
[27] Amer K H. Corn crop response under managing different irrigation and salinity levels[J]. Agricultural Water Manage-ment, 2010, 97(10): 1553-1563.
[28] Pang H C, Li Y Y, Yang J S, et al. Effect of brackish water irrigation and straw mulching on soil salinity and crop yields under monsoonal climatic conditions[J]. Agricultural Water Management, 2010, 97(12): 1971-1977.
[29] 吳忠東,王全九.入滲水礦化度對土壤入滲特征和離子遷移特性的影響[J]. 農(nóng)業(yè)機械學報,2010,41(7):64-69.
Wu Zhongdong, Wang Quanjiu. Effect on both soil infiltration characteristics and ion mobility features by mineralization degree of infiltration water[J].Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(7):64-69. (in Chinese with English abstract)
[30] 朱成立,舒慕晨,張展羽,等.咸淡水交替灌溉對土壤鹽分分布及夏玉米生長的影響[J]. 農(nóng)業(yè)機械學報,2017,48(10):220-228.
Zhu Chengli, Shu Muchen, Zhang Zhanyu, et al. Effect of alternate irrigation with fresh and brackish water on saline distribution characteristics of soil and growth of summer maize[J].Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(10): 220-228. (in Chinese with English abstract)
[31] 郭全恩,郭天文,王益權(quán),等.三種鈉鹽對石灰性土壤鹽化特性的影響[J]. 西北農(nóng)業(yè)學報,2009,18(4):155-159. Guo Quanen, Guo Tianwen, Wang Yiquan, et al. Effect of three sodic salinity on salinization characteristic in limy soils[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2009,18(4): 155-159. (in Chinese with English abstract)
郭全恩,南麗麗,李保國,曹詩瑜. 灌溉水鹽分組成對土壤水鹽遷移參數(shù)的影響[J]. 農(nóng)業(yè)工程學報,2017,33(23):123-128. doi:10.11975/j.issn.1002-6819.2017.23.016 http://www.tcsae.org
Guo Quanen, Nan Lili, Li Baoguo, Cao Shiyu. Effect of salt ion composition of irrigation water on parameters of soil water and salt movement[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(23): 123-128. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.23.016 http://www.tcsae.org
Effect of salt ion composition of irrigation water on parameters of soil water and salt movement
Guo Quanen1,2,3, Nan Lili4, Li Baoguo3, Cao Shiyu1,2
(1.730070,; 2.(),733017,;3.100193,;4.730070,)
Shortage of freshwater resources restricts agricultural production in arid and semiarid region. Irrigation with saline water provides an effective way to make up for the deficiency of freshwater resources. However, it is unknown about influence of irrigation with different salt ion compositions on soil physical and chemical properties. In this study, the effect of different salt ion compositions of irrigation on soil water and salt movement was investigated. The soil samples were collected from orchard calcareous soil in Qin’an County of Gansu Province. The soil electrical conductivity was 0.43 mS/cm, pH was 8.54 and soil organic matter was 10.52 g/kg. A total of 4 treatments were included: NaCl, NaCl:MgCl2with the ratio of 1∶1, NaCl:CaCl2with the ratio of 1∶1, NaCl:KCl with the ratio of 1∶1. The concentration of all the treatments was 3 g/L. Soil water diffusivity and salt ions movement along the horizontal distance were studied by the method of horizontal soil column infiltration. Soil pH and sodium adsorption ratio were determined. The Boltzmann function was used for simulation of soil salt movement. The relationship between soil water diffusivity and water content was simulated by an power function. The results showed that the soil water diffusivity capacity at water content of 0 was the highest in the treatment of NaCl, followed by NaCl:MgCl2, NaCl:KCl and NaCl:CaCl2. The change rate of diffusivity with water content was the highest in the treatment of NaCl:CaCl2followed by the NaCl:KCl, NaCl:MgCl2and NaCl only. The salt ion composition of irrigation water and soil water content both significantly affected the soil water diffusivity (<0.01). For all the treatments, the soil salt content, calcium ions, potassium ions, sulfate ions and sodium ions all increased with the infiltration distance but the bicarbonate ion decreased with the distance. The obvious trend wasn’t found for the chloride and magnesium ions. Soil pH decreased with infiltration distance for the treatment of NaCl only. The decrease trend of soil pH fluctuated for the other treatments. The soil pH at distance of 8 and 32 cm was significantly different (<0.05). The salt ion composition did not significantly affect the soil pH. The sodium adsorption ratio decreased obviously with the infiltration distance in the treatment of NaCl only. The sodium adsorption ratio in the treatment of NaCl was higher than the other treatments. The sodium adsorption ratio increase trend fluctuated for the other treatments. The salt ion composition of irrigation water significantly affected the sodium adsorption ratio (<0.05). Based on the Boltzmann function fitness, the initialization value and final value were influenced by the salt ion composition of irrigation water and the treatment NaCl was higher than the other treatments. The center was similar for all the treatments (28.488-28.700). The simulation was well with the determination coefficient higher than 0.89. The study indicated that adding calcium ions in irrigation water could inhibit water movement and decrease salt accumulation in the process of irrigation with brackish water. The irrigation at one end of plot was not recommended since it may cause salt accumulation and we suggested to irrigate at both ends of the plot. The study could guide the irrigation with brackish water in arid or semiarid regions.
irrigation; salts; soil moisture; diffusivity; horizontal movement; Boltzmann function
10.11975/j.issn.1002-6819.2017.23.016
S278
A
1002-6819(2017)-23-0123-06
2017-07-19
2017-10-01
國家自然科學基金項目(41363004);甘肅省農(nóng)業(yè)科學院科技創(chuàng)新工程學科團隊(2015GAAS03)
郭全恩,男,天水人,副研究員,博士,主要從事鹽漬化土壤研究。Email:qnguo@sina.com