亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        我國典型燃煤源和工業(yè)過程源排放PM2.5成分譜特征

        2017-12-16 05:54:47劉亞勇張文杰白志鵬趙雪艷王歆華
        環(huán)境科學研究 2017年12期
        關(guān)鍵詞:流化床煤粉燃煤

        劉亞勇, 張文杰, 白志鵬, 楊 文, 趙雪艷, 韓 斌, 王歆華

        中國環(huán)境科學研究院, 環(huán)境基準與風險評估國家重點實驗室, 北京 100012

        我國典型燃煤源和工業(yè)過程源排放PM2.5成分譜特征

        劉亞勇, 張文杰*, 白志鵬, 楊 文, 趙雪艷, 韓 斌, 王歆華

        中國環(huán)境科學研究院, 環(huán)境基準與風險評估國家重點實驗室, 北京 100012

        鑒于我國本地化源譜(源成分譜)數(shù)量不足的現(xiàn)狀,采用稀釋通道系統(tǒng)對燃煤源和工業(yè)過程源進行采樣,建立了4類燃煤鍋爐(鏈條爐、流化床、往復爐和煤粉爐)和6類工業(yè)過程源(煉鐵、鋁焙燒、鋁煅燒、磚瓦爐、水泥窯頭和窯尾)的PM2.5成分譜,并對源譜特征進行研究. 結(jié)果表明:①不同源譜組分特征差異明顯. 水泥窯爐排放的PM2.5中,w(Ca)、w(Si)、w(OC)、w(SO42-)較高,分別為8.51%~14.18%、5.69%~11.80%、3.47%~15.56%、8.67%~16.85%;燃煤鍋爐中Al(4.50%~8.67%,質(zhì)量分數(shù),余同)、OC(6.44%~15.33%)、SO42-(9.85%~22.87%)組分貢獻較大;煉鐵和鋁冶煉工藝源譜中主導化學組分分別為Fe(8.57%~9.88%)和Al(11.81%~16.58%);磚瓦爐顆粒物源譜中主要組分為SO42-、NH4+、Si等. ②不同污染源PM2.5成分譜的分歧系數(shù)結(jié)果顯示,流化床和煤粉爐、水泥窯頭和窯尾源譜較為相似,其分歧系數(shù)分別為0.26和0.28,其余源譜間均存在一定差異. 進一步計算組分差異權(quán)重(RU)發(fā)現(xiàn),往復爐源譜中組分Zn、Sn與其他3類鍋爐有明顯不同. 流化床煤粉爐源譜中的Si、Ni,窯頭窯尾源譜中的K、Mn、OC組分差異顯著,可以作為區(qū)分相似源譜的標識組分. 與其他研究建立的源譜相比,燃煤源譜中w(EC)和w(SO42-)偏高. 鋼鐵源譜中w(EC)和w(NH4+)較其他地區(qū)偏高,w(Pb)偏低;工業(yè)過程源譜中,w(Cl-)較SPECIATE相關(guān)源譜偏低,而w(Ⅴ)和w(Cr)偏高. 鑒于顆粒物源譜受到不同燃料種類、燃燒方式和煙氣控制設(shè)施等影響而存在差異,源譜的準確性和代表性還需進一步測試和驗證.

        PM2.5成分譜; 燃煤源; 工業(yè)過程源

        近年來,我國大范圍的霾污染時有發(fā)生,PM2.5濃度居高不下,已經(jīng)嚴重影響到大氣環(huán)境質(zhì)量[1-3]、氣候變化[4]和人體健康[5]. ZHANG等[6]討論了我國大氣污染治理所面臨的挑戰(zhàn),并指出我國應(yīng)改變粗放型的經(jīng)濟發(fā)展方式,限制化石燃料的使用.2013年9月,國務(wù)院發(fā)布《大氣污染防治行動計劃》,力促環(huán)境空氣質(zhì)量改善,向PM2.5宣戰(zhàn)[7]. 為了準確識別污染源,制訂合理的控制措施,環(huán)境保護部于2013年8月發(fā)布《大氣顆粒物來源解析技術(shù)指南(試行)》,北京[8]、天津[9]、廈門[10]、泰安[11]、濟南等[12]城市先后開展了源解析工作. 其中,受體模型法如化學質(zhì)量平衡(CMB)和正定矩陣因子分解法(PMF)已被廣泛應(yīng)用于源解析工作中[13-15].

        我國以煤炭為主要燃料,燃煤源是我國大氣顆粒物污染的主要來源[16-17]. BI等[12]用CMB受體模型對我國北方6個城市進行了源解析,研究發(fā)現(xiàn),春季燃煤飛灰對大氣顆粒物的貢獻達到5%~21%,而冬季達到20%~59%. 工業(yè)過程源是指工業(yè)生產(chǎn)和加工過程中,以對工業(yè)原料進行物理和化學轉(zhuǎn)化為目的的工業(yè)設(shè)備,第一級分類包括鋼鐵、有色冶金、建材和化工4個行業(yè)[18]. 工業(yè)源排放的顆粒物是大氣灰霾形成的重要來源之一,不同工藝過程排放的顆粒物中重金屬如w(V)、w(Ni)和w(Sb)較高[19-21],對人體健康有一定影響. 目前,京津冀和長三角地區(qū)各主要城市的源解析結(jié)果[22-26]已經(jīng)公布,燃煤源和工業(yè)源對PM2.5貢獻率分別占13.5%~28.5%和17%~28.9%. 在煙氣凈化技術(shù)方面,我國工業(yè)鍋爐已普遍配備高效靜電除塵器及脫硫裝置[27]. 但是,傳統(tǒng)的控制技術(shù)仍然無法滿足對煙氣中細顆粒物的控制,如經(jīng)過除塵效率相對較高的靜電除塵及濕法脫硫后,PM2.5仍占顆粒物總排放量的64.1%[28].

        源譜(源成分譜)是污染源的“指紋”,可以準確定義污染源的排放特征. 此外,源譜還可以作為CMB的輸入數(shù)據(jù)、PMF解析因子的依據(jù)和計算排放清單的基礎(chǔ)[29],可為大氣顆粒物來源解析提供重要基礎(chǔ)數(shù)據(jù). 自19世紀80年代起,歐美等國家就開始進行源解析和排放清單的研究工作[30]. US EPA的SPECIATE是迄今為止最全面的源譜數(shù)據(jù)庫[31],目前已更新至v4.5,包含源譜數(shù)量多達5 728條,涵蓋了燃煤、生物質(zhì)燃燒、機動車尾氣和工業(yè)鍋爐等諸多污染源類,相關(guān)的分析測試方法和數(shù)據(jù)質(zhì)量評價也囊括其中[32]. 歐洲的SPECIEUROPE顆粒物源譜數(shù)據(jù)庫也于2015年對外開放;Pernigotti等[33]對SPECIEUROPE進行了介紹并用聚類分析的方法對數(shù)據(jù)庫中現(xiàn)有源譜數(shù)據(jù)進行了分類研究. 此外,中國環(huán)境科學研究院的研究者們建立了我國的源譜數(shù)據(jù)庫——中國源譜數(shù)據(jù)共享平臺(CSPSS,www. speciate. org. cn),目前開放的CSPSS1.0版本包括了2003—2012年以來固定燃燒源、工業(yè)過程源、機動車和開放源等我國20多個城市的500多條成分譜. 但是,我國關(guān)于源譜的研究仍然相對缺乏,并且主要集中在揚塵源[34-40]、燃煤源[16-17,41-42]、機動車排放[43]以及生物質(zhì)燃燒源[42,44]. 外來源譜在相關(guān)的源解析工作中占比達20%~90%[14].

        該研究采用稀釋通道系統(tǒng)對典型燃煤源和工業(yè)過程源進行采樣,建立鏈條爐、流化床、往復爐和煤粉爐、煉鐵、鋁焙燒、鋁煅燒、磚瓦爐、水泥窯頭和窯尾排放PM2.5成分譜,并對源譜不確定性進行評估. 該研究旨在開展我國典型燃煤源和工業(yè)過程源排放PM2.5成分譜特征研究,以期為國內(nèi)相關(guān)城市和區(qū)域開展大氣顆粒物來源解析提供基礎(chǔ)數(shù)據(jù),以及為國家環(huán)境空氣質(zhì)量管理和控制提供技術(shù)支撐.

        1 研究方法

        1.1 數(shù)據(jù)來源

        該研究采集了4類燃煤源(鏈條爐、往復爐、循環(huán)流化床和煤粉爐)以及6類工業(yè)過程源(煉鐵、轉(zhuǎn)鋁焙燒、鋁煅燒、磚瓦爐、水泥窯頭和窯尾)共計31個樣品(見表1),樣品均采自2014—2015年. 該研究中所涉及的采樣、分析方法及相應(yīng)的質(zhì)量控制和質(zhì)量保證詳見文獻[45].

        1.2 不確定性評估

        樣品經(jīng)化學分析后,計算不同源樣品中各組分質(zhì)量分數(shù)的平均值(F)和標準偏差(SD),獲得不同源類的成分譜. 考慮到測試過程中的方法不確定性和平行樣品的不確定性[46-47],該研究中組分不確定性的計算公式:

        表1 燃煤源和工業(yè)過程源采樣信息

        注: —表示未記錄.

        (1)

        式中:Uc為組分c的不確定性;Fc為源樣品中組分c含量的平均值;MDL為儀器測量檢出限;Mc為所測組分c質(zhì)量的平均值;CV為變異系數(shù),以SDFc計算得到.

        2 結(jié)果與討論

        2.1 組分特征

        燃煤鍋爐、工業(yè)過程源PM2.5成分譜中主要組分含量及其不確定性如表2和圖1~2所示.10種源譜中所測得的主要組分含量為40.8%(往復爐)~79.9%(煉鐵),其中燃煤鍋爐和磚瓦爐源譜組分解釋量偏低(<60%),可能是由于這兩種源排放較復雜導致源譜中含有未監(jiān)測到的物種. 鄭玫等[14]建立了上海4種工業(yè)源譜,研究發(fā)現(xiàn)電廠鍋爐源譜對PM2.5的解釋量(45%~55%)偏低.

        水泥窯爐排放的PM2.5中,w(Ca)、w(Si)、w(OC)、w(SO42-)等較高,分別為8.51%~14.18%、5.69%~11.80%、3.47%~15.56%、8.67%~16.85%. 窯尾排放的顆粒物中OC的貢獻約為窯頭的3倍,窯頭和窯尾排放的OCEC值分別為6.85和0.76. 可能是由于氣體經(jīng)窯尾至窯頭冷卻后燃燒較充分,因此w(OC)偏低. Ca2+Ca(<0.3)偏低說明水泥窯爐顆粒物中的Ca主要以非水溶性的形態(tài)存在. 燃煤鍋爐中w(Al)、w(OC)、w(SO42-)分別為4.50%~8.67%、6.44%~15.33%、9.85%~22.87%. As在燃煤鍋爐中的貢獻較其他源譜偏高,往復爐排放顆粒物中w(As)約為0.04%. ZHANG等[16]研究了我國燃煤排放特征,發(fā)現(xiàn)As可以作為燃煤排放的特征組分. 流化床、煤粉爐、鋼鐵廠的煉鐵工藝采用的脫硫方法為濕法和半干半濕法,兩種脫硫工藝均需以石灰作為原料,因此這3種源譜中w(Ca)偏高,分別為4.63%、5.82%和7.67%. 工業(yè)過程源排放與生產(chǎn)原料相關(guān),煉鐵和鋁冶煉工藝排放的顆粒物中,主導化學組分分別為Fe(8.57%~9.88%,質(zhì)量分數(shù),余同)和Al (11.81%~16.58%). 此外,煉鐵工藝排放顆粒物中OC的貢獻約為其他源的1.3~9.3倍,可能與鋼鐵工藝過程中的有機添加劑有關(guān). 磚瓦爐顆粒物源譜中主要組分為SO42-、NH4+、Si等,相應(yīng)質(zhì)量分數(shù)分別為16.88%~25.64%、3.23%~7.87%、10.54~13.13%.10種源譜的Mg2+Mg較穩(wěn)定,范圍為0.57~0.79,說明各類源排放的顆粒物中Mg水溶性組分的比例受工藝過程的影響較小. 上述結(jié)果與已有研究結(jié)果相似,如王書肖等[41]研究發(fā)現(xiàn),工業(yè)鏈條爐排放的PM2.5中SO42-最多,占20%~54%;鄭玫等[14]建立了上海工業(yè)源譜,發(fā)現(xiàn)鋼鐵源排放的顆粒物受到生產(chǎn)原料和工藝添加劑的影響,SO42-、Fe、Zn、Cl-等物種貢獻較大.

        2.2 源譜相似性

        分歧系數(shù)可以將不同成分譜中組分含量標準化,從而來比較成分譜之間的相似性[48]. CD的計算公式:

        (2)

        式中,CDjk為j類源譜和k類源譜之間的分歧系數(shù),xij為j類源譜組分i含量的平均值,j和k為要比較的兩種源類,p為所測主要組分的數(shù)量. CD值越趨近于0,成分譜越相似. 若CD>0.3,表明成分譜之間存在一定差異[49];若CD<0.3,表明成分譜之間有一定的相似性,輸入CMB模型可能會引起共線性問題. 表3為10種污染源PM2.5成分譜間的分歧系數(shù),結(jié)果顯示,流化床和煤粉爐、水泥窯頭和窯尾源譜較為相似,其CD分別為0.26和0.28,其余源譜間均存在一定差異.

        表2 不同源類成分譜中主要組分的質(zhì)量分數(shù)和不確定性

        圖1 源譜中主要組分的質(zhì)量分數(shù)Fig.1 Main chemical compositions of source profiles

        圖2 源譜中碳組分的質(zhì)量分數(shù)Fig.2 Carbonaceous compositions of source profiles

        為了進一步研究燃煤鍋爐、水泥窯爐源譜間的差異,引入組分差異權(quán)重分布函數(shù)——Residual(R)Uncertainty(U). RU表示兩種源譜中相同組分間差異性的權(quán)重,計算時將源譜中的組分含量和不確定性均考慮在內(nèi). Chow等[50]將地質(zhì)塵按照采樣點位的距離和源類別的相似程度進行分級,用RU分析不同級別揚塵PM2.5源譜之間的相似性和差異性. RU計算公式:

        (3)

        式中,σi1和σi2為兩種源譜中組分i含量平均值的標準偏差.

        表3 源譜間的分歧系數(shù)

        表4 燃煤鍋爐和水泥窯爐源譜主要組分間的RU

        Table 4 RU for main chemical compositions of source profiles of coal-fired boilers and cement kiln

        表4 燃煤鍋爐和水泥窯爐源譜主要組分間的RU

        組分往復爐∕鏈條爐往復爐∕流化床往復爐∕煤粉爐鏈條爐∕流化床鏈條爐∕煤粉爐流化床∕煤粉爐窯頭∕窯尾Al1.580.330.122.034.780.341.44Sr0.451.620.381.430.721.552.06Mg1.391.100.160.444.682.041.35Ti0.170.671.321.303.161.621.72Ca1.870.554.620.053.691.040.57Fe1.000.450.041.361.120.462.22Ba0.050.010.710.041.030.710.83Si0.210.652.181.305.705.202.47Na4.190.581.721.100.700.520.61K1.940.110.170.831.240.195.13V0.480.380.282.323.220.360.37Cr0.820.590.390.950.500.710.88Mn3.011.692.180.850.640.244.40Ni0.180.490.331.250.233.830.54Cu0.790.490.580.820.740.290.45Zn6.473.983.010.470.430.712.36As0.310.270.270.501.120.030.25Sn27.4618.0825.541.221.380.210.45Sb0.190.200.200.860.800.250.24Pb1.862.752.434.152.881.622.41OC1.011.000.900.380.260.114.36EC0.950.360.840.570.090.472.14NH4+0.860.570.710.180.460.412.78NO3-0.241.341.131.281.110.811.11SO42-1.352.950.264.331.172.180.90

        2.3 國內(nèi)外源譜對比

        比較不同地區(qū)以及SPECIATE v4.5中相關(guān)源類的成分譜,發(fā)現(xiàn)不同研究得到的源譜中主要化學組分有一定差異,該差異主要與燃料種類、生產(chǎn)方式和研究者所用的測試方法等的不同有關(guān)[14].

        SPECIATE數(shù)據(jù)庫中源譜數(shù)量眾多,為了便于研究,筆者將相關(guān)源類的PM2.5成分譜進行統(tǒng)計和整理. 由于數(shù)據(jù)庫中不同研究獲得的源譜差異性較大,分別對同一源類的原始成分譜進行求中值處理[31]. 最終獲得燃煤、鋼鐵生產(chǎn)、水泥生產(chǎn)、鋁冶煉和磚瓦窯爐5種源類的平均成分譜.

        不同地區(qū)的燃煤源譜如表5所示,結(jié)果顯示,該研究中w(EC)較其他地區(qū)而言相對偏高(除浙江寧波燃煤電廠外);流化床排放的顆粒物中w(SO42-)偏高,與上海電廠相似. 該研究燃煤鍋爐源譜主要組分含量與SPECIATE源譜相似.

        表5 不同地區(qū)燃煤源譜中主要組分的質(zhì)量分數(shù)

        注: — 表示無數(shù)據(jù).

        不同地區(qū)的鋼鐵源譜如表6所示. 對比發(fā)現(xiàn),該研究鋼鐵源譜中主要組分與其他地區(qū)差異較大. 其中w(EC)和w(NH4+)較其他地區(qū)偏高,w(Pb)偏低. 除上海燒結(jié)廠外,w(SO42-)較國內(nèi)其他地區(qū)偏高. 其余組分隨工藝、研究地區(qū)的不同也有一定差異. 鄭玫等[14]測試的上海燒結(jié)廠源譜與其他鋼鐵源譜有較大的差異,其中w(SO42-)、w(Cl-)、w(Ca)和w(Pb)均較高.

        表6 不同地區(qū)鋼鐵源譜中主要組分的質(zhì)量分數(shù)

        注: —表示無數(shù)據(jù).

        由于國內(nèi)關(guān)于冶金、建材等行業(yè)的工業(yè)源譜報道較少,表7比較了該研究與SPECIATE數(shù)據(jù)庫中水泥生產(chǎn)、鋁冶煉和磚瓦爐源譜的差異. 對比發(fā)現(xiàn),各污染源源譜中w(Cl-)較SPECIATE低,而w(V)、w(Cr)偏高,表明我國工業(yè)過程源排放的顆粒物中重金屬含量相對較高,應(yīng)予以重視.

        表7 該研究和SPECIATE中相關(guān)源譜主要組分的質(zhì)量分數(shù)

        注: —表示無數(shù)據(jù).

        3 結(jié)論

        a) 依托中國源譜數(shù)據(jù)共享平臺,建立了燃煤鍋爐和工業(yè)過程源的成分譜,并對其不確定性進行了評估,發(fā)現(xiàn)不同源類的組分特征差異明顯.10種源譜中所測主要組分的質(zhì)量分數(shù)為40.8%~79.9%. 水泥窯爐排放的PM2.5中,Ca、Si、OC、SO42-等組分貢獻較大,其質(zhì)量分數(shù)分別為8.51%~14.18%、5.69%~11.80%、3.47%~15.56%、8.67%~16.85%. 燃煤鍋爐中Al(4.50%~8.67%)、OC(6.44%~15.33%)、SO42-(9.85%~22.87%)等組分貢獻較大. 流化床、煤粉爐、鋼鐵廠的煉鐵工藝采用的脫硫方法為濕法和半干半濕法,兩種脫硫工藝均需以石灰作為原料,因此這3種源譜中w(Ca)偏高. 煉鐵和鋁冶煉工藝源譜中主導化學組分分別為Fe(8.57%~9.88%)和Al(11.81%~16.58%). 磚瓦爐顆粒物源譜中主要組分為SO42-、NH4+、Si等.

        b) 不同污染源PM2.5成分譜的分歧系數(shù)結(jié)果表明,流化床和煤粉爐、水泥窯頭和窯尾源譜較為相似,其分歧系數(shù)分別為0.26和0.28,其余源譜間均存在一定差異. 進一步計算組分差異權(quán)重RU,發(fā)現(xiàn)往復爐源譜中,組分Zn、Sn與其他三類鍋爐有明顯不同. 流化床、煤粉爐源譜中的Si、Ni,窯頭窯尾源譜中K、Mn、OC組分差異顯著,可以作為區(qū)分相似源譜的標識組分.

        c) 與其他研究建立的源譜相比,燃煤源譜中w(EC)和w(SO42-)偏高. 鋼鐵源譜中w(EC)和w(NH4+)較其他地區(qū)偏高,w(Pb)偏低;對于其余工業(yè)源譜,w(Cl-)較SPECIATE低,而w(V)和w(Cr)偏高. 鑒于顆粒物源譜受到不同燃料種類、燃燒方式和煙氣控制設(shè)施等影響而存在差異,源譜的準確性和代表性還需進一步測試進行驗證.

        [1] HUANG RuJin,ZHANG Yanlin,BOZZETTI C,etal.High secondary aerosol contribution to particulate pollution during haze events in China[J].Nature,2014,514(7521):218-222.

        [2] TAO Jun,ZHANG Leiming,HO Kinfai,etal.Impact of PM2.5chemical compositions on aerosol light scattering in Guangzhou-the largest megacity in South China[J].Atmospheric Research,2014,135136(1):48-58.

        [3] CHAN C K,YAO Xiaohong.Air pollution in mega cities in China[J].Atmospheric Environment,2008,42(1):1-42.

        [4] WANG Yuan,ZHANG Renyi,SARAVANAN R.Asian pollution climatically modulates mid-latitude cyclones following hierarchical modelling and observational analysis[J].Nature Communications,2014.doi:10.1038ncomms4098.

        [5] CAO Junji,XU Hongmei,XU Qun,etal.Fine particulate matter constituents and cardiopulmonary mortality in a heavily polluted Chinese City[J].Environmental Health Perspectives,2012,120(3):373-378.

        [6] ZHANG Qiang,HE Kebin,HUO Hong.Policy:cleaning China′s air[J].Nature,2012,484(7393):161-162.

        [7] 柴發(fā)合,王淑蘭,云雅如,等.貫徹《大氣污染防治行動計劃》力促環(huán)境空氣質(zhì)量改善[J].環(huán)境與可持續(xù)發(fā)展,2013,38(6):5-8.

        CHAI Fahe,WANG Shulan,YUN Yaru,etal.Action plan for prevention and control of atmospheric pollution issued by the state council is the guide to improve air quality in chain[J].Environmental and Sustainable Development,2013,38(6):5-8.

        [8] YU Song,TANG Xiaoyan,XIE Shaodong,etal.Source apportionment of PM2.5in Beijing in 2004[J].Journal of Hazardous Materials,2007,146(12):124-130.

        [9] KONG Shaofei,HAN Bin,BAI Zhipeng,etal.Receptor modeling of PM2.5,PM10and TSP in different seasons and long-range transport analysis at a coastal site of Tianjin,China[J].Science of the Total Environment,2010,408(20):4681-4694.

        [10] ZHANG Ningning,ZHUANG Mazhan,TIAN Jie,etal.Development of source profiles and their application in source apportionment of PM2.5in Xiamen,China[J].Frontiers of Environmental Science & Engineering,2016,10(5):17-29.

        [11] LIU Baoshuang,SONG Na,DAI Qili,etal.Chemical composition and source apportionment of ambient PM2.5during the non-heating period in Taian,China[J].Atmospheric Research,2015,170:23-33.

        [12] BI Xiaohui,FENG Yinchang,WU Jianhui,etal.Source apportionment of PM10in six cities of northern China[J].Atmospheric Environment,2007,41(5):903-912.

        [13] 郭旸旸,朱廷鈺,高翔,等.我國工業(yè)源PM2.5源譜的建立方法及行業(yè)排放特征分析[J].環(huán)境工程,2016,34(8):158-165.

        GUO Yangyang,ZHU Tingyu,GAO Xiang,etal.Estabishment method and chracteristics analysis on industrial PM2.5source profiles in China[J].Environmental Engineering,2016,34(8):158-165.

        [14] 鄭玫,張延君,閆才青,等.上海PM2.5工業(yè)源譜的建立[J].中國環(huán)境科學,2013,33(8):1354-1359.

        ZHENG Mei,ZHANG Yanjun,YAN Caiqing,etal.Establishing PM2.5industrial source profiles in Shanghai[J].China Environmental Science,2013,33(8):1354-1359.

        [15] HUANG Rujin,ELSER M,WANG Qiyuan,etal.Source apportionment of particulate matter in Chinese megacities:the implication for emission control strategies[C]EGU General Assembly Conference.Vienna:EGU General Assembly Conference Abstracts,2015:17.

        [16] ZHANG Y,SCHAUER J J,ZHANG Y,etal.Characteristics of particulate carbon emissions from real-world Chinese coal combustion[J].Environmental Science & Technology,2008,42(14):5068-5073.

        [17] PEI Bing,WANG Xiaoliang,ZHANG Yihua,etal.Emissions and source profiles of PM2.5for coal-fired boilers in the Shanghai megacity,China[J].Atmospheric Pollution Research,2016,7(4):577-584.

        [18] 環(huán)境保護部.關(guān)于發(fā)布《大氣細顆粒物一次源排放清單編制技術(shù)指南(試行)》等4項技術(shù)指南的公告[EBOL].北京:環(huán)境保護部,2014[2016-12-20].http:www.mep.gov.cngkmlhbbbgg201408t20140828_288364.htm.

        [19] CHOW J C,WATSON J G,KUHNS H,etal.Source profiles for industrial,mobile,and area sources in the big bend regional aerosol visibility and observational study[J].Chemosphere,2004,54(2):185-208.

        [20] SOFILIC′ T,RASTOVCˇAN-MIOCˇ A,TEFICA C,etal.Characterization of steel mill electric-arc furnace dust[J].Journal of Hazardous Materials,2004,109(1):59-70.

        [21] KONG Shaofei,LU Bing,BAI Zhipeng,etal.Potential threat of heavy metals in re-suspended dusts on building surfaces in oilfield city[J].Atmospheric Environment,2011,45(25):4192-4204.

        [22] 北京市環(huán)境保護監(jiān)測中心.北京發(fā)布最新PM2.5來源解析結(jié)果[EBOL].北京:北京市環(huán)境保護監(jiān)測中心,2014[2016-12-20].http:www.bjmemc.com.cng327s921t1971.aspx.

        [23] 天津市環(huán)境保護保護局.天津發(fā)布顆粒物源解析結(jié)果[EBOL].天津:天津市環(huán)境保護保護局,2014[2016-12-20].http:www.tjhb.gov.cnnewsnews_headtitle201410t20141009_570.html.

        [24] 上海市環(huán)境保護局.上海發(fā)布顆粒物源解析結(jié)果[EBOL].上海:上海市環(huán)境保護局,2015[2016-12-20].http:www.sepb.gov.cnfacmsshhjshhj2272shhj215920150188463.htm.

        [25] 石家莊市環(huán)境保護局.石家莊發(fā)布顆粒物源解析結(jié)果[EBOL].石家莊:石家莊市環(huán)境保護局,2015[2016-12-20].http:www.sjzhb.gov.cncyportal2.3templatesite00_index@sjzhbj.jsp?a1b2dd=7xaac.

        [26] 南京市環(huán)境保護局.南京市發(fā)布顆粒物源解析結(jié)果[EBOL].南京:南京市環(huán)境保護局,2015[2016-12-20].http:www.njhb.gov.cn43123201504t20150430_3289890.html.

        [27] 代旭東,徐曉亮,繆明烽.電廠PM2.5排放現(xiàn)狀與控制技術(shù)[J].能源環(huán)境保護,2011,25(6):1-4.

        DAI Xudong,XU Xiaoliang,LIAO Mingfeng.Emission status and control technology of ultra-fine particles in coal-fired power plants[J].Energy Environmental Protection,2011,25(6):1-4.

        [28] 賀晉瑜,燕麗,雷宇,等.我國燃煤電廠顆粒物排放特征[J].環(huán)境科學研究,2015,28(6):862-868.

        HE Jinyu,YAN Li,LEI Yu,etal.Emission characteristics of particulate matter from coal-fired power plants in China[J].Research of Environmental Sciences,2015,28(6):862-868.

        [29] SIMON H,BECK L,BHAVE P V,etal.The development and uses of EPA′s SPECIATE database[J].Atmospheric Pollution Research,2010,1(4):196-206.

        [30] BO Y,CAI H,XIE S D.Spatial and temporal variation of historical anthropogenic NMVOCs emission inventories in China[J].Atmospheric Chemistry & Physics,2008,8(23):11519-11566.

        [31] REFF A,BHAVE P V,SIMON H,etal.Emissions inventory of PM2.5trace elements across the United States[J].Environmental Science & Technology,2009,43(15):5790-5796.

        [32] 曹軍驥.PM2.5與環(huán)境[M].北京:科學出版社,2014:212.

        [33] PERNIGOTTI D,BELIS C A,SPANL.Specieurope:the European data base for PM source profiles[J].Atmospheric Pollution Research,2016,7(2):307-314.

        [34] SHEN Zhenxing,JIAN Sun,CAO Junji,etal.Chemical profiles of urban fugitive dust PM2.5samples in northern Chinese cities[J].Science of the Total Environment,2016,s569570:619-626.

        [35] KONG Shaofei.Similarities and differences in PM2.5,PM10and TSP chemical profiles of fugitive dust sources in a coastal oilfield city in China[J].Aerosol & Air Quality Research,2014,14(7):2017-2028.

        [36] HAN Jinbao.Chemical characterizations of PM10profiles for major emission sources in Xining,Northwestern China[J].Aerosol & Air Quality Research,2014,14(14):1017-1027.

        [37] RONG Zhang,CAO Junji,TANG Yanrong,etal.Elemental profiles and signatures of fugitive dusts from Chinese deserts[J].Science of the Total Environment,2014,472(472C):1121-1129.

        [38] ZHANG Qian,SHEN Zhenxing,CAO Junji,etal.Chemical profiles of urban fugitive dust over Xi′an in the south margin of the Loess Plateau,China[J].Atmospheric Pollution Research,2014,5(5):421-430.

        [39] CAO Junjin,CHOW J C,WATSON J G,etal.Size-differentiated source profiles for fugitive dust in the Chinese Loess Plateau[J].Atmospheric Environment,2008,42(10):2261-2275.

        [40] ZHAO Pusheng,FENG Yinchang,ZHU Tan,etal.Characterizations of resuspended dust in six cities of North China[J].Atmospheric Environment,2006,40(30):5807-5814.

        [41] 王書肖,趙秀娟,李興華,等.工業(yè)燃煤鏈條爐細粒子排放特征研究[J].環(huán)境科學,2009,30(4):963-968.

        WANG Shuxiao,ZHAO Xiujuan,LI Xinghua,etal.Emission characteristics of fine particles from grate firing boilers[J].Environmental Science,2009,30(4):963-968.

        [42] ZHANG Hengfang,WANG Shuxiao,HAO Jiming,etal.Chemical and size characterization of particles emitted from the burning of coal and wood in rural households in Guizhou,China[J].Atmospheric Environment,2012,51(5):94-99.

        [43] WU Bobo,SHEN Xianbao,CAO Xinyue,etal.Characterization of the chemical composition of PM2.5emitted from on-road China Ⅲ and China Ⅳ diesel trucks in Beijing,China[J].Science of the Total Environment,2016,551552:579-589.

        [44] ZHANG Yuanxun,SHAO Min,ZHANG Yuanhang,etal.Source profiles of particulate organic matters emitted from cereal straw burnings[J].Journal of Environmental Sciences,2007,19(2):167-175.

        [45] 任麗紅,周志恩,趙雪艷,等.重慶主城區(qū)大氣PM10及PM2.5來源解析[J].環(huán)境科學研究,2014,27(12):1387-1394.

        REN Lihong,ZHOU Zhi′en,ZHAO Xueyan,etal.Source apportionment of PM10and PM2.5in urban areas of Chongqing[J].Research of Environmental Sciences,2014,27(12):1387-1394.

        [46] CHEN Pulong,WANG Tijian,DONG Mei,etal.Characterization of major natural and anthropogenic source profiles for size-fractionated PM in Yangtze River Delta.[J].Science of the Total Environment,2017,598:135-145.

        [47] US Environmental Protection Agency.Quality assurance handbook for air pollution measurement systems,VolumeⅡ,ambient air quality monitoring program[R].Washington DC:Office of Air Quality Planning and Standards,2013:4-15.

        [48] 韓斌.燃煤塵稀釋采樣器的設(shè)計及成分譜建立方法研究[D].天津:南開大學,2009:23-24.

        [49] UPADHYAY N B.Size-differentiated chemical composition of re-suspended soil dust from the desert Southwest United States[J].Aerosol & Air Quality Research,2015,15(2):387-398.

        [50] CHOW J C,WATSON J G,ASHBAUGH L L,etal.Similarities and differences in PM10chemical source profiles for geological dust from the San Joaquin Valley,California[J].Atmospheric Environment,2003,37(910):1317-1340.

        [51] 齊堃,戴春嶺,馮媛,等.石家莊市PM2.5工業(yè)源成分譜的建立及分析[J].河北工業(yè)科技,2015,32(1):78-84.

        QI Kun,DAI Chunling,FENG Yuan,etal.Establishment and analysis of PM2.5industrial source profiles in Shijiazhuang City[J].Hebei Journal of Industrial Science and Technology,2015,32(1):78-84.

        [52] 馬召輝,梁云平,張健,等.北京市典型排放源PM2.5成分譜研究[J].環(huán)境科學學報,2015,35(12):4043-4052.

        MA Zhaohui,LIANG Yunping,ZHANG Jian,etal.PM2.5profiles of typical sources in Beijing[J].Acta Scientiae Circumstantiae,2015,35(12):4043-4052.

        [53] 肖致美,畢曉輝,馮銀廠,等.寧波市環(huán)境空氣中PM10和PM2.5來源解析[J].環(huán)境科學研究,2012,25(5):549-555.

        XIAO Zhimei,BI Xiaohui,FENG Yinchang,etal.Source apportionment of ambient PM10and PM2.5in urban area of Ningbo City[J].Research of Environmental Sciences,2012,25(5):549-555.

        [54] 滕加泉,王唯,蔣少杰,等.常州市大氣PM2.5主要排放源的成分譜研究[J].環(huán)境科技,2015,28(6):56-59.

        TENG Jiaquan,WANG Wei,JIANG Shaojie,etal.Study on the source profiles of PM2.5major emissions in Changzhou[J].Environmental Science & Technology(China),2015,28(6):56-59.

        CharacteristicsofPM2.5ChemicalSourceProfilesofCoalCombustionandIndustrialProcessinChina

        LIU Yayong, ZHANG Wenjie*, BAI Zhipeng, YANG Wen, ZHAO Xueyan, HAN Bin, WANG Xinhua

        State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China

        In view of insufficient local source profiles in China,PM2.5source profiles for coal-fired boilers and industrial processes′ emissions were established.Four coal burning sources from coal-fired boilers of grate firing,fluidized bed,converters and pulverized coal,and 6industrial process emissions from metallurgy,steel production and construction materials production were discussed. Results showed that:(1) The chemical composition shows special characteristics in different source categories. Ca (8.51%-14.18%),Si (5.69%-11.80%),OC (3.47%-15.56%) and SO42-(9.85%-22.87%) were shown to be the major species of PM2.5from cement kiln;Al,SO42-and OC marked coal-fired boiler,accounted for 4.50%-8.67%,6.44%-15.33% and 9.85%-22.87%,respectively;Fe (8.57%-9.88%) and Al (11.81%-16.58%) were the most abundant elements in steel production and aluminum metallurgy. The highest abundances of SO42-,NH4+,Si were observed in brick kiln emissions. (2) The coefficient of divergence (CD) and the distribution of weighted differences (RU ratio) were used to compare the similarities and differences of source profiles. Good similarities were observed between fluidized bed and pulverized coal boiler emissions,and between cement kiln head and inlet emissions. Si and Ni were expected to distinguish profiles between fluidized bed and pulverized coal boiler with the RU>3. K,Mn and OC abundances were significant different between profiles of cement kiln head and inlet. Differences of source profiles from different studies including SPECIATE database were compared. EC and SO42-from coal burning,EC and NH4+from steel production were higher than those of studies in other regions. Compared with source profiles in SPECIATE v4.5,Cl-abundances in metallurgy,cement and brick kiln were lower,while V and Cr were higher in this research. The discrepancies of chemical species from different source profiles are closely linked to different fuels,combustion modes and control facilities. More tests are needed for further study.

        PM2.5; source profiles; coal-fired boiler emissions; industrial process sources

        2016-11-23

        2017-08-25

        科技部科技基礎(chǔ)性工作專項(2013FY112700);國家科技支撐計劃項目(2014BAC23B02)

        劉亞勇(1990-),男,山西晉中人,craes_sp@163.com.

        *責任作者,張文杰(1979-),女,山東青州人,研究員,博士,主要從事大氣氣溶膠與環(huán)境基準研究,zhangwj@craes.org.cn

        劉亞勇,張文杰,白志鵬,等.我國典型燃煤源和工業(yè)過程源排放PM2.5成分譜特征[J].環(huán)境科學研究,2017,30(12):1859-1868.

        LIU Yayong,ZHANG Wenjie,BAI Zhipeng,etal.Characteristics of PM2.5chemical source profiles of coal combustion and industrial process in China[J].Research of Environmental Sciences,2017,30(12):1859-1868.

        X513

        1001-6929(2017)12-1859-10

        A

        10.13198j.issn.1001-6929.2017.03.34

        猜你喜歡
        流化床煤粉燃煤
        高爐噴吹煤粉添加助燃劑生產(chǎn)實踐
        山東冶金(2022年4期)2022-09-14 09:00:08
        流化床丙烷脫氫反應(yīng)段的模擬及優(yōu)化
        歐盟新規(guī)或?qū)е氯种坏娜济弘姀S關(guān)閉
        關(guān)于循環(huán)流化床鍋爐集控運行研究
        燃煤機組“超低排放”改造中CEMS的選型與應(yīng)用
        “超低”排放技術(shù)在我國燃煤電廠的應(yīng)用
        燃煤電廠節(jié)能管理
        煤層氣排采產(chǎn)氣通道適度攜煤粉理論
        單沉浸管流化床內(nèi)離散顆粒數(shù)值模擬
        高爐煤粉精細化噴吹技術(shù)
        性色国产成人久久久精品二区三区| 亚洲精品成人片在线观看| 国产精品毛片久久久久久l| 精品国产亚洲人成在线观看| 人妻少妇精品视频一区二区三区l| 国产精品美女久久久久av福利| 正在播放国产对白孕妇作爱| 久国产精品久久精品国产四虎| 青草草视频在线观看华人免费| 加勒比一本heyzo高清视频| 喷水白浆视频在线观看| 免费无码av片在线观看播放| 少妇内射视频播放舔大片 | 精品女厕偷拍视频一区二区| 吃奶呻吟打开双腿做受视频| 精品国产一区二区三区久久久狼 | 成年男女免费视频网站点播| 亚洲熟女精品中文字幕| 98久9在线 | 免费| 91网红福利精品区一区二| 毛片成人18毛片免费看| 中文字幕在线乱码一区| 国产免费人成视频在线观看| 播放灌醉水嫩大学生国内精品| 国产偷v国产偷v亚洲偷v| 中文字幕av人妻一区二区| 文字幕精品一区二区三区老狼| 成人免费看片又大又黄| chinesefreexxxx国产麻豆| 国产在线精品福利大全| 国产伦奸在线播放免费| 无码人妻久久一区二区三区蜜桃| 女人做爰高潮呻吟17分钟| 国产一区二区丁香婷婷| 在线观看亚洲av每日更新影片| 久久精品国产亚洲av麻豆| 2021精品国产综合久久| 大香蕉视频在线青青草| 台湾佬中文娱乐网22| 四虎精品视频| 国产在线精彩自拍视频|