亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        果園貨運(yùn)鏈索橫向振動(dòng)非線性控制

        2017-12-20 03:13:28薛坤鵬洪添勝
        關(guān)鍵詞:弦線控制力作動(dòng)器

        李 君,薛坤鵬,楊 洲※,洪添勝

        ?

        果園貨運(yùn)鏈索橫向振動(dòng)非線性控制

        李 君1,2,薛坤鵬3,楊 洲1,2※,洪添勝1,2

        (1. 華南農(nóng)業(yè)大學(xué)工程學(xué)院,廣州 510642;2. 華南農(nóng)業(yè)大學(xué)南方農(nóng)業(yè)機(jī)械與裝備關(guān)鍵技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,廣州 510642;3. 廣東省現(xiàn)代農(nóng)業(yè)裝備研究所,廣州 510630)

        為有效抑制果園貨運(yùn)鏈索行進(jìn)過(guò)程中的橫向振動(dòng),提出采用一種非線性邊界控制方法進(jìn)行鏈索橫向減振主動(dòng)控制??紤]到多邊形效應(yīng)對(duì)鏈索振動(dòng)造成的影響,基于Hamilton原理建立了復(fù)雜工況下軸向行進(jìn)鏈索和邊界作動(dòng)器的動(dòng)力學(xué)耦合模型。通過(guò)構(gòu)建廣義能量函數(shù)作為系統(tǒng)的Lyapunov函數(shù),設(shè)計(jì)了受控鏈索的控制規(guī)律,進(jìn)行了鏈索橫向振動(dòng)閉環(huán)系統(tǒng)的漸近穩(wěn)定性證明推導(dǎo)。仿真與試驗(yàn)結(jié)果表明,通過(guò)作動(dòng)器引入控制力,鏈索橫向振動(dòng)在主動(dòng)控制率的作用下能夠在5個(gè)周期內(nèi)被有效抑制。該文為貨運(yùn)行進(jìn)鏈索的振動(dòng)控制研究提供了理論參考。

        農(nóng)業(yè)機(jī)械;運(yùn)輸;振動(dòng);山地果園;鏈索;作動(dòng)器;李雅普諾夫方法;振動(dòng)控制

        0 引 言

        貨運(yùn)鏈索系統(tǒng)在復(fù)雜地形條件下鋪設(shè)靈活,能夠滿足山地丘陵果園貨物運(yùn)輸?shù)男枨骩1]。在受迫振動(dòng)和參數(shù)振動(dòng)的影響下,貨運(yùn)鏈索在工作過(guò)程中處于非穩(wěn)態(tài)并產(chǎn)生橫向周期性激振,托索機(jī)構(gòu)沖擊、時(shí)變索力以及風(fēng)雨荷載等不確定因素促使鏈索的激振運(yùn)動(dòng)更趨復(fù)雜[2]。鏈索橫向振動(dòng)如不加以抑制,將對(duì)貨運(yùn)系統(tǒng)的運(yùn)行安全性和可靠性帶來(lái)不利的影響。研究有效的減振方法來(lái)減小復(fù)雜工況下的貨運(yùn)鏈索運(yùn)動(dòng)失穩(wěn)現(xiàn)象發(fā)生,對(duì)于提高工作過(guò)程中的安全可靠性具有重要的研究意義。

        如忽略抗彎剛度,貨運(yùn)鏈索可模型化為軸向行進(jìn)弦線,即沿軸線方向平移、受較大軸向力作用而張緊的弦線[3]。提高軸向運(yùn)動(dòng)弦線穩(wěn)定性的早期振動(dòng)控制方式主要是采用無(wú)源元件進(jìn)行阻尼和剛度的被動(dòng)式調(diào)節(jié),隨著主動(dòng)減振技術(shù)的發(fā)展,以線性模型為理論基礎(chǔ)的時(shí)域或頻域的分析方法應(yīng)用廣泛[4-6]。Foda[7]考慮了運(yùn)行速度、端部支座和阻尼的變化,通過(guò)作動(dòng)器引入適當(dāng)控制力,并運(yùn)用格林函數(shù)來(lái)抑制軸向運(yùn)動(dòng)弦線的橫向振動(dòng)。Tan等[8]探討了具有一般邊界的線性軸向運(yùn)動(dòng)弦的主動(dòng)波控制方法,采用行波消去法建立了雙控制力的主動(dòng)控制率,結(jié)果表明運(yùn)動(dòng)弦線的振動(dòng)可被有效抑制。理論研究證明非線性系統(tǒng)的控制可通過(guò)線性或者非線性控制規(guī)律來(lái)實(shí)現(xiàn),因此以滑模變結(jié)構(gòu)控制和Lyapunov穩(wěn)定性理論為代表的非線性控制方法在軸向運(yùn)動(dòng)弦線控制領(lǐng)域開始引起關(guān)注[9-11]。Li等[12]通過(guò)討論軸向運(yùn)動(dòng)的非線性弦在下游或上游邊界控制時(shí)的振動(dòng)抑制問(wèn)題,證明利用Lyapunov方法可在邊界上采用線性負(fù)速度反饋達(dá)到指數(shù)穩(wěn)定。為減小行進(jìn)弦線張力、激勵(lì)、負(fù)載等不確定參數(shù)變化對(duì)系統(tǒng)穩(wěn)定性的影響,相關(guān)研究結(jié)果表明采用自適應(yīng)控制方法來(lái)修正控制模型以適應(yīng)弦線和擾動(dòng)的動(dòng)特性變化是可行的[13-15]。魯棒控制、神經(jīng)網(wǎng)絡(luò)以及模糊控制等方法在軸向運(yùn)動(dòng)弦線研究中均能獲得滿意的振動(dòng)抑制效果和穩(wěn)定性[16-18]。

        貨運(yùn)鏈索由相鄰的水平和垂直鏈環(huán)交錯(cuò)連接,和弦線在幾何構(gòu)型上存在差異。鏈索經(jīng)過(guò)托索裝置時(shí)產(chǎn)生多邊形效應(yīng)的振動(dòng)激勵(lì),對(duì)貨運(yùn)系統(tǒng)的工作穩(wěn)定性會(huì)產(chǎn)生不可忽視的影響。國(guó)內(nèi)外有關(guān)行進(jìn)弦線類橫向振動(dòng)及其抑制的研究大多都是對(duì)運(yùn)動(dòng)弦線、行進(jìn)梁和滾子輸送鏈抽象問(wèn)題進(jìn)行分析,未見(jiàn)軸向運(yùn)動(dòng)鏈環(huán)系統(tǒng)減振控制有關(guān)的研究報(bào)道。為有效抑制果園貨運(yùn)鏈索行進(jìn)過(guò)程中的橫向振動(dòng),需要在分析系統(tǒng)動(dòng)力學(xué)特性的基礎(chǔ)上,設(shè)計(jì)有效的邊界作動(dòng)器進(jìn)行主動(dòng)減振。因此,本文基于Hamilton原理建立復(fù)雜工況下行進(jìn)鏈索和邊界作動(dòng)器的動(dòng)力學(xué)耦合模型,利用Lyapunov方法進(jìn)行鏈索橫向振動(dòng)閉環(huán)系統(tǒng)的漸近穩(wěn)定性研究,從而抑制多邊形效應(yīng)作用下運(yùn)動(dòng)鏈索橫向振動(dòng),以期為果園貨運(yùn)鏈索的振動(dòng)控制與穩(wěn)定性分析提供依據(jù)。

        1 數(shù)學(xué)模型的建立

        假設(shè)貨運(yùn)鏈索的各個(gè)支撐裝置高度和間距相同,忽略鏈環(huán)之間的黏性阻尼和彎曲剛度,假設(shè)鏈索行進(jìn)時(shí)只有豎直方向的振動(dòng),邊界條件和外部擾動(dòng)為零,從而可以將其理想化為具有均勻分布集中載荷的軸向運(yùn)動(dòng)弦線模型[19],其單個(gè)跨度內(nèi)模型如圖1a所示。

        1. 作動(dòng)器 2. 平衡塊 3. 步進(jìn)電動(dòng)機(jī) 4. 磁粉離合器 5. 扭矩傳感器

        1. Actuator 2. Counterbalance 3. Stepper motor 4. Magnetic powder clutch 5. Torque sensor

        注:為集中質(zhì)量,kg;為集中質(zhì)量與左托索輪的距離,m;為時(shí)間,s;(,)為鏈索橫向振動(dòng)位移,m;為鏈索行進(jìn)速度,m·s–1;為單跨跨度,m。

        Note:represents the lumped mass, kg;is the distance between the lumped mass and left supporing wheel, m;is time, s;(,) is the transverse vibration of chain, m;is the travel speed of moving chain, m/s;is the length of a single span, m.

        圖1 行進(jìn)鏈索系統(tǒng)

        Fig.1 Moving chain system

        假設(shè)鏈索的軸向運(yùn)行速度恒定不變,左端支撐裝置的托索輪固定,右端支撐裝置的活動(dòng)托索輪作為作動(dòng)器的末端執(zhí)行器,為行進(jìn)鏈索提供控制力F,通過(guò)作動(dòng)器與鏈索的耦合進(jìn)而達(dá)到抑制該跨度內(nèi)行進(jìn)鏈索橫向振動(dòng)的目的,如圖1b所示。(,)是鏈索的橫向振動(dòng)位移,其中為時(shí)間,為集中質(zhì)量與左托索輪的距離。相關(guān)偏微分算式的簡(jiǎn)化形式見(jiàn)式(1):

        鏈索在位置豎直方向的振動(dòng)速度為:

        根據(jù)虛功原理,可得作動(dòng)器左側(cè)受控鏈索的動(dòng)能1、勢(shì)能1以及作動(dòng)器裝置的動(dòng)能2為:

        式中δ為微小增量符號(hào);為鏈索張力,N;是磁粉離合器、扭矩傳感器的轉(zhuǎn)動(dòng)慣量之和,kg·m2;1、2分別為托索裝置、平衡塊的質(zhì)量,kg;為作動(dòng)器輸出同步帶輪直徑,m;U(,)是同步帶輪線速度,m/s;為當(dāng)量線密度,kg/m,其表達(dá)式為:

        式中0為鏈索線密度,kg/m;為單跨跨度,m;k為第個(gè)集中質(zhì)量,kg;(–x)為狄克拉函數(shù);x表示第個(gè)集中質(zhì)量與左托索輪的距離,m;為集中載荷的數(shù)量。

        作動(dòng)器非保守力F()的虛功方程:

        考慮到作動(dòng)器右側(cè)的貨運(yùn)鏈索振動(dòng)為外部擾動(dòng),因此構(gòu)建作動(dòng)器的動(dòng)力學(xué)方程需要導(dǎo)入右側(cè)鏈索的能量方程,可得作動(dòng)器右側(cè)鏈索的動(dòng)能3和勢(shì)能2:

        根據(jù)Hamilton原理[20-22],推導(dǎo)可得:

        對(duì)式(8)進(jìn)行分部積分,并代入邊界條件(0,)=0和(2,)=0,化簡(jiǎn)可得:

        整理得貨運(yùn)鏈索和作動(dòng)器的動(dòng)力學(xué)微分方程:

        鏈索的初始條件為:

        式中為單跨鏈索最大垂度,m。

        2 Lyapunov函數(shù)構(gòu)建

        如圖1a所示,左托索裝置為受控跨度內(nèi)貨運(yùn)鏈索的左側(cè)約束點(diǎn),作動(dòng)器動(dòng)力學(xué)方程為受控鏈索的右邊界條件,并且邊界激勵(lì)引起的振幅遠(yuǎn)小于跨度。

        Lyapunov法是通過(guò)構(gòu)建廣義能量函數(shù)來(lái)分析控制系統(tǒng)穩(wěn)定性的一種方法[23-25]。為簡(jiǎn)化計(jì)算,構(gòu)建貨運(yùn)鏈索Lyapunov函數(shù)時(shí),右邊界的多邊形效應(yīng)看成作用在邊界位置的一個(gè)外部擾動(dòng)力(),即

        作動(dòng)器未進(jìn)行振動(dòng)控制時(shí),鏈索的機(jī)械能為

        為分析未控鏈索橫向振動(dòng)有界性,選取Lyapunov函數(shù)0為:

        式中均為正常數(shù)。

        利用平方和不等式,得:

        選取恰當(dāng)?shù)?,可滿足0≤1≤1條件,即

        由式(13)~(16)可得:

        可知,工作過(guò)程中未受控制貨運(yùn)鏈索的振動(dòng)機(jī)械能是正定有界的。

        定義輔助量k用于引入作動(dòng)器的能量方程:

        利用式(12)、(17)和(18),構(gòu)建受控鏈索的Lyapunov函數(shù)為:

        3 控制規(guī)律設(shè)計(jì)

        作動(dòng)器的控制力設(shè)計(jì)為:

        其中:

        式中是一個(gè)正常數(shù)。

        將式(21)代入到式(20),得

        令正常數(shù)滿足如下不等式

        將2代入式(23),結(jié)合不等式(24)可得:

        式中是一個(gè)正常數(shù),若令:

        由于托索位置多邊形效應(yīng)引起的邊界激勵(lì)是有界的,那么必定存在一個(gè)非負(fù)的正常數(shù)C使得:

        將式(27)和式(28)代入到式(23)積分可得:

        結(jié)合式(13)、式(17)、式(19)和式(29),可得:

        由式(30)可知,貨運(yùn)鏈索的總機(jī)械能在作動(dòng)器控制力的作用下漸進(jìn)收斂到一個(gè)常數(shù),因?yàn)槎噙呅涡?yīng)引起的邊界激勵(lì)比較小,并且和3均為比較小的正常數(shù),可以認(rèn)定ξηC/3是一個(gè)非常小的常數(shù),最終貨運(yùn)鏈索按指數(shù)漸進(jìn)穩(wěn)定到安全的工作狀態(tài)。

        多邊形效應(yīng)引起的邊界干擾通常為正弦形式的邊界激勵(lì),即:

        式中為鏈節(jié)的長(zhǎng)度,m;為幅值,m;為相位角,rad。

        類似推導(dǎo)可得:

        進(jìn)而可知:

        因此,在多邊形效應(yīng)已知的條件下,同樣可以構(gòu)建相應(yīng)的作動(dòng)器控制力方程,使得貨運(yùn)鏈索的總機(jī)械能在作動(dòng)器控制力的作用下具有指數(shù)漸進(jìn)穩(wěn)定性,進(jìn)而保持鏈索穩(wěn)定在安全的工作狀態(tài)。

        4 數(shù)值仿真分析

        為驗(yàn)證鏈索橫向振動(dòng)非線性控制方法的有效性,采用數(shù)值仿真的方式進(jìn)行計(jì)算求解。仿真模型參數(shù)來(lái)自國(guó)家柑橘產(chǎn)業(yè)技術(shù)體系果園生產(chǎn)機(jī)械化研究室安裝在華南農(nóng)業(yè)大學(xué)工程學(xué)院的貨運(yùn)鏈索試驗(yàn)系統(tǒng)。其中=6 m,=0.02 m,=0.2 m,0,ρ=0.79 kg/m,=8 kg,=1,=400 N,122.5 kg,I=1.1×10–7kg·m2,P=30 mm,0.55 m/s,0.05 m。根據(jù)式(17)、式(30)、式(31)以及式(33),可求得=0.25=0.01、λ1=80、λ2=30=0.08=0.083=0.0203。

        采用數(shù)值計(jì)算方法進(jìn)行鏈索橫向振動(dòng)控制仿真,貨運(yùn)行進(jìn)鏈索在不受邊界振動(dòng)控制器作用下,在受控鏈索跨度中點(diǎn)的振動(dòng)位移如圖2a所示。

        由圖2a可知多邊形效應(yīng)增加了鏈索橫向振動(dòng)的不確定性,并且隨著時(shí)間的增加鏈索其受影響振動(dòng)會(huì)加劇。若多邊形效應(yīng)當(dāng)成未知邊界干擾和已知邊界干擾進(jìn)行處理,通過(guò)主動(dòng)邊界控制力作用,受控鏈索跨度中點(diǎn)處的振動(dòng)位移分別如圖2b和圖2c所示。

        圖2 測(cè)量點(diǎn)振動(dòng)位移仿真結(jié)果

        由圖2可知,貨運(yùn)鏈索在邊界振動(dòng)控制器的作用下,受控鏈索段的橫向振動(dòng)約在4.5個(gè)周期后收斂到穩(wěn)定狀態(tài)。雖然在邊界干擾未知時(shí),其振動(dòng)幅度并沒(méi)有衰減到零,但其振動(dòng)幅度已能確保貨運(yùn)鏈索系統(tǒng)的平穩(wěn)和安全運(yùn)行,說(shuō)明采用Lyapunov方法設(shè)計(jì)的控制律是有效的。

        5 試驗(yàn)驗(yàn)證

        由式(21)可知,通過(guò)對(duì)作動(dòng)器作用點(diǎn)的位置及其前后的位置進(jìn)行空間和時(shí)間微分,得到U(,)、U(L,)、U(,)和U(,),進(jìn)而可計(jì)算得到需要作用于作動(dòng)器控制力的大小。按照控制規(guī)律的實(shí)施要求,本文設(shè)計(jì)了一種鏈索邊界作動(dòng)器振動(dòng)控制系統(tǒng),其試驗(yàn)裝置主要由驅(qū)動(dòng)機(jī)構(gòu)、豎直位置調(diào)節(jié)機(jī)構(gòu)及電控單元組成[26-28],見(jiàn)圖3a。

        1. 動(dòng)力輸入軸 2. 從動(dòng)軸 3. 主從動(dòng)齒輪組 4. 步進(jìn)電動(dòng)機(jī) 5. 磁粉離合器6. 扭矩傳感器 7. 滑動(dòng)光桿 8. 箱式滑動(dòng)軸承 9. 同步帶輪 10. 橫桿11. 托索裝置 12. 平衡塊 13. 同步帶

        如圖3b所示,驅(qū)動(dòng)機(jī)構(gòu)由步進(jìn)電動(dòng)機(jī)、磁粉離合器和扭矩傳感器組成,按照控制要求向豎直調(diào)節(jié)機(jī)構(gòu)輸出給定扭矩。步進(jìn)電動(dòng)機(jī)負(fù)責(zé)動(dòng)力輸出,可控制其轉(zhuǎn)速和轉(zhuǎn)向;磁粉離合器通過(guò)控制其輸入電壓大小改變其輸出扭矩的大小;WDH-Z扭矩傳感器監(jiān)測(cè)其輸出的扭矩、轉(zhuǎn)速和轉(zhuǎn)向。電控單元由圖像采集裝置、振動(dòng)控制器、步進(jìn)電機(jī)驅(qū)動(dòng)器、磁粉離合器驅(qū)動(dòng)器組成。電控單元根據(jù)圖像采集裝置反饋的鏈索振動(dòng)加速度、速度和位置信號(hào),結(jié)合貨運(yùn)鏈索的動(dòng)力學(xué)模型,計(jì)算出減振裝置當(dāng)前需要輸出的控制力的大小和方向,并將其轉(zhuǎn)換成控制信號(hào)發(fā)送給步進(jìn)電機(jī)驅(qū)動(dòng)器和磁粉離合器驅(qū)動(dòng)器,通過(guò)扭矩傳感器檢測(cè)驅(qū)動(dòng)機(jī)構(gòu)是否輸出了目標(biāo)扭矩。

        如圖3c所示,豎直位置調(diào)節(jié)機(jī)構(gòu)由動(dòng)力輸入軸、從動(dòng)軸、主從動(dòng)齒輪組、同步帶及同步帶輪、滑動(dòng)光桿及箱式滑動(dòng)軸承組成,其功能是將驅(qū)動(dòng)機(jī)構(gòu)輸送的扭矩轉(zhuǎn)換成托索裝置對(duì)貨運(yùn)鏈索的控制力。動(dòng)力輸入軸同軸安裝主動(dòng)齒輪與同步帶輪,從動(dòng)軸同軸安裝從動(dòng)齒輪與同步帶輪。驅(qū)動(dòng)機(jī)構(gòu)輸出的扭矩經(jīng)動(dòng)力輸入軸,通過(guò)主從動(dòng)齒輪對(duì)帶動(dòng)從動(dòng)軸反向運(yùn)轉(zhuǎn),進(jìn)而使兩側(cè)的同步帶產(chǎn)生運(yùn)動(dòng),帶動(dòng)箱式直線軸承沿與其配合的滑動(dòng)光桿上下平移,與此同時(shí)帶動(dòng)托索裝置一起沿豎直方向運(yùn)動(dòng),從而實(shí)現(xiàn)扭矩與控制力的轉(zhuǎn)化。同步帶內(nèi)側(cè)與承載托索裝置的橫桿連接,外側(cè)均安裝平衡托索裝置質(zhì)量用的平衡塊,以減輕驅(qū)動(dòng)機(jī)構(gòu)的負(fù)荷。

        系統(tǒng)控制流程如圖4所示。

        圖4 控制流程圖

        如圖5所示,振動(dòng)控制器基于STM32F103開發(fā)板制作,圖像采集裝置由2個(gè)Z30A工業(yè)相機(jī)(數(shù)據(jù)采集速度150幀/秒,圖像分辨率640×480像素)和Cortex-A9圖像處理器組成。工業(yè)相機(jī)采集鏈索在水平和豎直方向上的實(shí)際位置圖像,通過(guò)USB接口輸入到Cortex-A9微處理器硬件平臺(tái)的iTOP-4412開發(fā)板嵌入式四核處理器Exynos4412中進(jìn)行處理[29]。將工業(yè)相機(jī)采集到的每一幀彩色圖像轉(zhuǎn)化為灰度圖像,并進(jìn)行混合濾波計(jì)算和自適應(yīng)閾值二值化,獲取行進(jìn)鏈索的像素偏移量后,對(duì)比計(jì)算得到鏈索的實(shí)時(shí)位置信息。圖像處理器再對(duì)鏈索觀測(cè)點(diǎn)的位置進(jìn)行數(shù)值微分,經(jīng)RS232串口將計(jì)算結(jié)果發(fā)送給振動(dòng)控制器。

        圖5 圖像采集裝置

        試驗(yàn)驗(yàn)證的參數(shù)取值與數(shù)值仿真試驗(yàn)相同。如圖6所示,在空載運(yùn)行條件下,受控鏈索跨度中點(diǎn)的橫向振動(dòng)在邊界控制器的作用下歷時(shí)約5個(gè)周期后漸近穩(wěn)定,說(shuō)明施加主動(dòng)的邊界控制力可以得到較好的鏈索振動(dòng)抑制效果。由于設(shè)計(jì)控制規(guī)律的過(guò)程中忽略了一些不確定因素,并且對(duì)貨運(yùn)鏈索的動(dòng)力學(xué)模型進(jìn)行了簡(jiǎn)化,因此系統(tǒng)的實(shí)際控制效果與仿真控制相比存在一定的偏差。

        圖6 測(cè)量點(diǎn)振動(dòng)位移試驗(yàn)結(jié)果

        6 結(jié) 論

        1)考慮到多邊形效應(yīng)對(duì)貨運(yùn)鏈索橫向振動(dòng)的影響,基于Hamilton原理構(gòu)建了復(fù)雜工況下行進(jìn)鏈索和邊界作動(dòng)器的動(dòng)力學(xué)耦合模型。根據(jù)廣義能量函數(shù)進(jìn)行Lyapunov函數(shù)的選取與控制率的設(shè)計(jì),推導(dǎo)證明了鏈索橫向振動(dòng)能量在給定控制力的作用下能夠達(dá)到指數(shù)穩(wěn)定。

        2)設(shè)計(jì)了一種鏈索邊界作動(dòng)器振動(dòng)控制系統(tǒng),鏈索振動(dòng)位移采用圖像采集方式處理。仿真和試驗(yàn)研究的結(jié)果表明:多邊形效應(yīng)增加了鏈索橫向振動(dòng)的不確定性,通過(guò)施加主動(dòng)的邊界控制力,鏈索橫向振動(dòng)能夠在5個(gè)周期內(nèi)快速衰減,從而可確保貨運(yùn)系統(tǒng)處于安全穩(wěn)定的運(yùn)行狀態(tài)。

        貨運(yùn)鏈索在工作過(guò)程中,承載量、鏈速、索力等參數(shù)的時(shí)變量很難準(zhǔn)確檢測(cè),風(fēng)雨激勵(lì)等外界干擾也存在一定的不確定性,因此如何采用自適應(yīng)控制方法對(duì)行進(jìn)鏈索進(jìn)行有效減振控制,本課題組將作進(jìn)一步的探討和研究。

        [1] 洪添勝,蘇建,朱余清,等. 山地橘園鏈?zhǔn)窖h(huán)貨運(yùn)索道設(shè)計(jì)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(6):108-111. Hong Tiansheng, Su Jian, Zhu Yuqing, et al. Circular chain ropeway for cargo transportation in mountain citrus orchard[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(6): 108-111. (in Chinese with English abstract)

        [2] 李君,薛坤鵬,楊洲,等. 果園貨運(yùn)鏈索風(fēng)致振動(dòng)非線性動(dòng)力學(xué)分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(5):75-81. Li Jun, Xue Kunpeng, Yang Zhou, et al. Nonlinear dynamics analysis for wind-induced vibration of orchard chain ropeway system[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(5): 75-81. (in Chinese with English abstract)

        [3] 李君,李雪平,楊洲,等. 果園鏈索系統(tǒng)橫向運(yùn)動(dòng)共振條件及頻率分析(英文)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(23):50-57. Li Jun, Li Xueping, Yang Zhou, et al. Transversal vibration analysis of resonance condition and frequency for orchard chain ropeway system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014,30(23): 50-57. (in English with Chinese abstract)

        [4] Alsahlani A, Mukherjee R. Vibration control of a string using a scabbard-like actuator. Journal of Sound & Vibration[J], 2011, 330(12): 2721-2732.

        [5] Shahruz S M, Parasurama S A. Suppression of vibration in the axially moving Kirchhoff string by boundary control[J]. Journal of Sound and Vibration, 1998, 214(3): 567-575.

        [6] Zhang W, Chen L Q. Vibration control of an axially moving string system: wave cancellation method[J]. Applied Mathematics & Computation, 2006, 175(1): 851-863.

        [7] Foda M A. Vibration control and suppression of an axially moving string[J]. Journal of Vibration & Control, 2012, 18(1): 58-75.

        [8] Tan C A, Ying S. Active wave control of the axially moving string: Theory and experiment[J]. Journal of Sound and Vibration, 2000, 236(5): 861-880.

        [9] Shahruz S M, Kurmaji D A. Vibration suppression of a non-linear axially moving string by boundary control[J]. Journal of Sound and Vibration, 1997, 201(1): 145-152.

        [10] 余小剛,張偉. 軸向運(yùn)動(dòng)弦線橫向振動(dòng)的變結(jié)構(gòu)控制[J]. 福州大學(xué)學(xué)報(bào)(自然科學(xué)版),2012,40(2):217-221. Yu Xiaogang, Zhang Wei. Transverse vibration control of an axially moving string system by variable structure control[J]. Journal of Fuzhou University (Natural Science Edition), 2012, 40(2): 217-221. (in Chinese with English abstract)

        [11] Kim D, Kim S, Jung I H. Stabilization for the Kirchhoff type equation from an axially moving heterogeneous string modeling with boundary feedback control[J]. Nonlinear Analysis Theory Methods & Applications, 2012, 74 (10): 3598-3617.

        [12] Li T C, Hou Z C, Li J F. Stabilization analysis of a generalized nonlinear axially moving string by boundary velocity feedback[J]. Automatica, 2008, 44(2): 498-503.

        [13] Nguyen Q C, Hong K S. Asymptotic stabilization of a nonlinear axially moving string by adaptive boundary control[J]. Journal of Sound & Vibration, 2010, 329(22): 4588-4603.

        [14] Chen L Q, Zhang W. Adaptive vibration reduction of an axially moving string via a tensioner[J]. International Journal of Mechanical Sciences, 2006, 48(12): 1409-1415.

        [15] 張偉,陳立群. 軸向運(yùn)動(dòng)弦線橫向振動(dòng)控制的自適應(yīng)方法[J]. 機(jī)械工程學(xué)報(bào),2006,42(4):96-100. Zhang Wei, Chen Liqun. Transverse vibration control of an axially moving string system by adaptive method[J]. Chinese

        Journal of Mechanical Engineering, 2006, 42(4): 96-100. (in Chinese with English abstract)

        [16] Yang K J, Hong K S, Matsuno F. Robust adaptive boundary control of an axially moving string under a spatiotemporally varying tension[J]. Journal of Sound & Vibration, 2004, 273(4): 1007-1029.

        [17] Huang J S, Chao P C, Fung R F, et al. Parametric control of an axially moving string via fuzzy sliding-mode and fuzzy neural network methods[J]. Journal of Sound & Vibration, 2003, 264(1): 177-201.

        [18] Chao P C, Lai C. Boundary control of an axially moving string via fuzzy sliding-mode control and fuzzy neural network methods[J]. Journal of Sound & Vibration, 2003, 262(1): 795-813.

        [19] Yang Z, Li X P, Li J, et al. Transversal vibration of chain ropeway system having support boundary conditions with polygonal action[J]. Journal of Sound and Vibration, 2015, (3): 1-9.

        [20] Fung R F, Huang J S, Yeh J Y. Nonlinear dynamic stability of a moving string by Hamiltonian formulation[J]. Computers & Structures, 1998, 66(5): 597-612.

        [21] Ghayesh M H, Amabili M, Paidoussis M P. Nonlinear vibrations and stability of an axially moving beam with an intermediate spring support: Two-dimensional analysis[J]. Nonlinear Dynamics, 2012, 70(70): 335-354.

        [22] 任西春,王躍方. 基于Hamilton體系的彈性行進(jìn)索精確模態(tài)分析[J]. 振動(dòng)工程學(xué)報(bào),2004,17(增刊2):744-746. Ren Xichun, Wang Yuefang. Exact modal analysis of elastic, axially traveling cables based on Hamiltonian dynamics[J]. Journal of Vibration Engineering, 2004, 17(Supp2): 744-746. (in Chinese with English abstract)

        [23] Nguyen Q C, Hong K S. Transverse vibration control of axially moving membranes by regulation of axial velocity[J]. IEEE Transactions on Control Systems Technology, 2012, 20(4): 1124-1131.

        [24] Guo B Z, Jin F F. The active disturbance rejection and sliding mode control approach to the stabilization of the Euler– Bernoulli beam equation with boundary[J]. Automatica, 2013, 49(9): 2911-2918.

        [25] Liu Y, Zhao Z, He W. Stabilization of an axially moving accelerated/decelerated system via an adaptive boundary control[J]. ISA Transactions, 2016, 64: 394-404.

        [26] 李君,薛坤鵬,楊洲,等. 一種鏈?zhǔn)截涍\(yùn)索道減振裝置及方法:ZL201510812640.7[P]. 2016-02-17.

        [27] 李君,楊洲,洪添勝,等. 一種鏈?zhǔn)截涍\(yùn)索道水平調(diào)節(jié)減振裝置及方法:ZL201310157004.6[P]. 2013- 08-02.

        [28] 李君,楊洲,洪添勝,等. 一種鏈?zhǔn)截涍\(yùn)索道垂直調(diào)節(jié)減振裝置及方法:ZL201310156504.8[P]. 2013- 09-04.

        [29] 李君,薛坤鵬,楊洲,等. 山地果園鏈索運(yùn)送裝備運(yùn)動(dòng)傳感系統(tǒng)設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2017,39(6):79-84, 95. Li Jun, Xue Kunpeng, Yang Zhou, et al. Motion sensing system of chain equipment for hilly orchard[J]. Journal of Agricultural Mechanization Research, 2017, 39 (6): 79-84, 95. (in Chinese with English abstract)

        李 君,薛坤鵬,楊 洲,洪添勝.果園貨運(yùn)鏈索橫向振動(dòng)非線性控制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(23):66-72. doi:10.11975/j.issn.1002-6819.2017.23.009 http://www.tcsae.org

        Li Jun, Xue Kunpeng, Yang Zhou, Hong Tiansheng. Nonlinear transverse vibration control of orchard conveying chain system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(23): 66-72. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.23.009 http://www.tcsae.org

        Nonlinear transverse vibration control of orchard conveying chain system

        Li Jun1,2, Xue Kunpeng3, Yang Zhou1,2※, Hong Tiansheng1,2

        (1.510642,; 2.510642,; 3.510630,)

        Vibrations associated with motion can degrade the performance of transport systems in orchards. It is important to suppress vibrations which are subjected to varying parameter and boundary disturbance. Early research on the vibration reduction in continuously moving systems was focused on the passive control methods by changing the mass or stiffness to absorb vibrational energy. To improve the effectiveness of vibration controller, many active control methods have been proposed with actuating mechanisms to compute the control effect. The application of conveying chain system was proved to be labor-saving and high efficientin mountainous orchards. Unlike a moving string system, the conveying chain system in the orchard is more complicated in the structure and boundary excitation. When the chain link engages a sprocket tooth,there is an impact caused by polygonal action.The polygonal action results from the chain-support engagement and its resulting vibrations are the source of most of the noise. Moreover, it is inconvenient to mount actuators on the conveying chain system. Since the boundary control technique requires relatively few sensors and actuators, a particular actuator as the control mechanism was attached and coupled to the boundary of the moving chain.The control force was applied by the actuator with negligible dynamics, which was used to reduce the energy of the moving chain while dissipating the energy of a short length of the chain. An image acquisition device was used to measure the transverse displacement of the observation point. The actuator was activated when the vision sensor indicated that the chain vibration has occurred. The behavior of transverse vibration could be predicted by a two-dimensional model in a vertical plane. Then the mathematical model of the coupled chain system including the actuator dynamics was derived by using Hamilton’s principle, which could be represented by the nonlinear partial differential equations after the constraints had been applied. The Lyapunov method illustrates that the states of the system will ultimately travel to an equilibrium point if the total energy is dissipating. The energy dissipation strategy was extended to the chain model considering the polygon effect. In the controlled span part, the Lyapunov method was proposed to design the force control law for ensuring the vibration reduction in one span. Based on the total vibration energy of the moving chain, an energy-based Lyapunov function candidate was defined, which assured the dissipation of the vibration energy. To assure the asymptotical stability of the closed-loop system, a force control law was analyzed to determine the control force under the conditions of unknown disturbance and known disturbance. The proposed control force aimed to enforce this span part to be stationary or vibrate with a small amplitude. The comparison of the vibration amplitude at mid-span point under the controlled condition and uncontrolled condition clearly demonstrated that the vibration of chain part decreased much faster with the controller. The asymptotic exponential stability of moving chain system is proved by using the boundary force controller. The performance of the chain control system depends on force control law with guaranteed stability as well as actuator placement. Both simulation and experimental results confirm the feasibility of vibration suppression.

        agricultural machinery; transportation; vibrations; mountainous orchard; chain; actuator; Lyapunov method; vibration control

        10.11975/j.issn.1002-6819.2017.23.009

        S229+.1; TD527

        A

        1002-6819(2017)-23-0066-07

        2017-07-17

        2017-11-07

        國(guó)家自然科學(xué)基金項(xiàng)目(51205139);農(nóng)業(yè)部農(nóng)業(yè)科研創(chuàng)新團(tuán)隊(duì)項(xiàng)目(農(nóng)辦人[2015]62 號(hào));廣東省嶺南水果產(chǎn)業(yè)技術(shù)體系創(chuàng)新團(tuán)隊(duì)建設(shè)項(xiàng)目(2017LM1107)

        李 君,湖南永州人,教授,主要從事現(xiàn)代農(nóng)業(yè)裝備與機(jī)械化研究。Email:autojunli@scau.edu.cn

        楊 洲,山西襄汾人,教授,博士生導(dǎo)師,主要從事農(nóng)業(yè)機(jī)械化研究。Email:yangzhou@scau.edu.cn

        猜你喜歡
        弦線控制力作動(dòng)器
        Mathstudio在弦振動(dòng)實(shí)驗(yàn)研究中的應(yīng)用
        運(yùn)動(dòng)干預(yù)對(duì)自我控制力影響的實(shí)驗(yàn)研究
        基于火箭發(fā)射起豎的機(jī)電伺服作動(dòng)器質(zhì)量特性研究
        靈活多變,有著驚喜的細(xì)節(jié)重播和控制力 Starke Sound(史塔克聲學(xué))AD4.320 4聲道功率放大器
        作動(dòng)器防擺動(dòng)控制結(jié)構(gòu)設(shè)計(jì)
        基于混合潤(rùn)滑理論的航空作動(dòng)器密封性能分析
        駐波演示實(shí)驗(yàn)研究
        國(guó)有大型建筑企業(yè)控制力系統(tǒng)診斷研究
        航空作動(dòng)器的VL密封特性分忻
        膠帶順槽與車場(chǎng)柔性連接探討
        永久免费看黄网站性色| 中文字幕日韩精品无码内射| 国产熟人av一二三区| 国产精品久久久久久久久鸭| 制服丝袜视频国产一区| 亚洲欧洲日产国码无码| 国产成人精品cao在线| 精品日本一区二区视频| 精品av一区二区在线| 亚洲天堂av一区二区| 亚洲国产精品无码aaa片| 377p日本欧洲亚洲大胆张筱雨| 欧美激情内射喷水高潮| 欧美视频九九一区二区| 亚洲天堂中文字幕君一二三四| 午夜一区二区三区免费观看| 45岁妇女草逼视频播放| 亚洲av无码专区在线观看下载 | 成人美女黄网站色大免费的| 亚洲中久无码永久在线观看同 | 国产精品国产午夜免费看福利| 日本精品av中文字幕| 亚洲av免费不卡在线观看| 色五月丁香五月综合五月| 玩弄少妇高潮ⅹxxxyw| 精品手机在线视频| av在线手机中文字幕| 少妇爽到高潮免费视频| 国产激情视频在线观看的| 国产精品久久久久影院嫩草| 成人久久免费视频| 琪琪av一区二区三区| 国产av久久在线观看| 真人做人试看60分钟免费视频| 国产啪精品视频网站| 亚洲人妻无缓冲av不卡| 亚洲精品在线观看一区二区 | 少妇av射精精品蜜桃专区| 一本久久a久久精品亚洲| 国产九色AV刺激露脸对白| 国产一区不卡视频在线|