亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        蜂王漿高產(chǎn)蜜蜂與意大利蜜蜂工蜂上顎腺磷酸化蛋白質(zhì)組分析

        2017-12-18 03:49:34李爽李建科
        關(guān)鍵詞:上顎意蜂哺育

        李爽,李建科

        ?

        蜂王漿高產(chǎn)蜜蜂與意大利蜜蜂工蜂上顎腺磷酸化蛋白質(zhì)組分析

        李爽,李建科

        (中國(guó)農(nóng)業(yè)科學(xué)院蜜蜂研究所,北京 100093)

        工蜂上顎腺的主要生物學(xué)功能是分泌脂肪酸為蜂群提供營(yíng)養(yǎng),并參與報(bào)警外激素的合成。蜂王漿高產(chǎn)蜜蜂(漿蜂,)和意大利蜜蜂(意蜂,)是中國(guó)主要蜂種,但磷酸化蛋白質(zhì)組調(diào)控其上顎腺的發(fā)育和功能的機(jī)理尚未開展研究。通過比較二者工蜂上顎腺磷酸化蛋白質(zhì)組的差異,揭示磷酸化蛋白質(zhì)組調(diào)控上顎腺發(fā)育及脂肪酸代謝機(jī)理。解剖漿蜂、意蜂工蜂出房蜂、哺育蜂(10日齡左右)、采集蜂頭部,取其上顎腺,進(jìn)行蛋白質(zhì)提取、液內(nèi)酶切,采用固相金屬離子親和層析色譜法(IMAC)進(jìn)行磷酸化肽段富集,采用Zip-tip C18柱對(duì)肽段除鹽,通過LC-MS/MS(液相色譜與二級(jí)質(zhì)譜串聯(lián))對(duì)樣品進(jìn)行分析,首先根據(jù)MaxQuant和Persues軟件對(duì)數(shù)據(jù)質(zhì)量進(jìn)行評(píng)估、主成分分析、表達(dá)譜聚類定量分析。然后利用PEAKS軟件對(duì)質(zhì)譜數(shù)據(jù)進(jìn)行蛋白質(zhì)定量和定性分析,根據(jù)定性和定量分析結(jié)果,對(duì)漿蜂和意蜂上顎腺磷酸化蛋白質(zhì)組進(jìn)行生物學(xué)進(jìn)程和KEGG代謝通路富集的生物信息學(xué)分析比較。最后利用Scaffold PTM軟件確定磷酸化位點(diǎn)、預(yù)測(cè)磷酸化肽段的基序類型。漿蜂3個(gè)時(shí)期分別鑒定到2 225、1 922、2 159個(gè)磷酸化蛋白,意蜂分別鑒定到1 740、1 592、1 682個(gè)磷酸化蛋白,漿蜂的磷酸化蛋白數(shù)目顯著高于意蜂,說明漿蜂上顎腺的磷酸化調(diào)控網(wǎng)絡(luò)較意蜂復(fù)雜。盡管它們上顎腺的磷酸化過程存在很大差異,但幼蜂、哺育和采集3個(gè)時(shí)期的磷酸化蛋白表達(dá)譜均相似,說明漿蜂和意蜂3個(gè)時(shí)期表達(dá)的磷酸化蛋白質(zhì)執(zhí)行類似的生物學(xué)功能來保障腺體的發(fā)育和分泌活動(dòng)。對(duì)每個(gè)時(shí)期磷酸化蛋白質(zhì)組比較,發(fā)現(xiàn)漿蜂和意蜂上顎腺3個(gè)發(fā)育時(shí)期的磷酸化蛋白質(zhì)組均存在顯著差異,其中哺育蜂時(shí)期二者的差異最大,漿蜂有87個(gè)磷酸化蛋白高表達(dá),主要參與能量和脂肪酸代謝,說明其上顎腺的脂肪酸合成力加強(qiáng)(包括10-HDA),滿足蜂王漿產(chǎn)量提高的同時(shí)10-HDA含量增加,為其種群繁衍提供必要營(yíng)養(yǎng),而意蜂上調(diào)表達(dá)41個(gè)蛋白,主要參與能量代謝。漿蜂、意蜂各時(shí)期均識(shí)別到酸性、堿性和脯氨酸介導(dǎo)的3種類型motif;哺育蜂時(shí)期漿蜂特異識(shí)別到的motif對(duì)應(yīng)激酶家族與細(xì)胞增殖相關(guān),可能支持其上顎腺形態(tài)發(fā)育,與漿蜂分泌能力增強(qiáng)相關(guān)。漿蜂和意蜂在3個(gè)時(shí)期均通過加強(qiáng)不同的磷酸化蛋白質(zhì)組來支撐上顎腺的發(fā)育及功能,其中最顯著的差異在哺育蜂時(shí)期,漿蜂哺育蜂顯著提高了脂肪酸合成力,保障其蜂王漿的基本功能。這在蛋白質(zhì)修飾的水平上深入了解漿蜂蜂王漿高產(chǎn)的產(chǎn)漿生物學(xué)機(jī)理。

        漿蜂;意大利蜜蜂;上顎腺;磷酸化蛋白質(zhì)組

        0 引言

        【研究意義】蜂王漿是由工蜂咽下腺、上顎腺為主等腺體共同分泌的淡黃色乳漿狀物質(zhì)[1],富含蛋白質(zhì)和脂肪酸,是蜂王和幼蟲的食物,其中所含的脂肪酸在蜂群營(yíng)養(yǎng)[2]和幼蟲發(fā)育[3]方面發(fā)揮重要作用。其中一種不飽和脂肪酸10-羥基-2癸烯酸(10-HDA)[4],因其在自然界中僅蜂王漿中存在,又被稱為“王漿酸”。蜂王漿中10-HDA的含量是評(píng)價(jià)蜂王漿質(zhì)量的重要標(biāo)準(zhǔn)和貿(mào)易標(biāo)準(zhǔn)之一[5]。蜂王漿同時(shí)還是一種對(duì)人類健康具有重要作用的天然功能性保健品,具有調(diào)節(jié)人體血壓[6]、提高免疫力[7]、消炎抗菌[8]等功效。20世紀(jì)90年代中國(guó)從意大利蜜蜂(意蜂,,ITBs)中培育出蜂王漿高產(chǎn)蜜蜂(漿蜂,RJBs),漿蜂和意蜂為同一亞種,是意蜂的一個(gè)品系[9-10],漿蜂的蜂王漿產(chǎn)量約為意蜂10倍以上,一群漿蜂可年產(chǎn)約10 kg蜂王漿[11]。中國(guó)蜂王漿年產(chǎn)量達(dá)4 000多噸[12],是世界第一生產(chǎn)大國(guó),漿蜂的選育為中國(guó)蜂王漿產(chǎn)業(yè)發(fā)展發(fā)揮巨大貢獻(xiàn)。然而在漿蜂蜂王漿高產(chǎn)的同時(shí),10-HDA含量出現(xiàn)一定程度的下降,因此,明確究竟是漿蜂上顎腺生理機(jī)能未隨著產(chǎn)漿量提高而增強(qiáng)還是其他環(huán)境因素所致,對(duì)于提高10-HDA含量具有重要意義?!厩叭搜芯窟M(jìn)展】上顎腺是蜜蜂頭部一對(duì)與上顎相連的袋狀外分泌腺體[13]。蜂王上顎腺分泌物主要是各類信息素,用于蜂群的交流和維護(hù)蜂群穩(wěn)定[14-15]。工蜂上顎腺主要分泌幼蟲食物所需脂肪酸[16]和2-庚酮等作為報(bào)警信息素[17]。上顎腺基因組學(xué)研究表明,與蜂王相比,工蜂上顎腺中脂肪酸合酶(fatty acid synthase,F(xiàn)AS)及高表達(dá),表明上顎腺中有關(guān)脂肪酸代謝在不同級(jí)型間存在差異[18]。經(jīng)過蜂王漿高產(chǎn)的選育,漿蜂和意蜂的咽下腺[19]、神經(jīng)系統(tǒng)[20]的蛋白質(zhì)組等方面已經(jīng)出現(xiàn)了明顯分化,漿蜂咽下腺顯著提高了蛋白質(zhì)合成力,以保證蜂王漿高產(chǎn)的生理需求[21]。神經(jīng)系統(tǒng)為了保證蜂王漿高產(chǎn)的需求,漿蜂大腦的神經(jīng)肽加強(qiáng)了對(duì)幼蟲信息素識(shí)別、花粉采集、水代謝平衡的調(diào)控能力[20]。這些神經(jīng)生物學(xué)功能的加強(qiáng)在行為和生理上在保證漿蜂蜂王漿的蛋白質(zhì)種類和含量與意蜂沒有差異[21],且比中蜂蜂王漿蛋白的含量還顯著提高[22]。上顎腺蛋白質(zhì)組研究表明,剛出房幼蜂上顎腺表達(dá)的蛋白主要是用于腺體的初始發(fā)育;哺育蜂時(shí)期,上顎腺蛋白質(zhì)組主要與分泌行為有關(guān),且漿蜂脂肪酸合成能力顯著高于意蜂[11];采集蜂時(shí)期,上顎腺表達(dá)的蛋白可以增強(qiáng)蜜蜂的采集效率和對(duì)蜂巢的守衛(wèi)能力[11]。蛋白質(zhì)磷酸化作用是一種重要的蛋白質(zhì)翻譯后修飾形式,通常發(fā)生在絲氨酸(Ser,S)、蘇氨酸(Thr,T)、酪氨酸(Tyr,Y)殘基上[23]。蛋白質(zhì)磷酸化修飾可以調(diào)控蛋白功能[24],調(diào)控許多生命活動(dòng),如細(xì)胞周期[25]、生長(zhǎng)、發(fā)育、凋亡[26]、信號(hào)轉(zhuǎn)導(dǎo)[27]等。在蜜蜂中,磷酸化蛋白參與調(diào)控多項(xiàng)生命活動(dòng),如幼蟲生長(zhǎng)[28]、抗菌[29]抗病毒[30]以及咽下腺和大腦[31]的生長(zhǎng)發(fā)育[23]等。研究表明,磷酸化蛋白質(zhì)組對(duì)咽下腺腺體發(fā)育以及核糖體活性具有重要的調(diào)控作用,從而調(diào)節(jié)蜂王漿蛋白的合成、翻譯過程[23,32]。最新研究表明,哺育蜂和采集蜂大腦蛋白質(zhì)的磷酸化通過調(diào)節(jié)蛋白質(zhì)的功能使其支持不同生理年齡工蜂的神經(jīng)生理活動(dòng),進(jìn)而調(diào)控蜜蜂的哺育和采集行為。蛋白質(zhì)磷酸化通過調(diào)節(jié)糖代謝和糖原生成等代謝途徑加強(qiáng)哺育蜂的哺育功能,而磷酸化蛋白通過調(diào)節(jié)光傳導(dǎo)通路加強(qiáng)采集蜂的條件采集能力[31]。然而磷酸化蛋白質(zhì)如何調(diào)控上顎腺發(fā)育機(jī)制及脂肪酸代謝機(jī)理尚未開展研究。【本研究切入點(diǎn)】針對(duì)蜂王漿產(chǎn)業(yè)的理論問題,在磷酸化蛋白質(zhì)組水平研究上顎腺磷酸化蛋白質(zhì)對(duì)其發(fā)育的調(diào)控和脂肪酸代謝機(jī)理進(jìn)行研究?!緮M解決的關(guān)鍵問題】闡明漿蜂上顎腺磷酸化蛋白質(zhì)組調(diào)控其腺體發(fā)育和脂肪酸代謝機(jī)理,為蜂王漿優(yōu)質(zhì)高產(chǎn)提供理論依據(jù)和生產(chǎn)實(shí)踐基礎(chǔ)。

        1 材料與方法

        試驗(yàn)于2016年9月至2017年5月在中國(guó)農(nóng)業(yè)科學(xué)院蜜蜂研究所完成。

        1.1 化學(xué)試劑

        IMAC磷酸化肽段富集材料購(gòu)自中國(guó)科學(xué)院大連化學(xué)物理研究所;尿素購(gòu)自Solarbio;Ti(SO4)2(硫酸鈦)、硫脲、CHAPS、Tris堿、DTT(二硫蘇糖醇)購(gòu)自Amresco;蛋白酶抑制劑購(gòu)自Roche,Basel;丙酮和TFA(三氟乙酸)購(gòu)自J.T.Baker;Bradford工作液購(gòu)自普利萊;IAA(碘乙酰胺)來自Merk公司;ACN(乙腈)購(gòu)自Fisher;Trypsin酶購(gòu)自Promega;甲酸購(gòu)自MREDA Technology。

        1.2 蛋白樣品制備

        1.2.1 IMAC材料制備 稱取GTP微球200 mg于燒杯中,加入300 mL超純水,超聲混勻;按照GTP微球﹕Ti(SO4)2=1﹕100 稱量硫酸鈦20 g,緩慢加入燒杯中并攪拌,待其完全溶解放入磁鐵轉(zhuǎn)子;將燒杯置于磁力攪拌器上,室溫?cái)嚢柽^夜;將攪拌好的材料分裝到50 mL離心管中,用少量超純水清洗燒瓶加入離心管中,配平,20 000 r/min,離心10 min,棄上清;超純水洗滌離心后材料,20 000 r/min,離心10 min,洗滌6次,盡量將非特異性吸附鈦離子洗凈;用200 mmol·L-1NaCl溶液洗滌上述材料,20 000 r/min,離心10 min,洗兩次;再用超純水洗滌上述材料,20 000 r/min,離心10 min,洗2—3次,保留沉淀;用30 ml超純水懸浮材料,分裝至30個(gè)1.5 mL離心管中,每管1 mL,12 500 r/min,離心15 min,棄上清,旋轉(zhuǎn)蒸發(fā)儀干燥。后儲(chǔ)存于4℃?zhèn)溆谩?/p>

        1.2.2 樣品準(zhǔn)備 試驗(yàn)所用漿蜂和意蜂均飼養(yǎng)于中國(guó)農(nóng)業(yè)科學(xué)院蜜蜂研究所試驗(yàn)蜂場(chǎng),漿蜂來自中國(guó)浙江省,意蜂來自意大利。分別選取群勢(shì)相同的5箱漿蜂和意蜂,選取即將羽化出房的子脾置于培養(yǎng)箱中,第2天取一部分新羽化蜂用作出房蜂樣品,其余用油漆筆在其胸部背板進(jìn)行標(biāo)記,后放回原箱中。待第10天取出用作哺育蜂樣品。在蜂箱門口抓取帶有花粉團(tuán)的歸巢蜜蜂用作采集蜂樣品。用體式顯微鏡解剖蜜蜂頭部,取得上顎腺樣品。樣品取自5個(gè)蜂群,每群取300只,然后將5群樣品合并,存于-80℃?zhèn)溆谩?/p>

        1.2.3 蛋白提取 蛋白提取按照HAN等[30]的方法,每30 mg上顎腺樣品加入300 μL樣品裂解液(8 mol·L-1尿素,2 mol·L-1硫脲,4% CHAPS,20 mmol·L-1Tris-堿,30 mmol·L-1二硫蘇糖醇(DTT),1 mg/10 μL)及蛋白酶抑制劑,冰浴充分研磨,超聲,使樣品完全溶解。4℃,15 000×,離心20 min。避開脂肪層取上清液,加入3倍體積預(yù)冷的丙酮溶液,冰浴沉淀30 min。4℃,15 000×,離心20 min。棄上清。開口2—3 min讓丙酮揮發(fā),后將沉淀重新溶解于100 μL的5 mol·L-1尿素中,再加入400 μL(4倍體積)40 mmol·L-1NH4HCO3。使用Bradford方法測(cè)定最終的蛋白濃度。

        1.2.4 液內(nèi)酶切 加入50 μL(1/10總體積)100 mmol·L-1DTT,4℃放置1 h,加入250 μL(5倍DTT體積)100 mmol·L-1IAA,避光放置1 h。按照酶﹕蛋白=1﹕50(W/W)比例加入Trypsin胰蛋白酶,37℃下進(jìn)行消化反應(yīng)24 h,后加入1 μL甲酸終止酶切。4℃,14 000×,離心15 min,取500 μL上清液轉(zhuǎn)移至新管。

        1.2.5 磷酸化肽段富集 用500 μL的binding buffer(80% ACN & 6% TFA水溶液)重懸一管IMAC材料;在1.2.4上清液中加入重懸的IMAC材料,30 μL TFA;振蕩2 h,14 000×離心10 min,棄上清;加入1 mL washing buffer 1(50% ACN & 6% TFA & 200 mmol·L-1NaCl水溶液),振蕩30 min,14 000×,離心10 min,棄上清;加入1 mL washing buffer 2(30% ACN & 0.1% TFA水溶液),振蕩30 min,14 000×,離心10 min,棄上清;加入100 μL elution buffer(500 mmol·L-1K2HPO4,pH 7),振蕩30 min,14 000×,離心10 min,取上清至新管,重復(fù)上述操作。

        1.2.6 Zip-tip C18除鹽 活化:在50% ACN,0.3% TFA水溶液中反復(fù)吹打10次,活化C18柱子;平衡:在equilibrium buffer(0.1% TFA水溶液)中反復(fù)吹打10次,平衡C18柱子;富集:用Zip-tip反復(fù)吹打樣品10次(避免產(chǎn)生氣泡);洗脫:取30μLelution buffer(80% ACN,0.1% TFA水溶液)至新管,用Zip-tip反復(fù)吹打10次,將肽段洗脫;用水吹打3—5次,洗去elution buffer,重復(fù)富集、洗脫及用水吹打步驟5次左右;干燥:干燥上步中elution buffer。

        1.3 質(zhì)譜分析

        用100μL 0.1%甲酸溶解干燥樣品,4℃,14 000×離心15 min,取50 μL上清于上樣管中,同時(shí)避免有氣泡;將上樣管放入色譜儀樣品槽,每針上樣體積8 μL,每個(gè)樣品做3針重復(fù)。采用納升級(jí)液相色譜系統(tǒng)EASY-nLC 1000(Thermo Fisher Scientific)通過納升電噴霧源與質(zhì)譜Q-Exactive(Thermo Fisher Scientific)串聯(lián),上樣流速5 μL·min-1。流動(dòng)相A(0.1%甲酸),流動(dòng)相B(0.1%甲酸 & 80% ACN);通過納升ESI源將洗脫的肽段注入質(zhì)譜儀。以數(shù)據(jù)依賴模式收集離子信號(hào),參數(shù)設(shè)置如下:母離子掃描分辨率為70 000,400 m/z,荷質(zhì)比范圍:300—1 800 m/z,對(duì)豐度最高前20個(gè)母離子碎片離子通過高能碰撞誘導(dǎo)解離模式,MS/MS掃描分辨率為17 500,碰撞能:27,動(dòng)態(tài)剔除(帶電荷為1或者>8的剔除;動(dòng)態(tài)剔除:10 s)。通過Xcalibur軟件(版本2.2,Thermo Fisher Scientific)收集MS/MS數(shù)據(jù)并保存為Raw文件。

        1.4 數(shù)據(jù)處理與分析

        1.4.1 數(shù)據(jù)質(zhì)量評(píng)估 利用MaxQuant 1.5.8.3對(duì)質(zhì)譜數(shù)據(jù)進(jìn)行蛋白質(zhì)定量,Andromeda用于數(shù)據(jù)庫搜索[33]:采用的是蜜蜂數(shù)據(jù)庫(2017年2月從NCBI下載,22 473條目并包含13個(gè)常規(guī)污染庫)。參數(shù)設(shè)置如下:“Group-specific parameters”選項(xiàng)卡中“Digestion”(酶特異性)選擇“Tryspin/P”;“Modifications”(可變修飾)選擇“Oxixidation(M)、Acetyl(Protein N-term)、Phospho(STY)”;“Label-free quantification”(非標(biāo)記定量)選擇“LFQ”;“Global parameters”選項(xiàng)卡中“adv. identification”勾選“Match between runs”;“Protein quantification”中“Label min. ratio count”選擇“1”;“Label free quantification”勾選“Separate LFQ in parameter groups”。

        1.4.2 PEAKS 采用PEAKS 7.5軟件進(jìn)行數(shù)據(jù)庫搜索,數(shù)據(jù)庫與MaxQuant所用數(shù)據(jù)庫相同。參數(shù)設(shè)置如下:先進(jìn)行從頭測(cè)序(De novo)計(jì)算,Enzyme選擇Tryspin(TPCK修飾的胰蛋白酶);fixed modifications(固定修飾)選擇Carbamidomethyl(氨甲酰甲基);variable modifications(可變修飾)選擇Oxidation(M)和 Phosphorylation (STY);母離子質(zhì)量數(shù)誤差范圍(Precursor mass)為30.0 ppm;碎片離子誤差范圍(Fragment ion)為0.05 Da;每條肽段最多允許有兩個(gè)漏切位點(diǎn)(Maximum missed cleavages per peptide:2);每個(gè)肽段最多允許有3種翻譯后修飾(Maximum allowed variable PTM per peptide);搜庫完成后,采用假陽性率(FDR)≤1.0%及鑒定到的蛋白中特有肽段(unique peptide)≥1這兩個(gè)條件對(duì)搜庫結(jié)果進(jìn)行篩選。運(yùn)用PEAKS Q板塊對(duì)搜庫結(jié)果進(jìn)行定量,參數(shù)如下:保留時(shí)間(retention time shift tolerance):0.5 min;質(zhì)量誤差范圍(mass error tolerance):30 ppm;特有肽段(unique peptide)≥1;電荷范圍(charge between):2—8;蛋白和肽段都是差異倍數(shù)(fold change)≥1.5,≤0.05(significant≥13)。

        1.5 生物信息學(xué)分析

        1.5.1 Perseus分析 將MaxQuant搜庫結(jié)果導(dǎo)入Perseus軟件進(jìn)行數(shù)據(jù)質(zhì)量評(píng)估,根據(jù)肽段豐度進(jìn)行聚類定量分析、主成分分析。

        1.5.2 磷酸化肽段motif分析 將PEAKS搜庫結(jié)果導(dǎo)入Scaffold PTM軟件確定磷酸化位點(diǎn),以蜜蜂數(shù)據(jù)庫(2017年2月從NCBI下載,22 460條目)為背景,預(yù)測(cè)磷酸化肽段的基序類型。

        2 結(jié)果

        2.1 數(shù)據(jù)質(zhì)量評(píng)估

        通過Perseus軟件對(duì)數(shù)據(jù)進(jìn)行質(zhì)量評(píng)估,從多聚散點(diǎn)圖(圖1)可以看出,各樣品間重復(fù)性較好,數(shù)據(jù)分布較集中;同一蜂種同一樣品間皮爾森相關(guān)系數(shù)在0.85—0.96,樣品重復(fù)性較好;但不同蜂種不同樣品間相關(guān)系數(shù)在0.57—0.88,重復(fù)性較差。這表明數(shù)據(jù)質(zhì)量較好。

        2.2 漿蜂、意蜂上顎腺不同發(fā)育時(shí)期磷酸化蛋白質(zhì)、肽段、位點(diǎn)鑒定

        對(duì)漿蜂和意蜂出房蜂、哺育蜂和采集蜂上顎腺進(jìn)行磷酸化蛋白質(zhì)組分別進(jìn)行分析。漿蜂各時(shí)期的磷酸化蛋白、肽段、位點(diǎn)數(shù)均多于意蜂,分別鑒定到2 225、1 922、2 159、1 740、1 592、1 682個(gè)磷酸化蛋白的4 799、3 882、4 808、3 593、2 719、3 679條肽段上658、646、517、700、750、639個(gè)化位點(diǎn)發(fā)生磷酸修飾(圖2-B—D)。其中出房蜂時(shí)期漿蜂和意蜂共有磷酸化蛋白最多,為1 468個(gè),分別占意蜂、漿蜂出房蜂蛋白總數(shù)84%、66%;哺育蜂時(shí)期,共有蛋白最少,為1 144個(gè),分別占意蜂、漿蜂出房蜂蛋白總數(shù)71.8%、59.5%;采集蜂時(shí)期,共有蛋白1 289個(gè),分別占意蜂、漿蜂出房蜂蛋白總數(shù)76.6%、59.7%(圖2-A)。

        數(shù)字代表皮爾森相關(guān)系數(shù)The numbers indicated the value of Pearson correlation coefficients

        A—D分別為漿蜂和意蜂不同時(shí)期共有蛋白、磷酸化蛋白、肽段、位點(diǎn)數(shù)目A-D were the numbers of shared proteins, phosphoproteins, phosphopeptides and phosphosites of RJBs and ITBs at different stages, respectively

        2.3 漿蜂、意蜂不同時(shí)期上顎腺磷酸化蛋白主成分分析

        對(duì)漿蜂和意蜂不同時(shí)期上顎腺蛋白質(zhì)組做PCA分析,出房蜂蛋白質(zhì)組彼此最相近,采集蜂次之,而漿蜂和意蜂哺育蜂距離最遠(yuǎn),磷酸化蛋白質(zhì)組差異最大,主成分1、2分別占變異性的20.7%、15.3%(圖3)。

        2.4 漿蜂、意蜂motif分析

        漿蜂、意蜂各時(shí)期磷酸化肽段均富集到3種motif(圖4):酸性、堿性、脯氨酸介導(dǎo)的motif,但不同蜂種間各時(shí)期motif數(shù)量不同。漿蜂、意蜂的出房蜂、哺育蜂時(shí)期motif數(shù)量:脯氨酸介導(dǎo)>酸性>堿性;采集蜂時(shí)期脯氨酸介導(dǎo)>堿性>酸性。意蜂脯氨酸介導(dǎo)的motif數(shù)量下降,堿性motif上升,酸性motif先上升后顯著下降;漿蜂酸性、脯氨酸介導(dǎo)的motif數(shù)量下降,堿性motif數(shù)量上升。對(duì)漿蜂、意蜂不同時(shí)期各類motif識(shí)別到的激酶家族進(jìn)行分析(表1),脯氨酸介導(dǎo)的motif主要識(shí)別到4類激酶家族:WW domain binding、GSK-3, ERK1, ERK2, CDK5 substrate、GSK3, Erk1, Erk2 and CDK5 kinase和Casein kinase I substrate,其中Casein kinase I substrate激酶家族為漿蜂出房蜂時(shí)期特異識(shí)別到的。酸性的motif 主要識(shí)別到2類激酶家族:Pyruvate dehydrogenase kinase substrate、Casein kinase II substrate,其中Pyruvate dehydrogenase kinase substrate激酶家族為哺育蜂時(shí)期特異識(shí)別到的。堿性的motif主要識(shí)別到2類激酶家族:PKC epsilon kinase substrate、14-3-3 domain binding。其中14-3-3 domain binding激酶家族為采集蜂時(shí)期特異識(shí)別到的。哺育蜂時(shí)期,漿蜂較意蜂特異識(shí)別到GSK3, Erk1, Erk2 and CDK5 kinase家族,并且Casein kinase II substrate、Pyruvate dehydrogenase kinase substrate家族(酸性motif)數(shù)目要高于意蜂;意蜂PKC epsilon kinase substrate家族(堿性motif)數(shù)目高于漿蜂。

        圖4 漿蜂和意蜂不同發(fā)育時(shí)期上顎腺磷酸化肽段富集motif分布圖

        2.5 差異蛋白定量分析

        對(duì)上顎腺全蛋白質(zhì)組與磷酸化蛋白質(zhì)組進(jìn)行聚類比較分析(圖5-A、5-B),可以看出漿蜂和意蜂各時(shí)期蛋白均各自聚類到同一組,相同的表達(dá)譜說明蛋白質(zhì)組和磷酸化蛋白質(zhì)組在2個(gè)不同層面上以類似的表達(dá)模式調(diào)控腺體的發(fā)育和功能。

        出房蜂時(shí)期,漿蜂特有蛋白主要富集到胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)、磷酸酶調(diào)節(jié)活性、蛋白激酶活性、RNA結(jié)合進(jìn)程(圖6-A),意蜂特有蛋白主要富集到蛋白質(zhì)磷酸化作用進(jìn)程(圖6-B)。哺育蜂時(shí)期共鑒定到128個(gè)差異表達(dá)的蛋白,其中漿蜂高表達(dá)87個(gè)蛋白,意蜂有41個(gè)高表達(dá)蛋白(表2),其中多為能量代謝相關(guān)蛋白。意蜂高表達(dá)蛋白還參與蛋白質(zhì)合成,漿蜂還包括部分與脂肪酸代謝相關(guān)蛋白:烯脂酰-輔酶A水合酶(probable enoyl-CoA hydratase,gi號(hào)328778689)、?;o酶A結(jié)合蛋白(acyl-CoA-binding domain- containing protein 5 isoform X2,gi號(hào)571571420)、乙酰輔酶A合成酶(acyl-CoA synthetase family member2 mitochondrial precursor,gi號(hào)332801003)、過氧化物酶(peroxiredoxin 1,gi號(hào)328777120)、細(xì)胞色素P450(probable cytochrome P450 6a14,gi號(hào)571568474)。

        表1 漿蜂和意蜂各時(shí)期激酶家族

        粗體名稱為各時(shí)期特異識(shí)別到的激酶家族 The bold marked name meant the specific recognized kinase family at different stages

        A:上顎腺差異表達(dá)全蛋白;B:上顎腺差異表達(dá)磷酸化蛋白。每個(gè)樣品有3個(gè)重復(fù)??v向代表漿蜂和意蜂不同時(shí)期差異表達(dá)蛋白。橫向代表不同蛋白。紅色和綠色分別代表上調(diào)表達(dá)和下調(diào)表達(dá)蛋白質(zhì)A: differentially expressed whole proteins; B: differentially expressed phosphoproteins. Each sample had 3 replications. The columns represented differential proteins at different stages in RJBs and ITBs. The rows represented the individual protein. The up- or down-regulated proteins were labelled in red or green, respectively

        3 討論

        蛋白質(zhì)磷酸化修飾是一種重要的翻譯后修飾方式,通過調(diào)控細(xì)胞訊號(hào)傳導(dǎo)[27]進(jìn)而調(diào)控蛋白質(zhì)功能[24]。雖經(jīng)蜂王漿高產(chǎn)選育,漿蜂和意蜂上顎腺在不同發(fā)育階段表達(dá)的磷酸化蛋白都用于支持腺體的發(fā)育和分泌功能,即幼蜂上顎腺磷酸化蛋白質(zhì)組主要支持腺體發(fā)育,哺育和采集蜂的磷酸化蛋白質(zhì)組主要幫助腺體實(shí)現(xiàn)分泌功能。盡管不同發(fā)育時(shí)期磷酸化蛋白質(zhì)組表達(dá)譜基本一致,但無論是磷酸化蛋白的數(shù)目還是肽段、位點(diǎn)的數(shù)目,漿蜂均多于意蜂,這表明經(jīng)長(zhǎng)期選育漿蜂上顎腺的磷酸化過程總體上較意蜂更為復(fù)雜。主成分分析(principal component analysis,PCA)通過降維的方式將高維數(shù)據(jù)投影到低維向量空間中,從而既保留數(shù)據(jù)的主要信息,又使其更易處理[34]。漿蜂和意蜂哺育蜂時(shí)期PCA的距離較遠(yuǎn),共有蛋白數(shù)目較少,進(jìn)一步說明磷酸化蛋白質(zhì)組的差異主要體現(xiàn)在哺育蜂時(shí)期,因?yàn)樵摃r(shí)期是蜂王漿分泌的高峰,隨著漿蜂蜂王漿產(chǎn)量的提高,其中的10-HDA含量也要相應(yīng)提高[11]以保證蜂王漿的營(yíng)養(yǎng)功能,此時(shí)漿蜂上顎腺?gòu)?fù)雜的磷酸化過程可能是與漿蜂提高10-HDA的合成代謝相關(guān)。

        表2 漿蜂和意蜂哺育蜂時(shí)期差異表達(dá)磷酸化蛋白

        蛋白登錄號(hào)是與NCBI數(shù)據(jù)庫唯一對(duì)應(yīng)的編號(hào);變化倍數(shù)是差異蛋白相對(duì)于另一蜂種表達(dá)量的變化倍數(shù)

        Accession number was the unique number given to the entry of a protein in the database of NCBI. Fold change was the comparison of protein abundance level between the RJB and ITB

        A、B分別代表漿蜂、意蜂出房蜂特有蛋白富集的功能類

        蛋白基序(motif)又稱為超二級(jí)結(jié)構(gòu),指相鄰的蛋白質(zhì)二級(jí)結(jié)構(gòu)單元相互接近,形成有規(guī)律的二級(jí)結(jié)構(gòu)聚集體。即兩個(gè)或兩個(gè)以上二級(jí)結(jié)構(gòu)單元由連接多肽連接起來,組合成有特殊幾何排列的局部空間結(jié)構(gòu)。Motif有5種類型,脯氨酸介導(dǎo)的(pro-directed)、酸性的(acidic)、堿性的(basic)、其他(other)和酪氨酸介導(dǎo)的(tyrosine)[35]。蛋白質(zhì)磷酸化修飾通過激酶實(shí)現(xiàn),激酶識(shí)別蛋白質(zhì)中相對(duì)應(yīng)的motif氨基酸序列,蛋白在蛋白激酶和磷酸酶的作用下發(fā)生磷酸化和去磷酸化,激活或關(guān)閉某些信號(hào)通路[36]。在上顎腺發(fā)育的不同時(shí)期,漿蜂、意蜂motif數(shù)量發(fā)生變化;同一時(shí)期漿蜂motif總量高于意蜂,表明漿蜂較意蜂具有更復(fù)雜的磷酸化機(jī)制。漿蜂出房蜂時(shí)期特異識(shí)別到的Casein kinase 1激酶家族,常作為信號(hào)轉(zhuǎn)導(dǎo)途徑的調(diào)節(jié)因子,參與DNA修復(fù)和轉(zhuǎn)錄[37],在Wnt信號(hào)通路中發(fā)生磷酸化等[38]。Wnt信號(hào)在動(dòng)物胚胎的早期發(fā)育、器官形成過程中作用顯著[39],在出房蜂時(shí)期支撐上顎腺的基礎(chǔ)發(fā)育。通路富集的結(jié)果表明漿蜂在出房蜂時(shí)期的蛋白質(zhì)表達(dá)更為豐富,經(jīng)過王漿高產(chǎn)的選育,漿蜂從出房蜂開始就與意蜂的上顎腺磷酸化蛋白質(zhì)譜表現(xiàn)出差異。漿蜂高表達(dá)蛋白較多的集中在“Hippo”信號(hào)通路。此通路參與調(diào)節(jié)細(xì)胞增殖和凋亡[40]、細(xì)胞周期和生長(zhǎng)發(fā)育等過程[41],在漿蜂出房蜂時(shí)期高表達(dá),說明漿蜂從出房蜂開始形態(tài)發(fā)育較意蜂更為發(fā)達(dá),而上顎腺形態(tài)發(fā)育是其充分發(fā)揮功能的基礎(chǔ),這可能與漿蜂哺育蜂時(shí)期分泌10-HDA能力增強(qiáng)有關(guān)。漿蜂、意蜂哺育蜂時(shí)期motif均特異識(shí)別到的Pyruvate dehydrogenase kinase(PDK)激酶家族,其底物是丙酮酸脫氫酶,可以催化丙酮酸轉(zhuǎn)化為乙酰輔酶A,從而參與TCA循環(huán)氧化供能,PDK進(jìn)而調(diào)節(jié)細(xì)胞內(nèi)能量代謝的過程[42]。乙酰輔酶A還是脂肪酸從頭合成的起始底物[43]。PDK在哺育蜂時(shí)期高表達(dá),表明其可能參與調(diào)節(jié)哺育蜂時(shí)期能量供應(yīng)和基礎(chǔ)物質(zhì)的代謝。漿蜂哺育蜂較意蜂還特異識(shí)別到GSK3, Erk1, Erk2 and CDK5 kinase家族,它們都可調(diào)節(jié)細(xì)胞增殖分化相關(guān)過程[44-46],GSK3激酶還可以調(diào)節(jié)能量代謝相關(guān)過程[47]。在漿蜂中特異識(shí)別到上述激酶家族,推測(cè)其可能支持漿蜂上顎腺的形態(tài)發(fā)育,從而為其充分發(fā)揮分泌功能提供基礎(chǔ)。脂肪酸合成的起始物質(zhì)是乙酰輔酶A,通過合成硬脂酸(18C)[43],進(jìn)行脫氫、水化、再脫氫、硫解等一些列氧化循環(huán)步驟[48],逐步生成低碳數(shù)脂肪酸。10-HDA的合成過程中發(fā)生脂肪酸的ω-氧化[43],需要細(xì)胞色素P450酶的參與[49],生成的脂酰輔酶A通過?;o酶A結(jié)合蛋白轉(zhuǎn)運(yùn)進(jìn)入過氧化物酶體,完成脂肪酸的-氧化過程[50]。其中水化反應(yīng)需要烯脂酰輔酶A水合酶的參與[48]。漿蜂哺育蜂時(shí)期,乙酰輔酶A合成酶、細(xì)胞色素P450、?;o酶A結(jié)合蛋白、過氧化物酶、烯脂酰-輔酶A水合酶蛋白的高表達(dá),為漿蜂哺育蜂分泌能力提高提供了物質(zhì)基礎(chǔ),與其大量合成10-HDA的現(xiàn)象相符,其證據(jù)是在非流蜜期,漿蜂和意蜂產(chǎn)漿量相差約10倍,但二者蜂王漿的10-HDA含量基本持平[11]。漿蜂、意蜂采集蜂時(shí)期motif均特異識(shí)別到的14-3-3蛋白家族,是一類保守的調(diào)節(jié)分子家族,14-3-3蛋白能夠結(jié)合多種信號(hào)蛋白[51],包括Bcl-2相關(guān)死亡啟動(dòng)子(BAD)蛋白[52]以及與細(xì)胞凋亡相關(guān)的信號(hào)通路蛋白等。這表明在采集蜂時(shí)期,上顎腺腺體功能發(fā)生轉(zhuǎn)變,調(diào)節(jié)相關(guān)的信號(hào)通路發(fā)生變化。其余非特異性識(shí)別到的激酶家族,例如GSK3糖原合成酶激酶3家族,也參與細(xì)胞增殖、凋亡相關(guān)的信號(hào)通路[53]和Wnt信號(hào)通路等[54]。

        4 結(jié)論

        通過對(duì)漿蜂和意蜂出房蜂、哺育蜂、采集蜂3個(gè)發(fā)育時(shí)期上顎腺磷酸化蛋白質(zhì)組進(jìn)行研究,發(fā)現(xiàn)在出房蜂時(shí)期,磷酸化蛋白主要促進(jìn)腺體的基礎(chǔ)發(fā)育及形態(tài)發(fā)育,為哺育蜂時(shí)期大量產(chǎn)漿提供基礎(chǔ);漿蜂和意蜂在3個(gè)發(fā)育時(shí)期采用不同的磷酸化蛋白質(zhì)組來支撐上顎腺功能的發(fā)揮;其中哺育蜂時(shí)期,兩者間圖譜差異最大,磷酸化蛋白主要參與調(diào)控上顎腺能量代謝和脂肪酸代謝等過程,表明經(jīng)過蜂王漿高產(chǎn)的選育,漿蜂已具有不同于意蜂的磷酸化蛋白質(zhì)組,以維持其蜂王漿高產(chǎn)時(shí)10-HDA含量的提高,保證蜂王漿的營(yíng)養(yǎng)功能。

        [1] Fujita T, Kozukahata H, Aokondo H, Kunieda T, Oyama M, Kubo T. Proteomic analysis of the royal jelly and characterization of the functions of its derivation glands in the honeybee., 2013, 12(1): 404-411.

        [2] Crailsheim K. The flow of jelly within a honeybee colony., 1992, 162(8): 681-689.

        [3] Kinoshita G, Shuel R W. Mode of action of royal jelly in honeybee development. X. Some aspects of lipid nutrition., 1975, 53(3): 311-319.

        [4] Barker S A, Foster A B, Lamb D C, Hodgson N. Identification of 10-hydroxy-delta 2-decenoic acid in royal jelly., 1959, 183(4666): 996-997.

        [5] Sabatini A G, Marcazzan G L, Caboni M F, Bogdanov S, Almeida-Muradian L B D. Quality and standardisation of royal jelly., 2009, 1(1): 1-6.

        [6] Tokunaga K H, Yoshida C, Suzuki K M, Maruyama H, Futamura Y, Araki Y, Mishima S. Antihypertensive effect of peptides from royal jelly in spontaneously hypertensive rats., 2004, 27(2): 189-192.

        [7] Oka H, Emori Y, Kobayashi N, Hayashi Y, Nomoto K. Suppression of allergic reactions by royal jelly in association with the restoration of macrophage function and the improvement of Th1/ Th2 cell responses., 2001, 1(3): 521-532.

        [8] Blum M S, Novak A F, Taber S I. 10-hydroxy-Δ2-decenoic acid, an antibiotic found in royal jelly., 1959, 130(3373): 452.

        [9] Chen S L, Li J K, Zhong B X, Su S K. Microsatellite analysis of royal jelly producing traits of Italian honeybee ()., 2005, 32(10): 1037.

        [10] LI J K, WANG A p. Comprehensive technology for maximizing royal jelly production., 2005, 145(8): 661-664.

        [11] Huo X, Wu B, FENG M, Han B, FANG Y, HAO Y, MENG L, WUBIE A J, FAN P, HU H, QI Y, LI J. Proteomic analysis reveals the molecular underpinnings of mandibular gland development and lipid metabolism in two lines of honeybees ()., 2016, 15(9): 3342-3357.

        [12] Cao L F, Zheng H Q, Pirk C W, Hu F L, Xu Z W. High royal jelly-producing honeybees () (hymenoptera: Apidae) in China., 2016, 109(2): 510-514.

        [13] 吳雨祺, 藺哲廣, 鄭火青, 胡福良. 蜜蜂上顎腺及其分泌物研究進(jìn)展. 昆蟲學(xué)報(bào), 2015, 58(8): 911-918.

        Wu Y Q, Lin Z G, Zheng H Q, Hu F L. Research progress in honeybee mandibular glands and their secretions., 2015, 58(8): 911-918. (in Chinese)

        [14] Winston M L, Slessor K N, Prestwich G D, Webster F X. Production and transmission of honey bee queen (L.) mandibular gland pheromone., 1991, 29(5): 321-332.

        [15] Hoover S E R, Keeling C I, Winston M L, Slessor K N. The effect of queen pheromones on worker honey bee ovary development., 2003, 90(10): 477-480.

        [16] Plettner E, Slessor K N, Winston M L, Oliver J E. Caste-selective pheromone biosynthesis in honeybees., 1996, 271(5257): 1851-1853.

        [17] Kerr W E, Blum M S, Pisani J F, Stort A C. Correlation between amounts of 2-heptanone and iso-amyl acetate in honeybees and their aggressive behaviour., 1974, 13(3): 173-176.

        [18] Malka O, Karunker I, Yeheskel A, Morin S, Hefetz A. The gene road to royalty-differential expression of hydroxylating genes in the mandibular glands of the honeybee., 2010, 276(19): 5481-5490.

        [19] Feng M, Fang Y, Li J K. Proteomic analysis of honeybee worker () hypopharyngeal gland development., 2009, 10: 645.

        [20] Han B, Fang Y, Feng M, Hu H, Qi Y, Huo X, MENG L, WU B, LI J. Quantitative neuropeptidome analysis reveals neuropeptides are correlated with social behavior regulation of the honeybee workers., 2015, 14(10): 4382-4393.

        [21] Li J k, Feng M, Begna D, Fang Y, Zheng A j. Proteome comparison of hypopharyngeal gland development between Italian and royal jelly producing worker honeybees (L)., 2010, 9(12): 6578-6594.

        [22] Fang Y, Feng M, Li J K. Royal jelly proteome comparison betweenand., 2010, 9(5): 2207-2215.

        [23] Qi Y, Fan P, Hao Y, Han B, Fang Y, Feng M, Cui Z, Li J K. Phosphoproteomic analysis of protein phosphorylation networks in the hypopharyngeal gland of honeybee workers ()., 2015, 14(11): 4647-4661.

        [24] Cohen P. The origins of protein phosphorylation., 2002, 4(5): 127-130.

        [25] Mollapour M, Tsutsumi S, Neckers L. Hsp90 phosphorylation, Wee1 and the cell cycle., 2010, 9(12): 2310-2316.

        [26] Tanaka T, Kurose A, Huang X, Dai W, Darzynkiewicz Z. ATM activation and histone H2AX phosphorylation as indicators of DNA damage by DNA topoisomerase I inhibitor topotecan and during apoptosis., 2010, 39(1): 49-60.

        [27] Graves J D, Krebs E G. Protein phosphorylation and signal transduction., 1996, 26(2/3): 115.

        [28] Gala A, Fang Y, Woltedji D, Zhang L, Han B, Feng M, Li J. Changes of proteome and phosphoproteome trigger embryo-larva transition of honeybee worker ()., 2013, 78(1): 428-446.

        [29] Han B, Zhang L, Feng M, Li J. An integrated proteomics reveals pathological mechanism of honeybee () sacbrood disease., 2013, 12(4): 1881-1897.

        [30] Han B, Fang Y, Feng M, Lu X, Huo X, Meng L, Wu B, Li J. In-depth phosphoproteomic analysis of royal jelly derived from western and eastern honeybee species., 2014, 13(12): 5928-5943.

        [31] Bezabih G, Han C, Han B, Mao F, Yu X, Han H, Li J. Phosphoproteome analysis reveals phosphorylation underpinnings in the brains of nurse and forager honeybees ()., 2017, 7(1): DOI: 10.1038/s41598-017-02192-3.

        [32] 魯小山, 韓賓, 張?zhí)m,馮毛, 房宇, 李榮麗, 周天娥, 李建科. 王漿高產(chǎn)蜜蜂咽下腺磷酸化蛋白質(zhì)組分析. 中國(guó)農(nóng)業(yè)科學(xué), 2013, 46(23): 5050-5057.

        Lu X S, Han B, Zhang L, Feng M, Fang Y, Li R L, Zhou T E, Li J K. Phosphoproteome analysis of hypopharyngeal glands of high royal jelly producing bee (L.)., 2013, 46(23): 5050-5057. (in Chinese)

        [33] Tyanova S, Temu T, Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics., 2016, 11(12): 2301-2319.

        [34] David C C, Jacobs D J. Principal component analysis: a method for determining the essential dynamics of proteins//, 2014, 1084: 193-226.

        [35] Villén J, Beausoleil S A, Gerber S A, Gygi S P. Large-scale phosphorylation analysis of mouse liver., 2007, 104(5): 1488-1493.

        [36] Krebs E G. The phosphorylation of proteins: a major mechanism for biological regulation. Fourteenth Sir Frederick Gowland Hopkins memorial lecture., 1985, 13(5): 813-820.

        [37] Eide E J, Virshup D M. Casein kinase I: another cog in the circadian clockworks., 2001, 18(3): 389-398.

        [38] Takada R, Hijikata H, Kondoh H, Takada S. Analysis of combinatorial effects of Wnts and Frizzleds on-catenin/armadillo stabilization and Dishevelled phosphorylation., 2010, 10(9): 919-928.

        [39] Goessling W, North T E, Loewer S, Lord A M, Lee S, Stoick-Cooper C L. Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration., 2009, 136(6): 1136-1147.

        [40] Dan I, Watanabe N M, Kusumi A. The Ste20 group kinases as regulators of MAP kinase cascades., 2001, 11(5): 220-230.

        [41] Ma J, Benz C, Grimaldi R, Stockdale C, Wyatt P, Frearson J, Hammarton C. Nuclear DBF-2-related kinases are essential regulators of cytokinesis in bloodstream stage., 2010, 285(20): 15356-15368.

        [42] Behal R H, Buxton D B, Robertson J G, Olson M S. Regulation of the pyruvate dehydrogenase multienzyme complex., 1993, 13(1): 497-520.

        [43] Plettner E, Slessor K N, Winston M L. Biosynthesis of mandibular acids in honey bees (): de novo, synthesis, route of fatty acid hydroxylation and caste selective-oxidation., 1998, 28(1): 31-42.

        [44] Gille H, Kortenjann M, Strahl T, Shaw P E. Phosphorylation- dependent formation of a quaternary complex at the c-SRE., 1996, 16(3): 1094-1102.

        [45] Morgan D O.. London: New Science Press, 2006.

        [46] Zinck R, Hipskind R A, Pingoud V, Nordheim A. C-fos transcriptional activation and repression correlate temporally with the phosphorylation status of TCF., 1993, 12(6): 2377-2387.

        [47] Lochhead P A, Coghlan M, Rice S Q, Sutherland C. Inhibition of GSK-3 selectively reduces glucose-6-phosphatase and phosphatase and phosphoenolypyruvate carboxykinase gene expression., 2001, 50(5): 937-946.

        [48] Houten S M, Wanders R J. A general introduction to the biochemistry of mitochondrial fatty acid-oxidation., 2010, 33(5): 469-477.

        [49] Hamberg M, Bj?rkhem I.ω-Oxidation of fatty acids. I. Mechanism of microsomal, 1- and, 2-hydroxylation., 1971, 246(24): 7411-7416.

        [50] Malka O, Ni?o E L, Grozinger C M, Hefetz A. Genomic analysis of the interactions between social environment and social communication systems in honey bees ()., 2014, 47(1): 36-45.

        [51] Muslin A J, Tanner J W, Allen P M, Shaw A S. Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine., 1996, 84(6): 889-897.

        [52] Hardwick J M, Soane L. Multiple functions of BCL-2 family proteins., 2013, 5(2): 152-158.

        [53] Woodgett J R. Regulation and functions of the glycogen synthase kinase-3 subfamily., 1994, 5(4): 269.

        [54] Jope R S, Johnson G V. The glamour and gloom of glycogen synthase kinase-3., 2004, 29(2): 95-102.

        (責(zé)任編輯 岳梅)

        Comparative Analysis of Phosphoproteome Between Mandibular Glands of High Royal Jelly Producing Bees and Italian Bees

        LI Shuang, LI JianKe

        (Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093)

        The principal biological function of worker bees’ mandibular glands is to secrete fatty acids to provide the nutrition for the colony and participate in synthesis of alarm pheromone. High royal jelly producing bees (RJBs,) and Italian bees (ITBs,) are both major honeybee species in China, but the mechanism of regulating the development and function of mandibular glands by phosphoproteome is not reported yet. The objective of this study is to compare the differences of mandibular glands of phosphoproteome, reveal the mechanism of the regulation of mandibular glands by phosphoproteome and fatty acids metabolism.The mandibular glands of newly emerged, nurse, and foragers of RJBs and ITBs were collected, then after, mandibular gland proteins were extracted and digested by an enzyme. Phosphopeptides were enriched by IMAC (immobilized metal-affinity chromatography) and desalted by using Zip-tip C18 columns. Peptides from each of the samples were analyzed by LC-MS/MS (liquid chromatography-mass/mass). Furthermore, MaxQuant and Perseus bioinformatics tools were used to evaluate phosphoproteome quality. These bioinformatics tools were further utilized for principal component and profiling hierarchical clustering quantification analyses. In addition, PEAKS software was employed for protein quantification and quality analyses. Finally, biological processes and KEGG metabolic pathways in mandibular glands of RJB and ITB were compared. Phosphosites were determined and motifs were predicted by using Scaffold PTM bioinformatics tool.The numbers of identified phosphoproteins of RJBs (2 225, 1 922, 2 159) were significantly higher than those of 1 740, 1 592, 1 682 in ITBs, illustrating that RJBs’ mandibular gland phosphorylation regulation network was likely more complicated than ITBs’. Although the phosphorylation process in mandibular glands of RJBs was significantly different from that in ITBs, a similar phosphoproteomes profiling across the gland development suggested that the phosphoproteins at distinct stages in RJBs and ITBs performed similar biological function to ensure the gland development and secretion activity. the glands of each stage in RJBs and ITBs had significant phosphoproteome differences, of which nurse bees were the most significantly diverged. Eighty-seven phosphoproteins were highly abundant in RJBs, and most of them were mainly related to energy and fatty acid metabolic process. These indicated the key roles of fatty acid metabolism in boosting the ability of fatty acid synthesis (including 10-HDA) in mandibular glands to prime the quantity of 10-HDA in royal jelly alongside the increased royal jelly production, which was essential for providing qualitative nutrition for the survival of population. Forty-one highly abundant phosphoproteins in ITBs were mainly related to energy metabolism.Three kinds of motifs were detected at each stage of glands in both RJBs and ITBs: acidic, basic and pro-directed. The unique kinase family recognized by motifs in nurse bees of RJBs was associated with cell proliferation, which might support gland morphological development and related to increased secretion capacity of RJBs.RJBs and ITBs have shaped different phosphoproteome signatures to maintain mandibular gland development and function at each stage. The most profound divergence occurs during the nurse stage, which RJBs may increase the ability of fatty acid synthesis to ensure the basic function of royal jelly. The data help us gain a novel understanding of the molecular underpinnings to drive enhanced high royal jelly production in RJBs at the level of protein modification.

        high producing royal jelly bee; Italian bee; mandibular gland; phosphoproteome

        2017-07-05;

        2017-08-12

        國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(蜜蜂)(CARS-44)、中國(guó)農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程(CAAS-591 ASTIP-2015-IAR)

        聯(lián)系方式:李爽,E-mail:lishuang1230@icloud.com。通信作者李建科,Tel:010-82106448;E-mail:apislijk@126.com

        猜你喜歡
        上顎意蜂哺育
        青貯玉米切葉蟻上顎仿生粉碎刀片設(shè)計(jì)與試驗(yàn)
        如何處理意蜂盜取中蜂群
        蜜蜂雜志(2021年6期)2021-12-05 09:57:44
        詳解意蜂盜劫中蜂之過程
        蜜蜂雜志(2020年6期)2020-12-02 08:07:09
        母親哺育我 我報(bào)慈母恩
        海峽姐妹(2020年10期)2020-10-28 08:08:10
        母親哺育我 我報(bào)慈母恩
        海峽姐妹(2020年4期)2020-05-30 13:00:10
        意蜂蜂蜜和中蜂蜂蜜的區(qū)別
        蜜蜂雜志(2019年3期)2019-12-30 10:25:52
        吃冷飲當(dāng)心“冰激凌頭痛”
        脫口而出戰(zhàn)隊(duì)誰家“變形”更高怪
        陷阱顎螞蟻
        哺育
        寶藏(2017年2期)2017-03-20 13:16:52
        私人vps一夜爽毛片免费| 国产一区二区三区不卡在线播放| 亚洲av无码专区国产乱码不卡| 少妇寂寞难耐被黑人中出| 国产精品高潮呻吟av久久无吗| 精品无码一区二区三区亚洲桃色| 亚洲春色AV无码专区在线播放| 国产激情一区二区三区成人免费| 无码国产一区二区色欲| 黄色三级一区二区三区| 扒开女性毛茸茸的视频| 久久热免费最新精品视频网站| 在线日本看片免费人成视久网| 国产高清在线精品一区app| 国产精品538一区二区在线| 午夜福利理论片高清在线观看| 真人与拘做受免费视频| 中文幕无线码中文字蜜桃| 久久精品韩国日本国产| 亚洲小少妇一区二区三区| 久久日日躁夜夜躁狠狠躁| 欧美成人看片一区二区三区尤物 | 亚洲精品无码成人片久久不卡| 人妻去按摩店被黑人按中出| 国产国拍亚洲精品永久不卡| 亚洲中文字幕日产喷水| 日本高清一区二区三区不卡 | 国产老熟女网站| 老外和中国女人毛片免费视频| 国产精品视频一区二区三区四| 四虎欧美国产精品| 国产亚洲精品日韩香蕉网| 精品色老头老太国产精品| 老熟女的中文字幕欲望| 国产成人a在线观看视频免费| 午夜精品久久久久成人| 亚洲AV无码久久精品国产老人| 精品人妻中文字幕一区二区三区| 国产精品美女主播在线| 国产成人综合美国十次| 国模欢欢炮交啪啪150|