嚴(yán)旭,高琦,程茜,周紅生,徐崢
?
摩擦力和樣品厚度對壓痕法測量生物試樣彈性的影響
嚴(yán)旭1,高琦2,程茜1,周紅生2,徐崢1
(1. 同濟(jì)大學(xué)物理科學(xué)與工程學(xué)院,上海 200092;2. 中國科學(xué)院聲學(xué)研究所東海研究站,上海 201815)
生物試樣的彈性測量可為生物體疾病的早期診斷和治療提供依據(jù)。利用壓痕法對生物試樣的彈性進(jìn)行了測量,并用有限元軟件對壓痕過程進(jìn)行了模擬。研究發(fā)現(xiàn),試樣厚度對彈性測量存在影響,試樣厚度越大,測量結(jié)果越接近試樣真實(shí)的楊氏模量。當(dāng)試樣厚度為壓痕深度的75倍時(shí),測量誤差僅為0.74 %。又研究了壓頭速度對彈性測量結(jié)果的影響。研究發(fā)現(xiàn),當(dāng)壓頭速度較大時(shí),由于摩擦力的作用,測量結(jié)果與試樣彈性的真實(shí)值之間存在一定的差異。在模擬過程中添加摩擦力可準(zhǔn)確反演試樣的彈性,誤差在5 %以下。
壓痕法;彈性;有限元;摩擦力
生物體內(nèi)大到器官小到細(xì)胞均為生物軟組織。這些組織時(shí)刻受到不同大小的內(nèi)力和外力的作用,并保持彈性。一旦組織的彈性改變時(shí),就意味著組織的損傷或者病變,如癌癥[1-4]、動(dòng)脈粥樣硬化[5]、青光眼[6]等都會導(dǎo)致生物組織彈性發(fā)生改變。在細(xì)胞層面,研究者們發(fā)現(xiàn)細(xì)胞形態(tài)[7-9]改變,或細(xì)胞發(fā)生遷移[8,10-11]、增殖[9,12-14]或分化[10,15-17]時(shí),其彈性將改變。因此,彈性對于表征生物體的活性和理解生物組織的生理功能均非常重要。
目前,生物組織的彈性可以通過超聲彈性成像技術(shù)[18-21]、磁共振彈性成像技術(shù)[22-26]等進(jìn)行測量,但這些測量均為定性測量,無法反映生物組織的真實(shí)彈性。為得到生物組織彈性的定量結(jié)果,一般可使用壓縮法[27-28]、靜態(tài)拉伸法[29-31]、壓痕法[32-35]等。其中壓痕法因?yàn)椴僮骱唵?、對測量試樣無損、測試精度高等優(yōu)點(diǎn)而被廣泛應(yīng)用。但壓痕法測量彈性是基于半無限大試樣建立的理論,當(dāng)試樣厚度有限時(shí),尤其是當(dāng)壓痕深度與試樣厚度可比擬時(shí),試樣底面的反射會給測量結(jié)果帶來誤差。另外,壓痕法要求測試的速度必須很慢,當(dāng)壓頭速度較大時(shí),由于粘滯力和摩擦力等的作用會給彈性測量結(jié)果帶來誤差。而現(xiàn)在很多研究工作已不局限于對試樣單點(diǎn)彈性的測量,而是測量整個(gè)生物試樣的彈性分布[36],這樣的測量在現(xiàn)有方法基礎(chǔ)上需要耗費(fèi)大量的時(shí)間。因此建立一種快速且準(zhǔn)確的彈性測量方法非常必要。
本文利用實(shí)驗(yàn)和有限元仿真研究了試樣厚度對壓痕法測量彈性結(jié)果的影響。挑選了恰當(dāng)厚度的試樣并通過改變壓頭速度,分析了摩擦力對彈性測量結(jié)果的影響,并給出了存在摩擦力作用時(shí)反演生物試樣彈性的方法。
圖1為壓痕法測量生物試樣彈性的實(shí)驗(yàn)裝置示意圖(1(a)~1(c))與儀器實(shí)物圖(1(d))。實(shí)驗(yàn)裝置由激光器、伺服電機(jī)、樣品臺、懸臂梁、壓頭組成。懸臂梁一端連接伺服電機(jī),一端連接壓頭。壓頭直徑為5 mm,懸臂梁的長度為45 mm。實(shí)驗(yàn)前,為得到激光位移補(bǔ)償,需校準(zhǔn)儀器,利用探針下壓載物臺上的鋼塊,得出行程-變形量的曲線,根據(jù)曲線調(diào)整電機(jī)行程。實(shí)驗(yàn)過程中,伺服電機(jī)驅(qū)動(dòng)懸臂梁向下運(yùn)動(dòng),代表電機(jī)的位移,當(dāng)壓頭觸碰到試樣表面時(shí),懸臂梁發(fā)生彎曲,激光器發(fā)射的光照射到懸臂梁上反射的光路發(fā)生改變,激光儀檢測到反射光路的變化,軟件記錄下電機(jī)位移和激光位移。根據(jù)測得的數(shù)據(jù),可通過赫茲模型計(jì)算得到彈性。
(a) 測試試樣的側(cè)視圖(b) 懸臂梁俯視圖 (c) 懸臂梁側(cè)視圖
當(dāng)半徑為的球形壓頭壓在半無限大的介質(zhì)上,力與壓痕深度的關(guān)系[37]滿足:
*表示有效彈性,表達(dá)式為
為得到試樣的真實(shí)彈性,使用有限元模擬壓痕過程。如圖2所示,根據(jù)實(shí)物構(gòu)建二維軸對稱模型,固定試樣的軸以及其底部,設(shè)置壓頭與試樣表面接觸。為了確保計(jì)算結(jié)果的準(zhǔn)確,在模型的接觸區(qū)域細(xì)分了網(wǎng)格。
圖2 Comsol模擬壓痕過程的網(wǎng)格以及邊界條件
Cox等人發(fā)現(xiàn),在壓頭速度非常低時(shí),反饋力僅與試樣彈性有關(guān)[39]。實(shí)驗(yàn)中壓頭速度設(shè)置為0.03 mm/s。圖3是壓痕過程(進(jìn)針、靜止和退針)中試樣反饋力與時(shí)間的關(guān)系曲線。從圖3可以發(fā)現(xiàn),在該速度下進(jìn)針和退針曲線具有很好的對稱性,并且在中間靜止段沒有受到其他力的作用,表明試樣的粘滯作用可忽略。
當(dāng)試樣厚度大于10倍的壓痕深度時(shí),可以忽略試樣底部反饋力的作用,本實(shí)驗(yàn)采用的壓痕深度為0.6 mm。選擇5、15、45 mm厚度的生物試樣,分別研究了在這些厚度條件下,壓痕法由于試樣厚度造成的誤差。首先研究了不同厚度試樣(5、15、45 mm)對彈性測量結(jié)果的影響。如圖4所示,在壓痕剛產(chǎn)生時(shí),實(shí)驗(yàn)測得力曲線與赫茲模型計(jì)算得到結(jié)果符合得較好。隨著壓痕深度的增加,實(shí)驗(yàn)測得的結(jié)果逐漸偏離赫茲模型計(jì)算結(jié)果,當(dāng)試樣厚度越小時(shí),測得的反饋力越大。這是因?yàn)楹掌澞P徒⒃诎霟o限大厚度試樣上,對有限厚度試樣,存在載物臺的反作用力,當(dāng)試樣厚度越小時(shí),反作用力越大,因此實(shí)驗(yàn)與赫茲模型的計(jì)算結(jié)果偏差也越大。另外,當(dāng)試樣與壓頭的接觸面積變大,赫茲模型的假設(shè)(接觸半徑<<壓頭半徑)不再滿足,這也會導(dǎo)致實(shí)驗(yàn)力曲線與理論計(jì)算結(jié)果的偏差增大。
圖3 時(shí)間與反饋力關(guān)系圖
圖4 實(shí)驗(yàn)測出的不同厚度的力曲線及理論力曲線
將力-壓痕深度關(guān)系通過式(1)和(2)可反演試樣的楊氏模量,圖5給出了不同厚度生物試樣測出的楊氏模量,5 mm和15 mm厚度的生物試樣計(jì)算出的楊氏模量分別為95.06、94.45 kPa,誤差分別為8.02%、7.33%。計(jì)算得到的45 mm厚度的生物試樣的彈性為88.65 kPa,有限元法計(jì)算得出的生物試樣的彈性為88 kPa,誤差僅為0.74%。
我們又研究了壓頭速度對彈性反演的影響,不同壓頭速度測出的楊氏模量如圖6所示。為了減少載物臺對壓頭的反作用力,選擇45 mm厚度的試樣進(jìn)行實(shí)驗(yàn)。分別研究了壓頭以0.03、0.09、0.12、0.2 mm/s速度撤針測量得到的楊氏模量,結(jié)果如表1所示。由表1可知,壓頭速度越快,反演得到的楊氏模量誤差越大。因此,用赫茲模型反演試樣的楊氏模量需考慮摩擦力的作用。由表1的結(jié)果可知,試樣與壓頭間的摩擦力與壓頭速度有關(guān)。因此假設(shè)摩擦力表達(dá)式為
積分后得到
式中:為單位面積阻尼系數(shù);表示壓頭半徑;為壓頭速度沿接觸面的切向速度分量;為壓頭速度;為壓痕深度;為常數(shù)。隨后可根據(jù)實(shí)驗(yàn)數(shù)值計(jì)算出。
圖5 不同厚度試樣的楊氏模量
圖6 不同壓頭速度測出的楊氏模量圖
表1 不同速度測出的45 mm試樣的楊氏模量
通過模擬結(jié)果與實(shí)驗(yàn)結(jié)果對比,本文計(jì)算出為2.05×107 kg/(m2?s),當(dāng)1時(shí),計(jì)算與實(shí)驗(yàn)結(jié)果符合最好。圖7分別給出了在壓頭速度為0.03、0.09、0.12 mm/s和0.20 mm/s時(shí),力曲線的實(shí)驗(yàn)值與未考慮摩擦和考慮摩擦后的計(jì)算值對比。從圖7中發(fā)現(xiàn),當(dāng)壓頭速度很小(低于0.03 mm/s)時(shí)(圖7(a)),考慮摩擦和不考慮摩擦計(jì)算出的力曲線幾乎重合,這表明速度很小(低于0.03 mm/s)時(shí)可以忽略摩擦力的作用。此外,圖3中低速(0.03 mm/s)的進(jìn)針曲線與退針曲線相對稱,說明速度很小時(shí)可忽略粘滯力的作用。當(dāng)速度漸漸增大時(shí),摩擦力的作用變得明顯。在退針過程中受摩擦力作用使反饋力減小,當(dāng)壓頭速度為0.20 mm/s時(shí),由于摩擦力作用使實(shí)驗(yàn)和赫茲模型得到的力曲線相差很遠(yuǎn)。此時(shí)反演得到的楊氏模量與試樣的真實(shí)值相差達(dá)到36.81 %(見表1)。在考慮摩擦的情況下,可以看到實(shí)驗(yàn)測量值與赫茲模型符合較好。
(a) 壓頭速度為0.03 mm/s
(b) 壓頭速度為0.09 mm/s
(c) 壓頭速度為0.12 mm/s
(d) 壓頭速度為0.20 mm/s
圖7 壓頭速度分別為0.03、0.09、0.12、0.20 mm/s時(shí)力曲線的實(shí)驗(yàn)值、未考慮以及考慮摩擦力之后的計(jì)算值
Fig.7 The force curves of experimental value and the calculated values without and with considering frictional force for indentation speeds of 0.03, 0.09, 0.12 and 0.20 mm/s
表2為考慮摩擦力后反演的楊氏模量。發(fā)現(xiàn)在考慮摩擦的情況下四種壓頭速度得到的楊氏模量很接近,與楊氏模量的真實(shí)值相差均在5 %以下。
表2 考慮摩擦力后計(jì)算出的楊氏模量
本文利用壓痕實(shí)驗(yàn)測出生物試樣的力曲線及彈性,同時(shí)利用有限元法計(jì)算了理想狀態(tài)下生物試樣的力曲線,并給出了有摩擦力作用下的彈性反演方法。實(shí)驗(yàn)表明試樣厚度對彈性測量存在影響,當(dāng)試樣厚度遠(yuǎn)大于壓痕深度時(shí),測量誤差僅為0.47 %。在此基礎(chǔ)上研究了有摩擦力作用下的彈性測量方法,根據(jù)公式(4)可將測量誤差減小到5 %以下。在以后利用壓痕法測量生物試樣的彈性時(shí),可通過降低速度、縮小壓頭的尺寸達(dá)到減少摩擦的效果。
感謝錢夢騄教授對本文中摩擦力公式及實(shí)驗(yàn)手段改進(jìn)的悉心指導(dǎo)。
[1] Kawano S, Kojima M, Higuchi Y, et al. Assessment of elasticity of colorectal cancer tissue, clinical utility, pathological and phenotypical relevance[J]. Cancer Science, 2015, 106(9): 1232-1239.
[2] Miyanaga N, Akaza H, Yamakawa M, et al. Tissue elasticity imaging for diagnosis of prostate cancer: a preliminary report[J]. International Journal of Urology, 2006, 13(12): 1514-1518.
[3] Aboumarzouk O M, Ogston S, Huang Z, et al. Diagnostic accuracy of transrectal elastosonography (TRES) imaging for the diagnosis of prostate cancer: a systematic review and meta-analysis[J]. BJU International, 2012, 110(10): 1414-1423.
[4] Samani A, Zubovits J, Plewes D. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples[J]. Physics in Medicine and Biology, 2007, 52(6): 1565-1576.
[5] Claridge M W, Bate G R, Hoskins P R, et al. Measurement of arterial stiffness in subjects with vascular disease: Are vessel wall changes more sensitive than increase in intima–media thickness[J]. Atherosclerosis, 2009, 205(2): 477-480.
[6] Last J A, Pan T, Ding Y, et al. Elastic modulus determination of normal and glaucomatous human trabecular meshwork[J]. Investigative Ophthalmology & Visual Science, 2011, 52(5): 2147-2152.
[7] Chou S Y, Cheng C M, Leduc P R. Composite polymer systems with control of local substrate elasticity and their effect on cytoskeletal and morphological characteristics of adherent cells[J]. Biomaterials, 2009, 30(18): 3136-3142.
[8] Isenberg B C, Dimilla P A, Walker M, et al. Vascular smooth muscle cell durotaxis depends on substrate stiffness gradient strength[J]. Biophysical Journal, 2009, 97(5): 1313-1322.
[9] Liao S W, Yu T B, Guan Z. De novo design of saccharide-peptide hydrogels as synthetic scaffolds for tailored cell responses[J]. Journal of the American Chemical Society, 2009, 131(48): 17638-17646.
[10] Chen C C, Hsieh P C H, Wang G M, et al. The influence of surface morphology and rigidity of the substrata on cell motility[J]. Materials Letters, 2009, 63(21): 1872-1875.
[11] Chen Y M, Ogawa R, Kakugo A, et al. Dynamic cell behavior on synthetic hydrogels with different charge densities[J]. Soft Matter, 2009, 5(9): 1804-1811.
[12] Leipzig N D, Shoichet M S. The effect of substrate stiffness on adult neural stem cell behavior[J]. Biomaterials, 2009, 30(36): 6867-6878.
[13] Hadjipanayi E, Mudera V, Brown R A. Close dependence of fibroblast proliferation on collagen scaffold matrix stiffness[J]. Journal of Tissue Engineering & Regenerative Medicine, 2009, 3(2): 77-84.
[14] Ghosh K, Pan Z, Guan E, et al. Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties[J]. Biomaterials, 2007, 28(4): 671-679.
[15] Kloxin A M, Benton J A, Anseth K S. In situ elasticity modulation with dynamic substrates to direct cell phenotype[J]. Biomaterials, 2010, 31(1): 1-8.
[16] Moussallem M D, Olenych S G, Scott S L, et al. Smooth muscle cell phenotype modulation and contraction on native and cross-linked polyelectrolyte multilayers[J]. Biomacromolecules, 2009, 10(11): 3062-3068.
[17] Banerjee A, Arha M, Choudhary S, et al. The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells[J]. Biomaterials, 2009, 30(27): 4695-4699.
[18] Gao L, Parker K J, Lerner R M, et al. Imaging of the elastic properties of tissue-A review[J]. Ultrasound in medicine & biology, 1996, 22(8): 959-977.
[19] Chen E J, Novakofski J, Jenkins W K, et al. Young's modulus measurements of soft tissues with application to elasticity imaging[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1996, 43(1): 191-194.
[20] 他得安, 陳啟敏. 非均勻軟組織聲散射模型的研究概況[J]. 聲學(xué)技術(shù), 1999, 18(2): 91-94. TA De’an, CHEN Qimin. Review the ultrasonic scattering model for inhomogeneous soft tissue[J]. Technical Acoustics, 1999, 18(2): 91-94.
[21] 他得安, 陳啟敏. 基于AR倒譜法研究人體脾組織微結(jié)構(gòu)的變化[J]. 聲學(xué)技術(shù), 2000, 19(3): 118-120. TA De’an, CHEN Qimin. Study on the variation of microstructures of human spleen by AR cepstrum[J]. Technical Acoustics, 2000, 19(3): 118-120.
[22] Vappou J. Magnetic resonance- and ultrasound imaging-based elasticity imaging methods: a review.[J]. Critical Reviews in Biomedical Engineering, 2012, 40(2): 121-134.
[23] Garteiser P, Doblas S, Daire J L, et al. MR elastography of liver tumours: value of viscoelastic properties for tumour characteriza-tion[J]. European Radiology, 2012, 22(10): 2169-2177.
[24] McGee K P, Mariappan Y K, Hubmayr R D, et al. Magnetic resonance assessment of parenchymal elasticity in normal and edematous, ventilator-injured lung[J]. Journal of Applied Physiology, 2012, 113(4): 666-676.
[25] Nightingale K. Acoustic radiation force impulse (ARFI) imaging: a review[J]. Current Medical Imaging Reviews, 2011, 7(4): 328-339.
[26] Palmeri M L, Wang M H, Dahl J J, et al. Quantifying hepatic shear modulus in vivo using acoustic radiation force[J]. Ultrasound in Medicine & Biology, 2008, 34(4): 546-558.
[27] ZHOU H S, WANG T Y, XU Z, et al. Measurement of the elasticity of biological soft tissue of finite thickness[J]. Chinese Physics Letters, 2016, 33(12): 96-100.
[28] Barnes S L, Lyshchik A, Washington M K, et al. Development of a mechanical testing assay for fibrotic murine liver[J]. Medical Physics, 2007, 34(11): 4439-4450.
[29] Harrison S M, Bush M B, Petros P E. Towards a novel tensile elastometer for soft tissue[J]. International Journal of Mechanical Sciences, 2008, 50(4): 626-640.
[30] Vappou J, Hou G Y, Marquet F, et al. Non-contact, ultrasound-based indentation method for measuring elastic properties of biological tissues using Harmonic Motion Imaging(HMI)[J]. Physics in Medicine and Biology, 2015, 60(7): 2853-2868.
[31] McKee C T, Last J A, Russell P, et al. Indentation versus tensile measurements of Young's modulus for soft biological tissues[J]. Tissue Engineering Part B: Reviews, 2011, 17(3): 155-164.
[32] Egorov V, Tsyuryupa S, Kanilo S, et al. Soft tissue elastometer[J]. Medical Engineering & Physics, 2008, 30(2): 206-212.
[33] Yao W, Yoshida K, Fernandez M, et al. Measuring the compressive viscoelastic mechanical properties of human cervical tissue using indentation[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 34(6): 18-26.
[34] Jiang Y, Li G, Qian L X, et al. Measuring the linear and nonlinear elastic properties of brain tissue with shear waves and inverse analysis[J]. Biomechanics and Modeling in Mechanobiology, 2015, 14(5): 1119-1128.
[35] 徐崢, 段俊麗, 錢夢騄, 等. 掃描探針顯微技術(shù)測量血管內(nèi)皮細(xì)胞的彈性[J]. 聲學(xué)技術(shù), 2016, 35(3): 239-242. XU Zheng, DUAN Junli, QIAN Menglu, et al. Elasticity measurement of endothelial cells by scanning probe microscopy[J]. Technical Acoustics, 2016, 35(3): 239-242.
[36] Liu F, Tschumperlin D J. Micro-mechanical characterization of lung tissue using atomic force microscopy[J]. Journal of Visualized Experiments Jove, 2011, 54(54): 2911-2911.
[37] Codan B, Favero G D, Martinelli V, et al. Exploring the elasticity and adhesion behavior of cardiac fibroblasts by atomic force microscopy indentation[J]. Materials Science & Engineering C, 2014, 40(949): 427-434..
[38] Fung, Y. C., Richard Skalak. Biomechanics: Mechanical properties of living tissues[M]. Springer-Verlag, 1981: 231-298.
[39] Cox M A J, Gawlitta D, Driessen N J B, et al. The non-linear mechanical properties of soft engineered biological tissues determined by finite spherical indentation[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2008, 11(5): 585-592.
The effects of friction and specimen thickness on the measurement of biological specimen elasticity with indentation method
YAN Xu1, GAO Qi2, CHENG Qian1, ZHOU Hong-sheng2, XU Zheng1
(1. Institute of Acoustics, Tongji University, Shanghai 200092, China;2. Shanghai acoustics laboratory, Chinese Academy of Sciences, Shanghai 201815, China)
The measurement of elasticity of biological samples can provide the basis for the early diagnosis and treatment of diseases. In this paper, the elasticity of biological samples is measured by indentation method. The indentation process is simulated by finite element software. Results indicate that the thickness of the sample influences the measurement of the elasticity. The measurement error is 0.74 % when the thickness of the specimen is 75 times of the indentation depth. The effect of indentation velocity on elasticity measurement has also been studied. It is found that there is a certain difference between the measured result and the true Young’s modulus due to the effect of friction when the indentation velocity is high. The elasticity of the sample can be accurately calculated when the friction has been taken into account and the error of the calculated modulus is 5 % or less relative to the true modulus.
indentation method; elasticity; finite element; friction force
O429
A
1000-3630(2017)-05-0410-05
10.16300/j.cnki.1000-3630.2017.05.003
2017-05-10;
2017-07-18
國家自然科學(xué)基金資助項(xiàng)目(11404245、11374231、11674249)、國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFA0100800、2012YQ150213)
嚴(yán)旭(1993-), 男, 江蘇泰州人, 碩士研究生, 研究方向?yàn)樯镝t(yī)學(xué)超聲。
徐崢, E-mail: gotoxvzheng@#edu.cn