石旦,徐斌,蔣敬庭
(蘇州大學(xué)附屬第三醫(yī)院腫瘤生物診療中心,江蘇省腫瘤免疫治療工程技術(shù)研究中心,蘇州大學(xué)細(xì)胞治療研究院,江蘇常州 213003)
·腫瘤與微環(huán)境檢測(cè)·
基于TCGA數(shù)據(jù)的肝癌預(yù)后相關(guān)miRNA篩選*
石旦,徐斌,蔣敬庭
(蘇州大學(xué)附屬第三醫(yī)院腫瘤生物診療中心,江蘇省腫瘤免疫治療工程技術(shù)研究中心,蘇州大學(xué)細(xì)胞治療研究院,江蘇常州 213003)
目的通過(guò)TCGA數(shù)據(jù)庫(kù)中肝癌高通量測(cè)序數(shù)據(jù)的分析,尋找新的肝癌預(yù)后相關(guān)的miRNA,為后續(xù)研究提供數(shù)據(jù)支持。方法下載TCGA數(shù)據(jù)庫(kù)中miRNA表達(dá)數(shù)據(jù)及肝癌患者相關(guān)臨床病理參數(shù),基于R語(yǔ)言進(jìn)行數(shù)據(jù)的整理、合并及標(biāo)準(zhǔn)化;分別采用單因素Cox生存分析模型及BhGLM R軟件包中指數(shù)先驗(yàn)分布模型對(duì)miRNA表達(dá)數(shù)據(jù)進(jìn)行分析,并選擇兩種方法篩選結(jié)果的交集。結(jié)果單因素Cox生存分析模型共篩選出63個(gè)預(yù)后相關(guān)miRNA(P<0.05),指數(shù)先驗(yàn)分布模型篩選出77個(gè)miRNA,兩種方法共篩選出包括miR-188、miR-576、miR-887及miR-91等18個(gè)與肝癌患者預(yù)后密切相關(guān)的miRNA。結(jié)論單因素Cox模型聯(lián)合指數(shù)先驗(yàn)分布模型篩選出的肝癌預(yù)后相關(guān)miRNA具有較高的可信度,或可成為肝癌預(yù)后判斷的新指標(biāo)。
肝癌;miRNA篩選;TCGA數(shù)據(jù)庫(kù)
miRNA通過(guò)調(diào)控細(xì)胞因子、生長(zhǎng)因子、促凋亡和抗凋亡基因等信號(hào)分子的表達(dá)而參與腫瘤的發(fā)生、發(fā)展和轉(zhuǎn)移[1-2]。肝癌的發(fā)生與多種因素相關(guān),其發(fā)生、發(fā)展和轉(zhuǎn)移常伴有特定miRNA的異常表達(dá)。本研究通過(guò)單因素Cox模型及貝葉斯多水平Cox比例風(fēng)險(xiǎn)模型中指數(shù)先驗(yàn)?zāi)P凸餐治鯰CGA數(shù)據(jù)庫(kù)中肝癌miRNA表達(dá)數(shù)據(jù),并依據(jù)兩種方法篩選的結(jié)果選擇在肝癌患者中預(yù)后價(jià)值較高的miRNA,為臨床研究及應(yīng)用提供數(shù)據(jù)支持。
1.1數(shù)據(jù)采集 下載TCGA數(shù)據(jù)庫(kù)(https://genome-cancer.ucsc.edu/proj/site/hgHeatmap/)中肝癌高通量測(cè)序表達(dá)譜數(shù)據(jù)及miRNA表達(dá)譜數(shù)據(jù)(時(shí)間截止為2015年2月24日),通過(guò)R軟件(https://www.r-project.org/)對(duì)上述下載數(shù)據(jù)進(jìn)行整理。由2名研究人員對(duì)原始數(shù)據(jù)及整理好的數(shù)據(jù)進(jìn)行獨(dú)立審核,當(dāng)出現(xiàn)不一致結(jié)論時(shí),由2名研究者共同討論決定。
1.2統(tǒng)計(jì)學(xué)分析 所有數(shù)據(jù)采用R(R version 3.4.0)及Graphpad Prism 5.0軟件進(jìn)行統(tǒng)計(jì),計(jì)算每個(gè)miRNA表達(dá)值的方差,以方差最大化篩選差異表達(dá)的miRNA;以每個(gè)miRNA表達(dá)值的中位數(shù)作為界值,將該miRNA基因表達(dá)水平分為高表達(dá)和低表達(dá)兩組,對(duì)每個(gè)miRNA進(jìn)行單因素Cox分析,計(jì)算每個(gè)miRNA對(duì)應(yīng)的風(fēng)險(xiǎn)比(hazard ratio,HR)及P值;構(gòu)建BhGLM R軟件包中指數(shù)先驗(yàn)分布模型(BhGLM模型)對(duì)miRNA表達(dá)數(shù)據(jù)進(jìn)行分析,并依據(jù)模型中每個(gè)miRNA所得出的系數(shù)對(duì)miRNA進(jìn)行
篩選;合并單因素Cox模型及BhGLM模型的篩選結(jié)果,取交集得出篩選結(jié)果。以Kaplan-Meier法繪制生存曲線并進(jìn)行Log-rank檢驗(yàn)。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2.1單因素Cox模型篩選的miRNA 經(jīng)單因素Cox模型共篩選出63個(gè)miRNA與預(yù)后明顯相關(guān),其P值均<0.05。見(jiàn)表1。
表1 經(jīng)循環(huán)單因素Cox模型篩選的miRNA
2.2BhGLM模型篩選的miRNA 經(jīng)BhGLM模型篩選出模型系數(shù)絕對(duì)值>0.5的miRNA有77個(gè)。模型篩選結(jié)果見(jiàn)表2。
表2 經(jīng)BhGLM模型篩選的miRNA
2.3miRNA篩選及驗(yàn)證 經(jīng)單因素Cox分析及BhGLM模型共同篩選出18個(gè)相同的miRNA(表3),其中miR-188、miR-576、miR-887及miR-91在肝癌中的研究報(bào)道較少,且均為負(fù)性調(diào)控分子,其高表達(dá)提示預(yù)后較差。生存曲線分析見(jiàn)圖1。
圖1 miR-188、miR-576、miR-887及miR-91在肝癌中的生存曲線
序號(hào)miRNA系數(shù)HRP1miR?1000.5370.670.0402miR?1012-0.6150.610.0133miR?106A1.0121.630.0134miR?12260.9741.510.0365miR?12490.5531.550.0266miR?12710.6121.530.0307miR?1320.6681.740.0058miR?1490.6662.270.0009miR?1880.7901.650.01110miR?1900.5701.650.01211miR?196B1.5941.490.04412miR?210.6491.660.01213miR?2100.8051.960.00114miR?4211.1041.770.00415miR?5760.7721.640.01316miR?5920.9681.630.01317miR?8870.8271.710.00618miR?910.9951.500.039
研究表明,肝癌的發(fā)生、發(fā)展和轉(zhuǎn)移常伴有特定miRNA的異常表達(dá),miRNA表達(dá)譜可成為HCC預(yù)后判斷的理想標(biāo)志物,并為個(gè)體治療提供新策略[3]。捕獲并破譯預(yù)后的特異指標(biāo)、敏感指標(biāo)、獨(dú)立指標(biāo)是改善腫瘤預(yù)后的關(guān)鍵問(wèn)題,因此,尋求新的預(yù)后相關(guān)miRNA對(duì)于肝癌患者后續(xù)的個(gè)體化治療方案的選擇、改善預(yù)后有重要的意義。
癌癥基因圖譜(The Cancer Genome Atlas,TCGA)計(jì)劃旨在通過(guò)應(yīng)用基因組分析技術(shù),特別是采用大規(guī)模的基因組測(cè)序,將人類全部癌癥的基因組變異圖譜繪制出來(lái)[4],為研究者尋找新的miRNA及探索其功能開(kāi)辟了一條新的途徑。貝葉斯多水平Cox比例風(fēng)險(xiǎn)模型是基于貝葉斯先驗(yàn)概率的高維度數(shù)據(jù)分析方法[5-6],該方法消除了Lasso處理共線性數(shù)據(jù)能力不足及嶺回歸無(wú)法提供稀疏回歸的缺點(diǎn),其在處理高維度數(shù)據(jù)過(guò)程中具有優(yōu)勢(shì)。本研究通過(guò)TCGA數(shù)據(jù)庫(kù)中肝癌組織高通量測(cè)序miRNA表達(dá)譜數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析,采用單因素Cox模型及BhGLM模型對(duì)肝癌預(yù)后高度相關(guān)的基因進(jìn)行篩選。通過(guò)單因素Cox模型共篩選出63個(gè)預(yù)后相關(guān)miRNA,BhGLM模型篩選出77個(gè)miRNA,兩種方法共篩選出18個(gè)相同的miRNA。篩選出的miR-155、miR-195、miR-210在肝癌的相關(guān)研究中均已見(jiàn)報(bào)道,相關(guān)研究從分子水平及細(xì)胞水平分別闡明了其作用機(jī)制及可能的信號(hào)通路。其中研究較少的miRNA包括miR-188、miR-576、miR-887及miR-91,上述miRNA均與肝癌患者預(yù)后密切相關(guān)。但Fang等[7]的研究結(jié)果顯示在體外和體內(nèi)實(shí)驗(yàn)中,miR-188能抑制肝癌細(xì)胞的擴(kuò)增和轉(zhuǎn)移,其高表達(dá)與良好預(yù)后相關(guān),該結(jié)論與本項(xiàng)研究結(jié)論并不一致,但由于肝癌中尚無(wú)其他同類研究,其結(jié)論還需要更多的后續(xù)研究來(lái)進(jìn)行驗(yàn)證。
研究表明,miRNA在肝癌的發(fā)生、發(fā)展過(guò)程中的作用主要有影響肝炎病毒復(fù)制、促進(jìn)或抑制癌基因及抑癌基因的表達(dá)、抑制肝癌細(xì)胞轉(zhuǎn)錄活性、阻滯肝癌細(xì)胞周期及誘導(dǎo)凋亡、促進(jìn)或抑制肝癌細(xì)胞轉(zhuǎn)移等。因此,miRNA表達(dá)譜可預(yù)測(cè)HCC轉(zhuǎn)移和復(fù)發(fā)、判斷患者生存率,并指導(dǎo)術(shù)后個(gè)體化輔助治療[8]。已有證據(jù)表明,miR-26低表達(dá)肝癌患者比高表達(dá)者的生存率明顯提高,且術(shù)后對(duì)干擾素治療表現(xiàn)具有較好的反應(yīng)[9];此外,低表達(dá)miR-122的肝癌患者預(yù)后差[10];miR-22低表達(dá)的肝癌患者通過(guò)引起組蛋白脫乙酰酶4(HDAC4)高表達(dá)而導(dǎo)致肝癌術(shù)后較早的轉(zhuǎn)移復(fù)發(fā),比miR-22高表達(dá)的患者預(yù)后差[11];miR-221高表達(dá)肝癌患者的生存率明顯低于miR-221低表達(dá)者,而miR-221上調(diào)時(shí)HCC更容易復(fù)發(fā),miR-221還可調(diào)節(jié)p27 和p57 的表達(dá),p27和p57下調(diào)時(shí)HCC預(yù)后差;亦有研究證實(shí),miR-199b高表達(dá)肝癌患者的生存率明顯高于低表達(dá)患者[12]。
本研究基于TCGA中miRNA表達(dá)譜數(shù)據(jù)的分析,通過(guò)數(shù)據(jù)模型篩選出新的預(yù)后相關(guān)miRNA,為相關(guān)研究提供佐證。但數(shù)據(jù)模型在篩選過(guò)程中也存在一定程度的假陽(yáng)性及假陰性結(jié)果,需要同類數(shù)據(jù)進(jìn)行交叉驗(yàn)證,并為腫瘤的研究提供可靠的依據(jù)。
[1]Fukao A, Fujiwara T. The coupled and uncoupled mechanisms by which trans-acting factors regulate mRNA stability and translation[J]. J Biochem, 2017, 161(4):309-314.
[2]Hemmatzadeh M, Mohammadi H, Karimi M,etal. Differential role of microRNAs in the pathogenesis and treatment of Esophageal cancer[J]. Biomed Pharmacother, 2016, 82:509-519.
[3]韓麗, 劉玉, 楚惠媛, 等. 微小RNA在肝癌的早期診斷、預(yù)后監(jiān)測(cè)及治療中的研究進(jìn)展[J]. 臨床檢驗(yàn)雜志, 2015, 33(6):457-459.
[4]Tomczak K, Czerwinska P, Wiznerowicz M. The Cancer Genome Atlas(TCGA):an immeasurable source of knowledge[J]. Contemp Oncol(Pozn), 2015, 19(1A):A68-A77.
[5]Yi N, Ma S. Hierarchical shrinkage priors and model fitting for high-dimensional generalized linear models[J]. Stat Appl Genet Mol Biol, 2012, 11(6). pii: /j/sagmb.2012.11.issue-6/1544-6115.1803/1544-6115.1803.xml.
[6]Yi N, Xu S, Lou XY,etal. Multiple comparisons in genetic association studies: a hierarchical modeling approach[J]. Stat Appl Genet Mol Biol, 2014, 13(1):35-48.
[7]Fang F, Chang RM, Yu L,etal. MicroRNA-188-5p suppresses tumor cell proliferation and metastasis by directly targeting FGF5 in hepatocellular carcinoma[J]. J Hepatol, 2015, 63(4):874-885.
[8]Wang D, Tan J, Xu Y,etal. Identification of MicroRNAs and target genes involvement in hepatocellular carcinoma with microarray data[J]. Hepatogastroenterology, 2015, 62(138):378-382.
[9]Pecqueux M, Liebetrau I, Werft W,etal. A comprehensive microRNA expression profile of liver and lung metastases of colorectal cancer with their corresponding host tissue and its prognostic impact on survival[J]. Int J Mol Sci, 2016, 17(10). pii: E1755.
[10]Luna JM, Barajas JM, Teng KY,etal. Argonaute CLIP defines a deregulated miR-122-bound transcriptome that correlates with patient survival in human liver cancer[J]. Mol Cell, 2017, 67(3):400-410.e407.
[11]Qiao DD, Yang J, Lei XF,etal. Expression of microRNA-122 and microRNA-22 in HBV-related liver cancer and the correlation with clinical features[J]. Eur Rev Med Pharmacol Sci, 2017, 21(4):742-747.
[12]Zhou SJ, Liu FY, Zhang AH,etal. MicroRNA-199b-5p attenuates TGF-beta1-induced epithelial-mesenchymal transition in hepatocellular carcinoma[J]. Br J Cancer, 2017, 117(2):233-244.
2017-09-27)
(本文編輯:許曉蒙)
Screeningandidentificationofprognosis-relatedmiRNAinhepatocellularcarcinomabytheTCGAdatabase
SHIDan,XUBin,JIANGJing-ting
(DepartmentofTumorBiologicalTreatment,theThirdAffiliatedHospital,SoochowUniversity,Changzhou213003,Jiangsu,China)
ObjectiveMicroRNAs(miRNAs) play a critical role in the prognosis of liver cancer, especially in hepatocellular carcinoma(HCC). The aim of this study was to find the new prognosis-related miRNAs in HCC through data mining of The Cancer Genome Atlas(TCGA).MethodsThe miRNA expression data with clinicopathological characteristics and prognosis of liver cancer patients were obtained from the TCGA data portal and then data analysis, integration and standardization were performed by R package. Moreover, univariate Cox model and high-dimensional analytical model BhGLM(Bayesian hierarchical generalized linear model) were used to analyze the miRNA expression profiles data.ResultsA total of 63 and 77 prognosis-related miRNAs were screened using Cox and BhGLM model respectively, and 18 miRNAs were screened by co-analysis of Cox and BhGLM. Among them 4 prognosis-related miRNAs such as miR-188, miR-576, miR-887 and miR-91 have never been reported in HCC.ConclusionOn the basis of these data, co-analysis of Cox and BhGLM could be an effective method which screen and validate miRNAs as the new clinical prognostic and diagnostic biomarkers in HCC.
hepatocellular carcinoma; miRNA; TCGA data
10.13602/j.cnki.jcls.2017.11.05
國(guó)家科技支撐計(jì)劃(2015BAI12B12);國(guó)家自然科學(xué)基金資助項(xiàng)目(31570877、31570908);海外及港澳學(xué)者合作研究基金(3172001);江蘇省腫瘤免疫治療工程技術(shù)研究中心(BM2014404)。
石旦,1981年生,女,碩士,主管技師,主要從事腫瘤免疫學(xué)研究。
蔣敬庭,教授,博士,博士研究生導(dǎo)師,E-mail:jiangjingting@suda.edu.cn。
R735.7
A