謝明輝, 白 璐, 阮久莉, 喬 琦*, 江樂勇
1.中國環(huán)境科學(xué)研究院, 國家環(huán)境保護(hù)生態(tài)工業(yè)重點(diǎn)實(shí)驗(yàn)室, 北京 100012 2.康達(dá)國際環(huán)保有限公司, 北京 100028
以晶體硅太陽能電池產(chǎn)業(yè)為例的產(chǎn)業(yè)生命周期評(píng)價(jià)初探
謝明輝1, 白 璐1, 阮久莉1, 喬 琦1*, 江樂勇2
1.中國環(huán)境科學(xué)研究院, 國家環(huán)境保護(hù)生態(tài)工業(yè)重點(diǎn)實(shí)驗(yàn)室, 北京 100012 2.康達(dá)國際環(huán)保有限公司, 北京 100028
面對(duì)日益復(fù)雜的環(huán)境問題和精細(xì)化環(huán)境管理需求,為了將生命周期評(píng)價(jià)在產(chǎn)業(yè)結(jié)構(gòu)調(diào)整、發(fā)展方式轉(zhuǎn)變中更好地發(fā)揮作用,對(duì)在產(chǎn)業(yè)層面開展生命周期評(píng)價(jià)的方法進(jìn)行了探索研究. 產(chǎn)業(yè)生命周期評(píng)價(jià)是在產(chǎn)品生命周期評(píng)價(jià)的基礎(chǔ)上增加了:①基于“可拆解可組合”生態(tài)設(shè)計(jì)理念的功能單位和系統(tǒng)邊界確定;②質(zhì)量評(píng)估和數(shù)據(jù)整合的數(shù)據(jù)收集過程;③以不確定性分析來驗(yàn)證數(shù)據(jù)的合理性. 選擇晶體硅太陽能電池產(chǎn)業(yè)進(jìn)行了產(chǎn)業(yè)生命周期評(píng)價(jià)的案例應(yīng)用. 結(jié)果表明:晶體硅太陽能電池產(chǎn)業(yè)可分為4個(gè)產(chǎn)品單元和11個(gè)工藝單元. 基于上述產(chǎn)品單元和工藝單元的資源能源投入和污染物排放數(shù)據(jù)進(jìn)行收集,在數(shù)據(jù)質(zhì)量評(píng)估之后通過數(shù)據(jù)整合形成了產(chǎn)業(yè)生命周期數(shù)據(jù)清單. 產(chǎn)業(yè)生命周期環(huán)境影響主要集中在呼吸系統(tǒng)影響(41.94%)、化石燃料(25.20%)、致癌(14.89%)和氣候變化(8.80%)4個(gè)環(huán)境影響類別;減少環(huán)境影響的精準(zhǔn)化途徑是減少高純多晶硅、硅片、電池片產(chǎn)品的電耗,組件產(chǎn)品中焊帶消耗,硅片產(chǎn)品中的砂漿消耗和組件產(chǎn)品的鋁合金邊框消耗. 蒙特卡洛分析結(jié)果顯示,高純多晶硅生命周期評(píng)價(jià)結(jié)果不確定性較高,與數(shù)據(jù)質(zhì)量評(píng)估的結(jié)果較為一致. 案例應(yīng)用結(jié)果說明,產(chǎn)品生命周期評(píng)價(jià)可將生命周期評(píng)價(jià)從產(chǎn)品層面提升到產(chǎn)業(yè)層面,可為國家產(chǎn)業(yè)發(fā)展提供科學(xué)支撐.
產(chǎn)業(yè); 生命周期評(píng)價(jià); 數(shù)據(jù)收集; 晶體硅太陽能電池; 環(huán)境影響
生命周期評(píng)價(jià)是對(duì)一個(gè)產(chǎn)品系統(tǒng)的生命周期中輸入、輸出及其潛在環(huán)境影響的匯編和評(píng)價(jià),自20世紀(jì)90年代引入我國以來,在工業(yè)產(chǎn)品(如水泥[1]、離心機(jī)[2]、塔吊[3]、洗衣機(jī)[4]、硅產(chǎn)品[5]等),廢物管理(如錄放機(jī)回用[6]、復(fù)合包裝循環(huán)利用[7-8]、工業(yè)危廢處理處置[9-10]等),技術(shù)評(píng)估(如生產(chǎn)工藝選擇[11-13]、處理處置技術(shù)評(píng)估[14-15]),能源管理(如新能源管理[16-19]、火電管理[20]),碳排放(如交通方式碳排放[21]、耕作碳排放[22])等領(lǐng)域開展了大量研究,但這些研究都集中在單一產(chǎn)品、單一活動(dòng)上. 如果同一污染物來自不同的工藝單元,在數(shù)據(jù)收集過程中這一污染物將被合并在一起,導(dǎo)致最終其產(chǎn)生的環(huán)境影響無法識(shí)別來源于何種工藝單元.
面對(duì)日益復(fù)雜的環(huán)境問題和精細(xì)化的環(huán)境管理需求,這種合并式的數(shù)據(jù)收集方式不利于評(píng)價(jià)結(jié)果中關(guān)鍵環(huán)節(jié)的識(shí)別;另一方面,在對(duì)某個(gè)產(chǎn)業(yè)進(jìn)行環(huán)境影響定位時(shí),由于基礎(chǔ)數(shù)據(jù)缺失,往往采用單一企業(yè)樣本的生命周期評(píng)價(jià)結(jié)果表征行業(yè)環(huán)境影響,這降低了決策的科學(xué)性. 因此,該文提出產(chǎn)業(yè)生命周期評(píng)價(jià)的概念,即通過一定的拆解原則和一定樣本量的數(shù)據(jù)收集,進(jìn)行“碎片化”核算全產(chǎn)業(yè)鏈的生命周期環(huán)境影響,實(shí)現(xiàn)產(chǎn)業(yè)環(huán)境影響的可識(shí)別和可表征.
目前鮮有對(duì)一個(gè)產(chǎn)業(yè)進(jìn)行生命周期評(píng)價(jià)的研究. 劉晶茹等[23]曾對(duì)產(chǎn)業(yè)共生的環(huán)境績效進(jìn)行生命周期評(píng)價(jià)研究,但其產(chǎn)業(yè)共生的主體仍為單個(gè)企業(yè),數(shù)據(jù)較為單一,沒有產(chǎn)業(yè)代表性;張莉沙等[24-25]對(duì)鋼鐵行業(yè)環(huán)境影響進(jìn)行生命周期評(píng)價(jià),但數(shù)據(jù)來源基于統(tǒng)計(jì)年鑒. 因此,該研究擬參考ISO14044《環(huán)境管理生命周期評(píng)價(jià)要求與指南》[26]中的理論,對(duì)產(chǎn)業(yè)生命周期評(píng)價(jià)進(jìn)行初探,并以晶體硅太陽能電池產(chǎn)業(yè)為例進(jìn)行應(yīng)用,以期提升生命周期評(píng)價(jià)在產(chǎn)業(yè)結(jié)構(gòu)調(diào)整、發(fā)展方式轉(zhuǎn)變等工作中的作用.
面對(duì)環(huán)境管理的精細(xì)化要求,基于“可拆解、可組合”的生態(tài)設(shè)計(jì)理念,結(jié)合產(chǎn)業(yè)鏈及上下游產(chǎn)品特點(diǎn),對(duì)產(chǎn)業(yè)生命周期進(jìn)行劃分,盡可能的將其拆分成單一的產(chǎn)品單元或工藝單元(見圖1),實(shí)現(xiàn)“碎片化”核算生命周期環(huán)境影響,以便識(shí)別重點(diǎn)環(huán)節(jié)和關(guān)鍵節(jié)點(diǎn).
圖1 產(chǎn)業(yè)生命周期評(píng)價(jià)的產(chǎn)品單元和工藝單元Fig.1 The production unit and technique unit of ILCA
將產(chǎn)業(yè)劃分為獨(dú)立的產(chǎn)品單元和工藝單元后,可結(jié)合產(chǎn)業(yè)特征,根據(jù)需求決定是以產(chǎn)品單元或工藝單元為功能單位來收集數(shù)據(jù). 不同的產(chǎn)品單元可以選擇不同的功能單位,如“棉花—布—衣服”的服裝產(chǎn)業(yè)中,棉花產(chǎn)品的功能單位可以定義為1 t,布的功能單位為1 m2,衣服的功能單位為1件. 在確定了功能單位后,應(yīng)根據(jù)不同的功能單位進(jìn)行數(shù)據(jù)收集.
數(shù)據(jù)收集是產(chǎn)業(yè)生命周期評(píng)價(jià)的關(guān)鍵,也是如何客觀真實(shí)反映產(chǎn)業(yè)環(huán)境影響的重要環(huán)節(jié). 在產(chǎn)業(yè)生命周期評(píng)價(jià)中,此階段需要注意的有兩個(gè)重要環(huán)節(jié),一是質(zhì)量評(píng)估,即如何提升數(shù)據(jù)的精準(zhǔn)度,使其如實(shí)代表產(chǎn)業(yè)水平;二是數(shù)據(jù)整合,即如何把企業(yè)數(shù)據(jù)整理成產(chǎn)業(yè)數(shù)據(jù).
1.2.1質(zhì)量評(píng)估
樣本量是決定數(shù)據(jù)質(zhì)量的基礎(chǔ),所以本階段要根據(jù)產(chǎn)品工藝的集中度和差異性,選取合理的樣本覆蓋范圍,對(duì)于工藝集中度高的產(chǎn)品,可選取低樣本量進(jìn)行收據(jù)收集;對(duì)于工藝差異較大的產(chǎn)品,應(yīng)劃分工藝進(jìn)行數(shù)據(jù)收集,根據(jù)工藝產(chǎn)量(或產(chǎn)能)占比分配樣本比例.
數(shù)據(jù)收集之后需要對(duì)數(shù)據(jù)進(jìn)行質(zhì)量評(píng)價(jià),不同于對(duì)單個(gè)產(chǎn)品開展生命周期數(shù)據(jù)收集的質(zhì)量評(píng)估[27-28],產(chǎn)業(yè)生命周期評(píng)價(jià)所需的樣本量較大,并且樣本數(shù)據(jù)隨工藝技術(shù)、管理水平、人員素質(zhì)等多重因素影響,出現(xiàn)差異的可能性也較大,因此,根據(jù)統(tǒng)計(jì)學(xué)原理,推薦采用相對(duì)標(biāo)準(zhǔn)偏差對(duì)數(shù)據(jù)精準(zhǔn)度進(jìn)行評(píng)估,公式如下:
(1)
根據(jù)統(tǒng)計(jì)學(xué)原理,設(shè)定所有數(shù)據(jù)的σ<0.3即可滿足數(shù)據(jù)質(zhì)量需求,如σ>0.3,認(rèn)為此數(shù)據(jù)存疑,需進(jìn)一步核查此數(shù)據(jù)樣本中的異常數(shù)據(jù),并與企業(yè)聯(lián)系了解異常原因,進(jìn)行修正.
1.2.2數(shù)據(jù)整合
在對(duì)數(shù)據(jù)質(zhì)量進(jìn)行評(píng)估后,需要將企業(yè)層面的數(shù)據(jù)整合成為產(chǎn)業(yè)數(shù)據(jù),這里推薦采用產(chǎn)量加權(quán)的方法,即根據(jù)企業(yè)產(chǎn)量在所有調(diào)研企業(yè)總產(chǎn)量的占比確定企業(yè)權(quán)重,將權(quán)重與各企業(yè)數(shù)據(jù)進(jìn)行加乘,得到最終的產(chǎn)業(yè)數(shù)據(jù),公式如下:
(2)
其中:X為包含k種產(chǎn)品j種工藝的產(chǎn)業(yè)生命周期清單數(shù)據(jù);xi為企業(yè)i采用工藝j生產(chǎn)產(chǎn)品k的清單數(shù)據(jù);Pi為企業(yè)i產(chǎn)量(產(chǎn)能);P為所有生產(chǎn)產(chǎn)品k的企業(yè)總產(chǎn)量(產(chǎn)能);r為采用工藝j生產(chǎn)產(chǎn)品k的企業(yè)數(shù)量;Wj為工藝系數(shù),即采用工藝j的企業(yè)產(chǎn)量(產(chǎn)能)占比;n為生產(chǎn)產(chǎn)品k的工藝數(shù)量;Wk為產(chǎn)品系數(shù),即功能單位的產(chǎn)品k在功能單位的產(chǎn)品k+1生產(chǎn)過程中的消耗量. 如“棉花—布—衣服”的服裝產(chǎn)業(yè)中,W1指生產(chǎn)1 m2需要的棉花重量,kg(假設(shè)棉花的功能單位為1 kg,布的功能單位為1 m2),W2指生產(chǎn)1件 衣服所需的布量,m2(假設(shè)衣服的功能單位為1件);k為產(chǎn)品數(shù)量.
1.2.3數(shù)據(jù)清單
經(jīng)過質(zhì)量評(píng)估和數(shù)據(jù)整合后,即可得到產(chǎn)業(yè)生命周期數(shù)據(jù)清單,其步驟如圖2所示.
圖2 產(chǎn)業(yè)生命周期評(píng)價(jià)數(shù)據(jù)清單收集步驟Fig.2 The procedure of inventory data collection in ILCA
影響評(píng)價(jià)和結(jié)果解釋過程與產(chǎn)品生命周期環(huán)境影響評(píng)價(jià)過程一致,值得一提的是,在結(jié)果解釋的過程中,可以通過不確定性分析(如蒙特卡洛分析[29])方法評(píng)價(jià)結(jié)果的合理性,從而進(jìn)一步驗(yàn)證數(shù)據(jù)質(zhì)量評(píng)估結(jié)果.
目前不確定性分析的方法主要有蒙特卡洛法、矩陣分析法和泰勒級(jí)數(shù)展開法,其中蒙特卡洛的使用最為廣泛,其他兩種應(yīng)用較少且相對(duì)比較復(fù)雜. 蒙特卡洛分析是根據(jù)多個(gè)參數(shù)的概率分布規(guī)律選取多個(gè)隨機(jī)數(shù),通過統(tǒng)計(jì)學(xué)分析得到所有參數(shù)不確定性傳播到最終結(jié)果的規(guī)律.
以晶體硅太陽能電池產(chǎn)業(yè)為例,進(jìn)行產(chǎn)業(yè)生命周期評(píng)價(jià)的應(yīng)用研究. 晶體硅太陽能電池產(chǎn)業(yè)是指以工業(yè)硅為原料生產(chǎn)太陽能電池的產(chǎn)業(yè),生產(chǎn)過程首先將工業(yè)硅提純?yōu)楦呒兌嗑Ч瑁缓笸ㄟ^鑄錠(拉棒)、切片工藝生產(chǎn)多晶(單晶)硅片,最后生產(chǎn)電池片并封裝成組件的過程. 我國是世界上晶體硅太陽能電池的生產(chǎn)大國,2015年高純多晶硅、硅片、電池片、組件產(chǎn)量分別占對(duì)應(yīng)世界產(chǎn)量的47.8%、79.6%、66.0%和69.1%.
根據(jù)晶體硅太陽能電池產(chǎn)業(yè)特征,按照產(chǎn)業(yè)上下游產(chǎn)品關(guān)系,將其分為高純多晶硅、硅片、電池片和組件4個(gè)產(chǎn)品,同時(shí)根據(jù)產(chǎn)品生產(chǎn)工藝,細(xì)分了11個(gè)工藝單元(見圖3). 該研究的系統(tǒng)邊界沒有考慮組件使用廢棄后的處理處置,因?yàn)槟壳斑@一階段工藝技術(shù)尚不成熟,國內(nèi)也尚無開展處理處置的企業(yè).
圖3 晶體硅太陽能電池產(chǎn)業(yè)生命周期評(píng)價(jià)的系統(tǒng)邊界Fig.3 The system boundaries of industrial life cycle assessment of crystalline silicon solar cell
對(duì)4個(gè)產(chǎn)品的功能單位依次界定如下:高純多晶硅生產(chǎn)過程的功能單位為1 t,硅片生產(chǎn)過程的功能單位為104片,電池片生產(chǎn)過程的功能單位為1 m2,組件生產(chǎn)過程的功能單位為1 m2. 對(duì)整個(gè)產(chǎn)業(yè)的功能單位定義為1 m2晶體硅太陽能電池組件.
數(shù)據(jù)收集首先對(duì)重點(diǎn)企業(yè)進(jìn)行調(diào)研(包括現(xiàn)場調(diào)研和問卷調(diào)研),現(xiàn)場調(diào)研的企業(yè)在其主要產(chǎn)污節(jié)點(diǎn)布設(shè)監(jiān)測點(diǎn)位進(jìn)行監(jiān)測分析,最終獲得單個(gè)企業(yè)樣本的數(shù)據(jù)清單. 4個(gè)產(chǎn)品單元的調(diào)研企業(yè)數(shù)、樣本量及覆蓋度如表1所示,可以看出所有產(chǎn)品的調(diào)研企業(yè)產(chǎn)量之和占比都在40%以上,數(shù)據(jù)覆蓋度較好.
表1 調(diào)研企業(yè)樣本描述
在獲取了所有企業(yè)的數(shù)據(jù)清單后,需對(duì)數(shù)據(jù)進(jìn)行質(zhì)量評(píng)估,代入式(1),主要數(shù)據(jù)的質(zhì)量評(píng)估結(jié)果如表2所示.
表2 主要數(shù)據(jù)質(zhì)量評(píng)估結(jié)果
從表2中可以看到,除了高純多晶硅產(chǎn)品生產(chǎn)過程中電的σ高于0.3之外,其他主要投入數(shù)據(jù)的σ均低于0.3,說明樣本數(shù)據(jù)的精準(zhǔn)度較好,滿足進(jìn)行產(chǎn)業(yè)生命周期評(píng)估的數(shù)據(jù)質(zhì)量要求. 對(duì)于高純多晶硅產(chǎn)品生產(chǎn)過程中電耗數(shù)據(jù),通過對(duì)樣本企業(yè)的數(shù)據(jù)分析可知,主要是由于高純多晶硅生產(chǎn)企業(yè)在調(diào)研時(shí)期(2012—2013年)工藝水平差異較大導(dǎo)致的,硅片、電池片、組件生產(chǎn)工藝的技術(shù)一致性較高,因此這3個(gè)產(chǎn)品其主要投入數(shù)據(jù)的精準(zhǔn)度較好.
在完成數(shù)據(jù)質(zhì)量評(píng)估后,需要對(duì)數(shù)據(jù)進(jìn)行整合處理. 按照式(2),根據(jù)調(diào)研企業(yè)樣本數(shù)據(jù)與產(chǎn)量占比進(jìn)行加乘,得出了不同工藝的數(shù)據(jù)清單,再將工藝數(shù)據(jù)清單與工藝系數(shù)進(jìn)行加乘,得到產(chǎn)業(yè)不同產(chǎn)品對(duì)應(yīng)的數(shù)據(jù)清單. 特別是高純多晶硅產(chǎn)品單元的電耗數(shù)據(jù),經(jīng)過勘誤過程確認(rèn)數(shù)據(jù)無誤后,按照各企業(yè)2013年的最優(yōu)水平代入式(2)計(jì)算得到該指標(biāo)的清單數(shù)據(jù).
將產(chǎn)品數(shù)據(jù)清單與產(chǎn)品系數(shù)加乘后,即可得到產(chǎn)業(yè)的數(shù)據(jù)清單,考慮到篇幅所限,此處僅列出了產(chǎn)品數(shù)據(jù)清單(見表3),工藝數(shù)據(jù)清單不再詳列. 晶體硅太陽能電池產(chǎn)業(yè)的產(chǎn)品系數(shù)(Wk)和工藝系數(shù)(Wj)見表4.
表3 晶體硅太陽能電池產(chǎn)業(yè)生命周期評(píng)價(jià)的產(chǎn)品數(shù)據(jù)清單
續(xù)表3
注:括號(hào)里加粗的內(nèi)容為功能單位.
表4 晶體硅太陽能電池產(chǎn)業(yè)生命周期評(píng)價(jià)產(chǎn)品系數(shù)和工藝系數(shù)
影響評(píng)價(jià)選擇了致癌、呼吸系統(tǒng)影響、氣候變化、生態(tài)毒性、酸化和富營養(yǎng)化、礦產(chǎn)資源、化石燃料等7個(gè)影響類型,基于Eco-indicator99生態(tài)指數(shù)法[30]建立了適用于我國晶體硅太陽能電池產(chǎn)業(yè)生命周期評(píng)價(jià)的終點(diǎn)破壞類影響評(píng)價(jià)模型[5,31-32],模型對(duì)應(yīng)的終點(diǎn)分別是:①人體健康,包括致癌、呼吸系統(tǒng)影響、氣候變化3個(gè)影響類別;②生態(tài)質(zhì)量,包括生態(tài)毒性、酸化富營養(yǎng)化兩個(gè)影響類別;③資源,包括礦產(chǎn)資源、化石燃料兩個(gè)影響類別.
根據(jù)2.3節(jié)選用的模型,以1 m2組件為單位,對(duì)晶體硅太陽能電池產(chǎn)業(yè)生命周期環(huán)境影響進(jìn)行評(píng)價(jià),結(jié)果如圖4、5所示.
圖4 晶體硅太陽能電池產(chǎn)業(yè)生命周期各產(chǎn)品環(huán)境影響類別評(píng)價(jià)Fig.4 Life cycle environmental impact of productions of crystalline silicon solar cell industry
圖5 晶體硅太陽能電池產(chǎn)業(yè)主要產(chǎn)品及其生產(chǎn)要素環(huán)境影響占比Fig.5 Environmental impact factors of productions of crystalline silicon solar cell industry
從圖4可以看出,晶體硅太陽能電池產(chǎn)業(yè)生命周期環(huán)境影響主要集中在呼吸系統(tǒng)影響、化石燃料、致癌和氣候變化4個(gè)環(huán)境影響類別,依次占產(chǎn)業(yè)生命周期環(huán)境影響的41.94%、25.20%、14.89%和8.80%,這主要由于整個(gè)產(chǎn)業(yè)在高純多晶硅、硅片、電池片生產(chǎn)過程耗電較多,而我國的電力結(jié)構(gòu)又以火力發(fā)電為主所導(dǎo)致,發(fā)電過程排放的顆粒物對(duì)人體健康影響較大. 組件生產(chǎn)過程由于消耗了焊帶(主要成分為錫和銅)和鋁合金邊框,因此在礦產(chǎn)資源方面影響也較大,占產(chǎn)業(yè)生命周期環(huán)境影響的5.39%. 酸化富營養(yǎng)化和生態(tài)毒性類別的環(huán)境影響較低,僅占2.07%和1.70%.
從圖5可以看出,高純多晶硅產(chǎn)品是整個(gè)產(chǎn)業(yè)生命周期環(huán)境影響最大的產(chǎn)品環(huán)節(jié),占全產(chǎn)業(yè)環(huán)境影響的43.31%,其次是組件產(chǎn)品,占比26.39%,硅片和電池片產(chǎn)品占比較小,分別為17.81%、12.50%,因此,降低高純多晶硅產(chǎn)品環(huán)境影響是降低產(chǎn)業(yè)整體環(huán)境影響的關(guān)鍵. 通過對(duì)各產(chǎn)品生產(chǎn)要素生命周期環(huán)境影響評(píng)估結(jié)果看出,電耗是高純多晶硅、硅片、電池片產(chǎn)品環(huán)境影響的主要因素,依次占比79.48%、66.60%和63.06%,更是影響整個(gè)產(chǎn)業(yè)生命周期環(huán)境影響的最大因素,其約占整個(gè)產(chǎn)業(yè)環(huán)境影響的56%,因此,減少高純多晶硅、硅片、電池片產(chǎn)品的電耗是降低晶體硅太陽能電池產(chǎn)業(yè)環(huán)境影響的首要選擇. 此外,組件產(chǎn)品中焊帶消耗、硅片產(chǎn)品中的砂漿消耗、組件產(chǎn)品的鋁合金邊框也是晶體硅太陽能電池產(chǎn)業(yè)環(huán)境影響的重要因素,依次約占整個(gè)產(chǎn)業(yè)環(huán)境影響的5.1%、4.7%和4.0%,減少這些輔料的消耗是降低晶體硅太陽能電池產(chǎn)業(yè)環(huán)境影響的另一途徑.
對(duì)結(jié)果的不確定性分析也是評(píng)估結(jié)果的重要途徑,該文采用蒙特卡洛分析來進(jìn)行不確定性分析,結(jié)果如圖6所示. 由圖6可以看出,高純多晶硅、組件、硅片、電池片的標(biāo)準(zhǔn)誤依次為0.084、0.036、0.032、0.019,說明高純多晶硅產(chǎn)品生命周期環(huán)境影響評(píng)價(jià)結(jié)果的不確定性較高,這與晶體硅太陽能電池產(chǎn)業(yè)的數(shù)據(jù)清單質(zhì)量評(píng)估結(jié)果一致,也與HUANG等[17]的研究較為一致,這是因?yàn)楦呒兌嗑Ч璁a(chǎn)品生產(chǎn)中電耗的數(shù)據(jù)精準(zhǔn)度略低(σ為0.41)導(dǎo)致了其評(píng)價(jià)結(jié)果的不確定性較大.
圖6 蒙特卡洛分析結(jié)果Fig.6 The result of Monte-carlo simulation
a) 面對(duì)日益復(fù)雜的環(huán)境問題和精細(xì)化的環(huán)境管理需求,對(duì)產(chǎn)業(yè)生命周期評(píng)價(jià)方法進(jìn)行了初探,即在產(chǎn)品生命周期評(píng)價(jià)的基礎(chǔ)上,將功能單位和系統(tǒng)邊界設(shè)定基于“可拆解可組合”生態(tài)設(shè)計(jì)理念充分“碎片化”;數(shù)據(jù)收集過程增加質(zhì)量評(píng)估和數(shù)據(jù)整合;增加不確定性分析來驗(yàn)證數(shù)據(jù)合理性. 開展產(chǎn)業(yè)生命周期評(píng)價(jià)將更好的有助于生命周期評(píng)價(jià)在結(jié)構(gòu)調(diào)整、方式轉(zhuǎn)型中提供科學(xué)支撐.
b) 選擇晶體硅太陽能電池產(chǎn)業(yè)進(jìn)行了產(chǎn)業(yè)生命周期評(píng)價(jià)的案例應(yīng)用,結(jié)果顯示:晶體硅太陽能電池產(chǎn)業(yè)可劃分為4個(gè)產(chǎn)品單元和11個(gè)工藝單元,生命周期環(huán)境影響主要集中在呼吸系統(tǒng)影響、化石燃料、致癌和氣候變化4個(gè)環(huán)境影響類別,主要是由于耗電較多所致;節(jié)能降耗是降低環(huán)境影響的主要途徑,其中精準(zhǔn)化降低環(huán)境影響的途徑是減少高純多晶硅、硅片、電池片產(chǎn)品的電耗,組件產(chǎn)品中焊帶消耗,硅片產(chǎn)品中的砂漿消耗和組件產(chǎn)品的鋁合金邊框消耗.
c) 通過蒙特卡洛分析評(píng)估了晶體硅太陽能電池產(chǎn)業(yè)生命周期評(píng)價(jià)結(jié)果的不確定性,結(jié)果顯示,高純多晶硅生命周期評(píng)價(jià)結(jié)果的不確定性較高,這與數(shù)據(jù)質(zhì)量評(píng)估的結(jié)果較為一致.
d) 該研究對(duì)產(chǎn)業(yè)生命周期評(píng)價(jià)的方法進(jìn)行了初探,主要對(duì)產(chǎn)業(yè)功能單位的劃分和產(chǎn)業(yè)數(shù)據(jù)清單的收集進(jìn)行了研究,這其中仍有很多不足,后續(xù)還需要大量的研究來完善.
[1] LI Chen,CUI Suping,NIE Zuoren,etal.The LCA of portland cement production in China[J].The International Journal of Life Cycle Assessment,2015,20(1):117-127.
[2] PENG Shitong,LI Tao,DONG Mengmeng,etal.Life cycle assessment of a large-scale centrifugal compressor:a case study in China[J].Journal of Cleaner Production,2016,139:810-820.
[3] WEN Bo,JIN Qiang,HUANG Hong,etal.Life cycle assessment of Quayside Crane:a case study in China[J].Journal of Cleaner Production,2017,148:1-11.
[4] YUAN Zengwei,ZHANG You,LIU Xin.Life cycle assessment of horizontal-axis washing machines in China[J].The International Journal of Life Cycle Assessment,2016,21(1):15-28.
[5] 謝明輝,阮久莉,白璐,等.太陽能級(jí)多晶硅生命周期環(huán)境影響評(píng)價(jià)[J].環(huán)境科學(xué)研究,2015,28(2):291-296.
XIE Minghui,RUN Jiuli,BAI Lu,etal.Environmental impacts of solar-grade polysilicon based on life cycle assessment[J].Research of Environmental Sciences,2015,28(2):291-296.
[6] CHEUNG C W,BERGER M,FINKBEINER M.Comparative life cycle assessment of re-use and replacement for video projectors[J].The International Journal of Life Cycle Assessment,2017,22:1-13.
[7] XIE Minghui,BAI Weina,BAI Lu,etal.Life cycle assessment of the recycling of Al-PE (a laminated foil made from polyethylene and aluminum foil) composite packaging waste[J].Journal of Cleaner Production,2016,112:4430-4434.
[8] XIE Minghui,QIAO Qi,SUN Qihong,etal.Life cycle assessment of composite packaging waste management:a Chinese case study on aseptic package[J].The International Journal of Life Cycle Assessment,2013,18(3):626-635.
[9] HONG Jinglan,HAN Xiaofei,CHEN Yilu,etal.Life cycle environmental assessment of industrial hazardous waste incineration and land filling in China[J].The International Journal of Life Cycle Assessment,2017,22(7):1054-1064.
[10] DEVIATKIN I,HAVUKAINEN J,HORTTANAINEN M.Comparative life cycle assessment of thermal residue recycling on a regional scale:a case study of South-East Finland[J].Journal of Cleaner Production,2017,149:275-289.
[11] WU Huijun,GAO Liangmin,YUAN Zengwei,etal.Life cycle assessment of phosphorus use efficiency in crop production system of three crops in Chaohu Watershed,China[J].Journal of Cleaner Production,2016,139:1298-1307.
[12] REN J Z,MANZARDO A,MAZZI A,etal.Prioritization of bioethanol production pathways in China based on life cycle sustainability assessment and multicriteria decision-making[J].The International Journal of Life Cycle Assessment,2015,20(6):842-853.
[13] HONG Jingmin,YU Zhaohe,SHI Wenxiao,etal.Life cycle environmental and economic assessment of lead refining in China[J].The International Journal of Life Cycle Assessment,2017,22(6):909-918.
[14] 謝明輝,李麗,閆大海,等.北京市衍生燃料法處置低品質(zhì)塑料包裝的環(huán)境影響[J].環(huán)境科學(xué)研究,2010,23(10):1284-1290.
XIE Minghui,LI Li,YAN Dahai,etal.Life cycle assessment to determine environmental impacts from treatment of low-quality plastic packaging using refuse-derived fuel method in Beijing[J].Research of Environmental Sciences,2010,23(10):1284-1290.
[15] 謝明輝,李麗,黃澤春,等.紙塑鋁復(fù)合包裝處置方式的生命周期評(píng)價(jià)[J].環(huán)境科學(xué)研究,2009,22(11):1299-1304.
XIE Minghui,LI Li,HUANG Zechun,etal.Life cycle assessment of environmental impacts of Al-PE-Pa laminated packaging and waste treatments[J].Research of Environmental Sciences,2009,22(11):1299-1304.
[16] 刁周瑋,石磊.中國光伏電池組件的生命周期評(píng)價(jià)[J].環(huán)境科學(xué)研究,2011,24(5):571-579.
DIAO Zhouwei,SHI Lei.Life cycle assessment of photovoltaic panels in China[J].Research of Environmental Sciences,2011,24(5):571-579.
[17] HUANG Beijing,ZHAO Juan,CHAI Jingyang,etal.Environmental influence assessment of China′s multi-crystalline silicon (multi-Si) photovoltaic modules considering recycling process[J].Solar Energy,2017,143:132-141.
[18] 趙娟,黃蓓佳,柴徑陽,等.多晶硅光伏組件生產(chǎn)可持續(xù)性評(píng)價(jià)[J].環(huán)境科學(xué)研究,2016,29(10):1554-1559.
ZHAO Juan,HUANG Beijia,CHAI Jingyang,etal.Sustainability assessment of China′s multi-crystalline silicon photovoltaic modules production[J].Research of Environmental Sciences,2016,29(10):1554-1559.
[19] YANG Dong,LIU Jingru,YANG Jianxi,etal.Life-cycle assessment of China′s multi-crystalline silicon photovoltaic modules considering international trade[J].Journal of Cleaner Production,2015,94:35-45.
[20] WU Xuecheng,WU Kai,ZHANG Yongxin,etal.Comparative life cycle assessment and economic analysis of typical flue-gas cleaning processes of coal-fired power plants in China[J].Journal of Cleaner Production,2016,142:3236-3242.
[21] DUAN Huabo,HU Mingwei,ZUO Jian,etal.Assessing the carbon footprint of the transport sector in mega cities via streamlined life cycle assessment:a case study of Shenzhen,South China[J].The International Journal of Life Cycle Assessment,2017,22(5):683-693.
[22] XUE Jianfu,LIU Shengli,CHEN Zhongdu,etal.Assessment of carbon sustainability under different tillage systems in a double rice cropping system in Southern China[J].The International Journal of Life Cycle Assessment,2014,19(9):1581-1592.
[23] 劉晶茹,嚴(yán)玉廷,聶鑫蕊,等.生命周期方法在產(chǎn)業(yè)共生系統(tǒng)環(huán)境效益評(píng)價(jià)中的應(yīng)用:研究進(jìn)展及問題分析[J].生態(tài)學(xué)報(bào),2016,36(22):7202-7207.
LIU Jingru,YAN Yuting,NIE Xinrui,etal.The application of life cycle assessments to the evaluation of the environmental benefits of industrial symbioses:research progress and challenges[J].Acta Ecologica Sinica,2016,36(22):7202-7207.
[24] 張莉沙.中國鋼鐵產(chǎn)業(yè)環(huán)境影響評(píng)價(jià)及其低碳發(fā)展研究[D].長沙:湖南大學(xué),2012.
[25] 王臘芳,張莉沙.鋼鐵生產(chǎn)過程環(huán)境影響的全生命周期評(píng)價(jià)[J].中國人口·資源與環(huán)境,2012(S2):239-244.
[26] International Organization for Standardization Technical.ISO 14044:2006 environmental management-life cycle assessment-requirements and guidelines[S].Geneva:International Organization for Standardization,2006.
[27] 莫華,張?zhí)熘?生命周期清單分析的數(shù)據(jù)質(zhì)量評(píng)價(jià)[J].環(huán)境科學(xué)研究,2003,16(5):55-58.
MO Hua,ZHANG Tianzhu.Data quality assessment of life cycle inventory analysis[J].Research of Environmental Sciences,2003,16(5):55-58.
[28] 黃娜,王洪濤,范辭冬,等.基于不確定度和敏感度分析的LCA數(shù)據(jù)質(zhì)量評(píng)估與控制方法[J].環(huán)境科學(xué)學(xué)報(bào),2012,32(6):1529-1536.
HUANG Na,WANG Hongta,FAN Cidong,etal.LCA data quality assessment and control based on uncertainty and sensitivity analysis[J].Acta Scientiae Circumstantiae,2012,32(6):1529-1536.
[29] GUIDO W,MARTA S.Uncertainty assessment by a Monte Carlo simulation in a life cycle inventory of electricity produced by a waste incinerator[J].Journal of Cleaner Production,2003,11(3):279-292.
[30] Pre Consultants.The Eco-indicator 99 a damage oriented method for life cycle impact assessment manual for designers[M].Amersfoort:Pre Consultants,2001.
[31] 阮久莉,謝明輝,喬琦,等.資源耗竭性評(píng)價(jià)的兩種方法比較[C]中國環(huán)境科學(xué)學(xué)會(huì)2013年學(xué)術(shù)年會(huì)論文集.昆明:中國環(huán)境科學(xué)學(xué)會(huì),2013.
[32] RUAN Jiuli,XIE Minghui,QIAO Qi,etal.The localization application of the characterization and normalization method of resources depletion in China[J].Energy Education Science and Technology Part A:Energy Science and Research,2012,30(4):1007-1012.
ExploratoryResearchonIndustrialLifeCycleAssessmentIllustratedbyCaseStudyofCrystallineSiliconPhotovoltaicCellIndustry
XIE Minghui1, BAI Lu1, RUN Jiuli1,QIAO Qi1*, JIANG Leyong2
1.Key Laboratory of Eco-Industry of Ministry of Environmental Protection, Chinese Research Academy of Environmental Sciences, Beijing 100012, China2.Kangda Intl. Environmental Co.,Ltd., Beijing 100028, China
With rising complexity of environmental concerns and increasingly refined environmental management requirements, there are growing needs to conduct life cycle assessments for upgrading the industrial structure and shifting the economic development mode. The industrial life cycle assessment (ILCA) based on product life cycle assessment was conducted and supplemented with the following contents:(1) The function unit and system boundary were defined as one single product or process unit as far as possible based on ‘disassembly and combination’ approach;(2) Data collection included data accuracy assessment and integration into an industry-level database;(3) Data accuracy was verified by uncertainty analysis. The crystalline silicon photovoltaic cell industry was taken as a case study. The results showed that the crystalline silicon photovoltaic industry was separated into four production units and eleven technique units. The data of mass and energy inputs and environmental emissions were collected based on the above production and technique units. After data accuracy assessment, a data inventory of crystalline silicon photovoltaic cell industry was obtained from data integration. The life cycle environmental impacts of the crystalline silicon photovoltaic cell industry main came from respiratory system impacts (41.94%), fossil fuels (25.20%), carcinogens (14.89%) and climate change (8.80%) categories. Raw material reduction and energy savings were the primary pathways to decreasing the environmental impacts, especially decreasing electricity consumption in solar-grade silicon, wafer and cell production;solder in panel production;silicon carbide in wafer production;and aluminum alloy in panel production. Uncertainty analysis using a Monte-Carlo simulation revealed that the highest uncertainty was in solar-grade silicon production;this finding was in accordance with the results of data accuracy assessment in data collection. These case application results showed that ILCA can improve LCA from product-level to industry-level, which can provide scientific information for policy-making for the development of national industry.
industrial; life cycle assessment; data collection; crystalline silicon photovoltaic cell; environmental impacts
2017-06-06
2017-07-29
國家環(huán)境保護(hù)公益性行業(yè)科研專項(xiàng)(201209056)
謝明輝(1981-),男,安徽淮北人,副研究員,博士,主要從事生態(tài)工業(yè)和生命周期評(píng)價(jià)研究,huibird82@163.com.
*責(zé)任作者,喬琦(1963-),女,甘肅蘭州人,研究員,主要從事清潔生產(chǎn)和生態(tài)工業(yè)研究,qiaoqi@craes.org.cn
謝明輝,白璐,阮久莉,等.以晶體硅太陽能電池產(chǎn)業(yè)為例的產(chǎn)業(yè)生命周期評(píng)價(jià)初探[J].環(huán)境科學(xué)研究,2017,30(12):1970-1978.
XIE Minghui,BAI Lu,RUN Jiuli,etal.Exploratory research on industrial life cycle assessment illustrated by case study of crystalline silicon Photovoltaic cell industry[J].Research of Environmental Sciences,2017,30(12):1970-1978.
X820.3
1001-6929(2017)12-1970-09
A
10.13198j.issn.1001-6929.2017.03.45