王磊+盧志偉+許小敏+劉永琦+張利英+張苡銘+張麗昕+何進鵬+丁楠
摘要:目的 觀察黃芪多糖(APS)對X線輻射骨髓間充質(zhì)干細胞(BMSCs)向成骨方向分化的影響,探討其相關(guān)作用機制。方法 采用CCK-8法檢測不同濃度APS對2 Gy X線輻射BMSCs細胞增殖能力的影響,以篩選最佳藥物濃度。將細胞分為空白組、APS組、輻射組、輻射+APS組。APS組、輻射+APS組用最佳藥物濃度APS提前干預(yù)3 d,輻射組、輻射+APS組用2 Gy X線進行輻射,輻射后各組細胞均加2 mL成骨誘導(dǎo)液繼續(xù)培養(yǎng),每3 d換液1次。誘導(dǎo)15 d后,鏡下觀察細胞形態(tài),茜素紅染色檢測細胞中鈣結(jié)節(jié)面積,Western blot檢測細胞中特異性標(biāo)記蛋白骨橋蛋白(OPN)和骨鈣蛋白(OCN)的表達。結(jié)果 與空白組比較,輻射組細胞增殖水平明顯降低(P<0.05);與輻射組比較,輻射+APS組細胞增殖水平明顯升高(P<0.05);APS濃度為50 μg/mL時其促進增殖作用最強,為最佳藥物濃度。形態(tài)學(xué)觀察顯示,輻射組細胞中鈣結(jié)晶沉積較空白組和APS組明顯減少,輻射+APS組細胞中鈣結(jié)晶沉積較輻射組明顯增加。在成骨能力方面,與空白組比較,APS組細胞中鈣結(jié)節(jié)面積有一定降低,而輻射組細胞中鈣結(jié)節(jié)面積顯著降低(P<0.05);與輻射組比較,輻射+APS組細胞中鈣結(jié)節(jié)面積明顯增多(P<0.05)。在成骨特異性標(biāo)記蛋白表達方面,與空白組比較,APS組細胞中OPN表達略下降,OCN表達略升高;輻射組細胞中OPN和OCN表達均明顯下調(diào)(P<0.05);與輻射組比較,輻射+APS組細胞中OPN和OCN表達均顯著升高(P<0.05)。結(jié)論 黃芪多糖對X線輻射BMSCs向成骨方向分化的潛能具有保護作用。
關(guān)鍵詞:黃芪多糖;X線輻射;骨髓間充質(zhì)干細胞;成骨分化
DOI:10.3969/j.issn.1005-5304.2017.12.012
中圖分類號:R285.5 文獻標(biāo)識碼:A 文章編號:1005-5304(2017)12-0047-05
Effects of Astragalus Polysaccharide on Osteoblastic Differentiation of Bone Mesenchymal Stem Cells Induced by X-ray Radiation WANG Lei1, LU Zhi-wei1, XU Xiao-min1, LIU Yong-qi1,2, ZHANG Li-ying1, ZHANG Yi-ming1, ZHANG Li-xin1, HE Jin-peng3, DING Nan3 (1. Gansu University of Chinese Medicine, Major Disease Prevention and Control of Molecular Medicine and Traditional Chinese Medicine Research in Gansu Provincial Key Laboratory, Lanzhou 730000, China; 2. Key Laboratory of Dunhuang Medicine and Transformation at Provincial and Ministerial Level, Lanzhou 730000, China; 3. Gansu Key Laboratory of Space Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China)
Abstract: Objective To investigate the effects of astragalus polysaccharide (APS) on bone mesenchymal stem cells (BMSCs) to osteoblasts differentiation induced by X-rays; To discuss its mechanism of action. Methods CCK-8 method was used to select different concentrations of APS for the proliferation ability of BMSCs with 2 Gy X-ray radiation, and the best concentration was determined. Cells were divided into blank group, APS group, radiation group, radiation+APS group. APS group and radiation+APS group were given the best concentration of APS for 3 days, radiation group and radiation+APS group were given 2 Gy X-ray radiation. After radiation, 2 mL osteogenesis induced liquid was added in each group, every 3 day. After 15 days induction, inverting microscope was used to
基金項目:國家自然科學(xué)基金(81473457)
通訊作者:劉永琦,E-mail:liuyongqi173@163.com
observe morphology, and alizarin red staining to detect the area of the calcium nodules in each group. Western blot was used to detect the specific marker protein osteopontin and osteocalcin expression of each group. Results Compared with the blank group, the proliferation ability of radiation group was obviously lower (P<0.05); compared with radiation group, the proliferation ability of radiation+APS significantly increased (P<0.05); the strongest promoting proliferation of APS was 50μg/mL, therefore, it was selected as the best concentration. In terms of morphology, inverted microscope showed that secretion of crystals of radiation group was obviously reduced compared with the blank group and APS group, and secretion of crystals of radiation+APS group was significantly elevated compared with radiation group. In osteogenesis ability, compared with the blank group, the cell calcium nodule area of APS group had a certain reduce, but the radiation group had a significantly reduced (P<0.05). Compared with the radiation group, the cell calcium nodule area of radiation+APS group obviously increased (P<0.05). In terms of osteogenesis specific marker protein expression, compared with the blank group, the expression of osteopontin of APS group was slightly declined, and the expression of osteocalcin was slightly elevated, but the expression of osteopontin and osteocalcin of radiation group was significantly lowered (P<0.05). Compared with the radiation group, the expression of osteopontin and osteocalcin of radiation+APS group was significantly higher (P<0.05). Conclusion APS has protective effects on osteoblastic differentiation ablility of BMSCs induced by X-ray radiation.endprint
Key words: astragalus polysaccharide; X-ray radiation; BMSCs; osteoblasts differentiation
骨髓間充質(zhì)干細胞(bone mesenchymal stem cells,BMSCs)屬多能干細胞的一種,其具有向骨、脂肪、神經(jīng)、內(nèi)皮等多方向分化的潛能,常將BMSCs用于治療骨病、心血管疾病、組織退化、炎癥,甚至腫瘤等[1-3]。目前,BMSCs已作為組織損傷修復(fù)的理想種子細胞而廣泛應(yīng)用于臨床[4]。隨著輻射醫(yī)學(xué)在臨床診治中的普遍應(yīng)用,BMSCs受到電離輻射后是否影響其分化潛能尚未有系統(tǒng)的研究報道。黃芪乃益氣扶正的代表藥,具有補氣固表、利水退腫、托毒排膿、生肌等功效,現(xiàn)代研究認為,黃芪的主要藥效成分黃芪多糖(astragalus polysaccharide,APS)具有抗輻射、抗氧化、減輕放療不良反應(yīng)等作用[5]。本實驗觀察APS對輻射損傷后BMSCs向成骨方向分化的影響,為BMSCs在臨床上應(yīng)用提供依據(jù)。
1 實驗材料
1.1 細胞和藥物
BMSCs(廣州賽業(yè)),細胞培養(yǎng)液為BMSCs專用培養(yǎng)基(廣州賽業(yè))。APS(上海源葉生物,批號ZD1219LA13),用BMSCs專用培養(yǎng)基溶解,濃度為50 μg/mL。細胞用60 mm培養(yǎng)皿,置于37 ℃、5%CO2孵箱中培養(yǎng),每3 d換液1次,待細胞融合度達到85%時,0.25%胰蛋白酶消化傳代,第5代細胞用于實驗。
1.2 主要試劑和儀器
0.25%胰蛋白酶(美國Hyclone公司),CCK-8試劑盒(上海東仁公司),成骨誘導(dǎo)液(廣州賽業(yè)),骨鈣蛋白(OCN)抗體(Proteintech),骨橋蛋白(OPN)抗體和GAPDH抗體(Abcam),山羊抗兔IgG辣根過氧化物酶標(biāo)記和山羊抗小鼠IgG辣根過氧化物酶標(biāo)記(北京中杉金橋),茜素紅染液(廣州賽業(yè))。恒溫培養(yǎng)箱(美國Thermo公司),X-ray儀(美國Faxitron公司),全波長酶標(biāo)儀(瑞士TECAN公司),倒置顯微鏡(奧林巴斯)。
1.3 照射條件和分組
X線輻射裝置由中國科學(xué)院近代物理研究所提供,劑量率為0.4 Gy/min(100 keV,5 mA),總劑量2 Gy,時間5 min,距輻射源高度為70 cm,實驗分為空白組、APS組、輻射組、輻射+APS組。
2 實驗方法
2.1 CCK-8法檢測
細胞培養(yǎng)達85%融合度時,胰酶消化制成單細胞懸液,分別接種于5個96孔板(每孔2×103/100 μL),待細胞貼壁后加不同濃度(0、12.5、25、50、100 μg/mL)的APS 100 μL,每個濃度設(shè)6個復(fù)孔,培養(yǎng)3 d后,每孔棄掉50 μL培養(yǎng)基,空白組復(fù)孔用0.3 mm厚的鉛板擋住,其余孔用2 Gy X線進行照射,照射后棄剩余培養(yǎng)基,重新加入100 μL BMSCs專用培養(yǎng)基。置于培養(yǎng)箱中繼續(xù)培養(yǎng),分別于1~5 d用CCK-8法檢測各組細胞增殖。
2.2 細胞形態(tài)觀察
BMSCs培養(yǎng)至85%融合度后,胰酶消化,稀釋至1×105/mL,取1 mL稀釋液接種于35 mm培養(yǎng)皿中,繼續(xù)培養(yǎng)。待細胞貼壁后,棄培養(yǎng)基,APS組、輻射+APS組均加50 μg/mL的APS培養(yǎng)液2 mL,空白組、輻射組加等體積培養(yǎng)液代替。各組細胞置于培養(yǎng)箱中繼續(xù)培養(yǎng)3 d后,輻射組、輻射+APS組用2 Gy X線照射,照射后棄所有細胞培養(yǎng)基,加入成骨誘導(dǎo)液2 mL,置于培養(yǎng)箱中繼續(xù)培養(yǎng),每3 d換液1次,誘導(dǎo)15 d后,鏡下觀察細胞形態(tài)。
2.3 茜素紅染色
顯微鏡觀察各組細胞形態(tài)后,棄培養(yǎng)基,PBS洗2次,然后加入4%多聚甲醛1 mL固定20 min,PBS洗2次,加1 mL茜素紅染色,室溫靜置10 min,棄染色液,PBS洗2次,每次10 s,鏡下觀察染色情況并拍照。用Image Pro軟件對鈣結(jié)節(jié)面積進行分析,每組選取6張圖,計算各組鈣結(jié)節(jié)平均面積。
2.4 Western blot檢測
提取各組細胞蛋白,BCA法檢測蛋白濃度,用RIPA調(diào)整蛋白濃度。各組取5 μL蛋白上樣,經(jīng)5%濃縮膠、12%分離膠電泳后,轉(zhuǎn)PVDF膜上,5%脫脂牛奶室溫封閉2 h后,4 ℃冷庫一抗(1∶1000)孵育過夜,PBS洗3次,每次10 min,分別與山羊抗兔和山羊抗小鼠辣根酶標(biāo)記的二抗(1∶4000)孵育,ECL發(fā)光顯色后,X曝光機顯影,并用掃描儀掃描相應(yīng)的蛋白條帶,最后用Image J軟件對條帶進行灰度分析,以GAPDH作內(nèi)參,計算各組細胞蛋白的相對表達量。
3 統(tǒng)計學(xué)方法
采用SPSS19.0統(tǒng)計軟件進行分析。實驗數(shù)據(jù)以—x±s表示,組間比較采用方差分析。P<0.05表示差異有統(tǒng)計學(xué)意義。
4 結(jié)果
4.1 不同濃度黃芪多糖對輻射后骨髓間充質(zhì)干細增殖的影響
與空白組比較,輻射組BMSCs細胞增殖水平顯著降低(P<0.05);與輻射組比較,12.5 ?g/mL APS第4、5日促進BMSCs細胞增殖(P<0.05),25 ?g/mL APS在第3~5日促進BMSCs細胞增殖(P<0.05),50、100 ?g/mL APS第1~5日促進BMSCs細胞增殖(P<0.05)。50 ?g/mL APS時,細胞OD值最大,故選50 ?g/mL作為最佳藥物濃度。結(jié)果見表1。
5 討論
BMSCs來源于胚胎早期的中胚層,是一種具有強大分化潛能的多能干細胞,可向成骨細胞、軟骨細胞、心肌細胞、神經(jīng)細胞、脂肪細胞等方向分化,并且具有較低的免疫排斥反應(yīng)[6],因此,BMSCs被作為組織修復(fù)和重建的理想種子細胞廣泛應(yīng)用于臨床上。endprint
在分化過程中,表型特異轉(zhuǎn)錄因子的激活決定著BMSCs分化的方向[7],而成骨細胞特異性轉(zhuǎn)錄因子2(RUNX2)作為成骨細胞的特異轉(zhuǎn)錄因子,對骨組織的形成和重建起著重要作用,而其調(diào)控的功能蛋白OPN、OCN的表達水平標(biāo)志著細胞成骨分化的能力[8]。OPN屬Sibling蛋白家族成員,是一種分泌型的磷酸化糖蛋白,是成骨細胞旁分泌因子的一種,在成骨細胞分化的早期即開始表達,在成熟的成骨細胞和破骨細胞中高水平表達,是成骨細胞在基質(zhì)形成和成熟階段的特征性標(biāo)志物[9]。OCN則與骨的形成和吸收相關(guān),可以促進骨的鈣化,是成骨細胞成熟的標(biāo)志,其表達在成骨細胞鈣化期開始,并隨著鈣化時間的延長而達到峰值[10]。因此,OPN和OCN能夠共同反映BMSCs成骨分化的能力。
本實驗結(jié)果顯示,經(jīng)輻射后,BMSCs成骨分化能力明顯受到抑制,表現(xiàn)為誘導(dǎo)后BMSCs鈣結(jié)晶沉積較空白組和APS組明顯減少;而提前給予50 ?g/mL APS干預(yù)后,BMSCs分化為成骨細胞的能力得到明顯保護,表現(xiàn)為誘導(dǎo)后BMSCs鈣結(jié)晶沉積較空白組明顯增加。茜素紅染色結(jié)果顯示,提前給予50 ?g/mL APS干預(yù)BMSCs,能達到防護輻射對BMSCs成骨分化能力損傷的作用,這與周妮娜等[11]研究報道對電離輻射造成的細胞DNA損傷具有保護作用是一致的。
APS是黃芪主要的藥效成分之一?,F(xiàn)代藥理研究表明,APS對輻射損傷具有保護作用,尚能促進BMSCs的分化能力[12-13]。本研究采用CCK-8法篩選APS最佳藥物濃度后,將其作用于2 Gy X線輻射的BMSCs細胞。結(jié)果顯示,輻射后BMSCs分化為成骨細胞的潛能明顯受到抑制,表現(xiàn)為成骨誘導(dǎo)后鈣結(jié)晶沉積和鈣結(jié)節(jié)面積減少,成骨特異性標(biāo)記蛋白OPN、OCN表達下調(diào);而提前給予50 ?g/mL APS干預(yù)3 d后,BMSCs成骨分化潛能得到保護,表現(xiàn)為成骨誘導(dǎo)后鈣結(jié)晶沉積和鈣結(jié)節(jié)面積相對增加,成骨特異性標(biāo)記蛋白OPN、OCN表達相對上調(diào)。
綜上所述,BMSCs受到X線輻射后,其向成骨細胞分化的潛能被明顯抑制。而提前給予50 ?g/mL APS干預(yù)3 d后,BMSCs向成骨細胞分化的潛能得到保護。
參考文獻:
[1] ZHANG Y, XIA X, YAN J, et al. Mesenchymal stem cell-derived angiogenin promotes primodial follicle survival and angiogenesis in transplanted human ovarian tissue[J]. Reprod Biol Endocrinol, 2017,15(1):18.
[2] MURPHY K C, WHITEHEAD J, FALAHEE P C, et al. Multifactorial experimental design to optimize the anti-inflammatory and proangiogenic potential of mesenchymal stem cell spheroids[J]. Stem Cells,2017,35(6):1493-1505.
[3] O'MALLEY G, HEIJLTJES M, HOUSTON A M, et al. Mesenchymal stromal cells (MSCs) and colorectal cancer:a troublesome twosome for the anti-tumour immune response[J]. Oncotarget,2016,7(37):60752- 60774.
[4] HASAN A, DEEB G, RAHAL R, et al. Mesenchymal stem cells in the treatment of traumatic brain injury[J]. Front Neurol,2017,8:28.
[5] LIU Y, LIU F, YANG Y, et al. Astragalus polysaccharide ameliorates ionizing radiation induced oxidative stress in mice[J]. Int J Biol Macromol,2014,68:209-214.
[6] HOOGDUIJN M J. Are mesenchymal stromal cells immune cells[J]. Arthritis Res Ther,2015,17(1):88.
[7] 江恒君,沈云蕓,朱侃,等.間充質(zhì)干細胞成骨分化調(diào)控蛋白研究[J].中國細胞生物學(xué)學(xué)報,2016,38(2):235-242.
[8] 劉偉,劉萌,祝勁松,等.人骨髓間充質(zhì)干細胞的體外培養(yǎng)、鑒定及成阿骨分化[J].中國組織工程研究,2012,16(14):2515-2519.
[9] ITO K, NAKAJIMA A, FUKUSHIMA Y, et al. The potential role of osteopontin in the maintenance of commensal bacteria homeostasis in the intestine[J]. PloS One,2017,12(3):e173629.
[10] LEVINGER I, BRENNAN-SPERANZA T C, ZULLI A, et al. Multifaceted interaction of bone, muscle, lifestyle interventions and metabolic and cardiovascular disease:role of osteocalcin[J]. Osteoporos Int,2017,28(8):2265-2273.
[11] 周妮娜,張利英,劉永琦,等.黃芪多糖對電離輻射誘發(fā)間充質(zhì)干細胞基因DNA損傷的保護作用[J].中國現(xiàn)代應(yīng)用藥學(xué),2016,33(2):139-143.
[12] 劉永琦,李靜雅,蔡玲,等.黃芪多糖誘導(dǎo)大鼠骨髓間充質(zhì)干細胞分化的特性[J].中國中醫(yī)藥信息雜志,2014,21(6):60-64.
[13] 劉耀,石英,劉職瑞,等.黃芪多糖與黃芪甲苷配伍對輻射損傷模型小鼠的保護作用[J].中國藥房,2014,25(3):211-214.
(收稿日期:2017-03-08)
(修回日期:2017-04-11;編輯:華強)endprint