張倩,劉太行,董小龍,吳云飛,楊基貴,周亮,潘彩霞,潘敏慧,2
?
家蠶CDK11與RNPS1和9G8相互作用的鑒定
張倩1,劉太行1,董小龍1,吳云飛1,楊基貴1,周亮1,潘彩霞1,潘敏慧1,2
(1西南大學(xué)家蠶基因組生物學(xué)國家重點(diǎn)實(shí)驗(yàn)室,重慶 400716;2西南大學(xué)農(nóng)業(yè)部蠶桑生物學(xué)與遺傳育種重點(diǎn)實(shí)驗(yàn)室,重慶 400716)
鑒定家蠶()CDK11與RNPS1和9G8的相互作用,為解析其是否參與前體RNA的剪接打下基礎(chǔ)。利用家蠶基因組數(shù)據(jù)庫SilkDB找到本研究克隆的家蠶基因序列,采用Primer 5.0進(jìn)行引物設(shè)計(jì),通過PCR技術(shù)克隆獲得家蠶的兩個(gè)重要剪接因子和,并構(gòu)建具有不同抗原標(biāo)簽的過表達(dá)載體,采用NCBI檢索并獲得其他物種的相關(guān)序列,利用在線預(yù)測(cè)軟件SMART進(jìn)行結(jié)構(gòu)域預(yù)測(cè),采用ClustalX 1.83和GENEDOC 3.2預(yù)測(cè)同源序列,利用軟件MEGA 6.0構(gòu)建系統(tǒng)進(jìn)化樹,通過免疫熒光驗(yàn)證家蠶CDK11兩種剪切體CDK11A和CDK11B分別與RNPS1和9G8的共定位情況,進(jìn)一步通過免疫共沉淀驗(yàn)證CDK11A、CDK11B分別與RNPS1和9G8的相互作用。的開放閱讀框長為882 bp,編碼293個(gè)氨基酸;的開放閱讀框長為531 bp,編碼176個(gè)氨基酸;RNPS1和9G8都屬于SR蛋白家族,具有該蛋白家族成員的一個(gè)富含絲氨酸/精氨酸(S/R)重復(fù)序列的RS結(jié)構(gòu)域。同源序列比對(duì)表明,RNPS1和9G8都具有典型的RRM結(jié)構(gòu)域,此外9G8還含有一個(gè)鋅指結(jié)構(gòu)域。系統(tǒng)進(jìn)化分析顯示,RNPS1聚類于無脊椎動(dòng)物一支,與同為鱗翅目昆蟲的斑點(diǎn)木蝶、黑脈金斑蝶等親緣關(guān)系較近;9G8也聚類于無脊椎動(dòng)物一支,與同為鱗翅目昆蟲的黑脈金斑蝶、金鳳蝶等關(guān)系較近。熒光共定位證明,RNPS1分別與CDK11A和CDK11B共定位于細(xì)胞核中,且具有點(diǎn)狀共聚集現(xiàn)象;同時(shí)發(fā)現(xiàn),RNPS1還具有胞質(zhì)定位,點(diǎn)狀聚集于核外周。而9G8分別與CDK11A、CDK11B在細(xì)胞核中也具有共定位現(xiàn)象。進(jìn)一步通過免疫共沉淀發(fā)現(xiàn),在所有的總蛋白和細(xì)胞裂解離心后的上清液樣品中,均能檢測(cè)到對(duì)應(yīng)目的條帶的表達(dá),表明共轉(zhuǎn)染的細(xì)胞均能正常表達(dá)目的蛋白,并且蛋白溶于上清。同時(shí),在所有的共沉淀?xiàng)l帶中,均能檢測(cè)到對(duì)應(yīng)目的條帶,以上結(jié)果表明CDK11A、CDK11B均與RNPS1和9G8具有相互作用。家蠶RNPS1和9G8具有典型的RRM結(jié)構(gòu)域,屬于SR家族。CDK11A和CDK11B能夠與RNPS1和9G8相互作用。
家蠶;CDK11;;;pre-RNA剪接
【研究意義】RNA剪接是從DNA模板鏈轉(zhuǎn)錄出的最初轉(zhuǎn)錄產(chǎn)物中除去內(nèi)含子,并將外顯子連接起來形成一個(gè)連續(xù)的RNA分子的過程,其在真核生物基因表達(dá)過程中具有重要意義[1]。在高等生物中,可以通過對(duì)同一個(gè)基因轉(zhuǎn)錄的前體RNA(pre-RNA)進(jìn)行不同的選擇性剪接(alternative splicing),從而產(chǎn)生不同的mRNA亞型,最終產(chǎn)生多種相似卻又獨(dú)特的蛋白質(zhì)以達(dá)到調(diào)節(jié)基因表達(dá)的目的[2-3]。通過選擇性剪接這一過程,增加了高等生物基因表達(dá)的復(fù)雜程度,同時(shí)對(duì)高等生物的細(xì)胞分化與器官發(fā)育也具有重要的調(diào)控作用[2]。【前人研究進(jìn)展】細(xì)胞周期素依賴性蛋白激酶11(CDK11)是一類絲/蘇氨酸蛋白激酶,在細(xì)胞周期調(diào)控、腫瘤的發(fā)生以及細(xì)胞凋亡等過程中扮演重要角色[4-5]。CDK11有兩種主要的亞型CDK11P110和CDK11P58,其中,CDK11P110能夠與cyclinL相互作用,參與前體RNA(pre-RNA)的剪接以及轉(zhuǎn)錄調(diào)控,在細(xì)胞增殖的過程中也具有重要作用[4-6]。CDK11P58是由CDK11P110mRNA編碼區(qū)里的內(nèi)部核糖體進(jìn)入位點(diǎn)(internal ribosome entry site,IRES)翻譯而來,在G2/M期特異表達(dá),與中心體成熟、姐妹染色單體內(nèi)聚和胞質(zhì)分裂相關(guān)[7-9]。核糖核酸結(jié)合蛋白S1(RNA binding protein with serine rich domain 1,RNPS1)是一種具有核質(zhì)穿梭功能的剪接因子,參與了mRNA剪接、mRNA的核監(jiān)管與輸出以及無義介導(dǎo)的mRNA衰變[10-11]。富含絲氨酸和精氨酸的剪接因子7(serine and arginine rich splicing factor 7,9G8)是一類重要的磷酸蛋白,能促進(jìn)mRNA由核向質(zhì)的輸出[12],并且能夠參與mRNA選擇性剪接的過程[13]。RNPS1和9G8都屬于SR蛋白家族,該蛋白家族成員都具有一個(gè)富含絲氨酸/精氨酸(S/R)重復(fù)序列的RS結(jié)構(gòu)域,并且在RNA剪接體的組裝和選擇性剪接的調(diào)控過程中起著重要作用[14-16]。在對(duì)人類的研究中發(fā)現(xiàn),CDK11能與cyclinL1、cyclinL2以及剪接因子相互作用,參與pre-RNA剪接的調(diào)控[17]。進(jìn)一步研究表明,CDK11P110復(fù)合物能夠分別與pre-RNA剪接因子RNPS1、9G8以及cyclinL相互作用,表明CDK11參與了pre-RNA剪接的過程并具有重要作用[6]?!颈狙芯壳腥朦c(diǎn)】筆者課題組前期已經(jīng)克隆并鑒定了家蠶()CDK11的兩種重要剪切體CDK11A和CDK11B,并且驗(yàn)證了其與cyclinL的相互作用,表明CDK11在家蠶的細(xì)胞周期調(diào)控中起重要作用[18]。然而,其是否參與了pre-RNA剪接的過程,還未見明確報(bào)導(dǎo)?!緮M解決的關(guān)鍵問題】在家蠶中克隆并鑒定SR家族的兩種重要剪切因子和,并分別驗(yàn)證RNPS1和9G8與CDK11兩種剪切體的相互作用,為進(jìn)一步探索CDK11在家蠶pre-RNA剪接中的功能打下基礎(chǔ)。
試驗(yàn)于2016—2017年在西南大學(xué)家蠶基因組生物學(xué)國家重點(diǎn)實(shí)驗(yàn)室完成。
供試家蠶品種大造(Dazao)由西南大學(xué)家蠶基因資源庫提供,在25℃下用新鮮桑葉飼育。家蠶胚胎細(xì)胞系為BmN-SWU1[19],由西南大學(xué)家蠶基因組生物學(xué)國家重點(diǎn)實(shí)驗(yàn)室保存,在27℃培養(yǎng)箱中用含10%胎牛血清的TC-100昆蟲細(xì)胞培養(yǎng)基培養(yǎng)。
TaKaRa反轉(zhuǎn)錄試劑盒購自寶生物工程有限公司;Trizol試劑購自Invitrogen公司;BCA蛋白濃度測(cè)定試劑盒、HRP標(biāo)記山羊抗小鼠/兔抗體IgG(H+L)、DEPC水均購自碧云天生物技術(shù)研究所;蛋白分子量Marker購自Bio-Rad公司;質(zhì)粒提取試劑盒購自Promega公司產(chǎn)品;Taq酶、pMD19-T Simple載體、限制性內(nèi)切酶和T4連接酶為TaKaRa公司產(chǎn)品;PVDF膜、轉(zhuǎn)染試劑購自Roche公司;Trans1-T1 Phage Resistant感受態(tài)細(xì)胞購自北京全式金生物有限公司;Flag、HA標(biāo)簽單克隆抗體購自Sigma公司;蛋白A磁珠購自Invitrogen有限公司;引物均由北京六合華大基因科技股份有限公司合成;測(cè)序由北京六合華大基因科技股份有限公司完成;其他試劑均為國產(chǎn)或進(jìn)口分析純?cè)噭?/p>
本研究克隆的家蠶基因序列檢索自家蠶基因組數(shù)據(jù)庫SilkDB(http://www.silkdb.org/silkdb/);其他物種的相關(guān)序列均從NCBI(National Center for Biotechnology Information,https://www.ncbi.nlm.nih. gov/)檢索并下載獲得;結(jié)構(gòu)域預(yù)測(cè)使用在線預(yù)測(cè)軟件SMART(http://smart.embl-heidelberg.de/);引物設(shè)計(jì)的軟件采用Primer 5.0;預(yù)測(cè)同源序列比對(duì)軟件采用ClustalX 1.83和GENEDOC 3.2;系統(tǒng)發(fā)生樹構(gòu)建使用MEGA 6.0軟件。
取5齡第3天的全蠶組織材料經(jīng)液氮研磨后使用TRIZOL Reagent試劑盒提取總RNA。1%瓊脂糖凝膠電泳檢測(cè)RNA質(zhì)量,并按照反轉(zhuǎn)錄試劑盒說明書反轉(zhuǎn)錄合成cDNA,保存于-20℃?zhèn)溆谩?/p>
以家蠶大造品系的全蠶cDNA作為模板,按表1所示的TA克隆引物進(jìn)行目的片段的擴(kuò)增,PCR反應(yīng)體系(25 μL):cDNA 1 μL;酶0.2 μL;10×Buffer 2.5 μL;2.5 mmol·L-1MgCl22 μL;2.5 mmol·L-1dNTP 2 μL;上下游引物(10 μmol·L-1)各1 μL;ddH2O 16.3 μL。PCR條件:94℃預(yù)變性4min,然后94℃變性40 s、57℃退火40 s、72℃延伸1 min,共35個(gè)循環(huán),最后72℃延伸10 min。將擴(kuò)增的產(chǎn)物進(jìn)行膠回收,將回收的片段與pMD19-T載體進(jìn)行連接,進(jìn)行TA克隆,挑選陽性克隆送測(cè)序。將測(cè)序正確的TA克隆按表1所示亞克隆引物進(jìn)行目的片段的擴(kuò)增,經(jīng)酶切、連接和轉(zhuǎn)化后通過菌液PCR篩選陽性克隆,并送測(cè)序。
表1 引物列表
下劃線為酶切位點(diǎn),“GGATCC”為H I,“TCTAGA”為I
Restriction enzyme cutting sites were underlined.H I (GGATCC),I (TCTAGA)
待家蠶BmN-SWU1細(xì)胞密度達(dá)到80%—90%時(shí),將其轉(zhuǎn)移到鋪有爬片的24孔培養(yǎng)板中。將RNPS1-Flag和CDK11A-HA,RNPS1-Flag和CDK11B-HA,9G8-Flag和CDK11A-HA,9G8-Flag和CDK11B-HA分別共同轉(zhuǎn)染,按質(zhì)粒與轉(zhuǎn)染試劑比例1﹕3(m/v)轉(zhuǎn)染0.5 μg質(zhì)粒,在無抗生素的細(xì)胞培養(yǎng)基中孵育30 min后,轉(zhuǎn)染家蠶BmN-SWU1細(xì)胞。轉(zhuǎn)染48 h后,進(jìn)行免疫熒光處理。吸掉培養(yǎng)基,用PBS潤洗2—3次,每個(gè)孔添加400 μL多聚甲醛對(duì)細(xì)胞進(jìn)行固定;15 min后,棄掉液體,加入300 μL PBS,搖晃清洗5次,每次5 min;分別加入400 μL 0.1% Triton X-100,室溫孵育15 min;吸掉Triton X-100,PBS搖晃清洗3次,每次5 min;分別加入封閉液(10%羊血清原液+3%牛血清蛋白的PBS液),37℃孵育1—1.5 h;吸掉封閉液,分別加入250 μL Flag、HA的抗體稀釋液(稀釋比例為1﹕200),37℃恒溫培養(yǎng)箱孵育1 h;加入300 μL PBS,搖晃清洗5次,每次5 min;向每個(gè)孔中加入不同熒光標(biāo)記山羊抗鼠的二抗,于37℃恒溫培養(yǎng)進(jìn)行孵育1 h;用封閉液將DAPI原液以1﹕500稀釋,并加入孔中,室溫染色15 min;加入300 μL PBS,搖晃清洗5次,每次5 min;用帶鉤的針頭輕輕挑起爬片,將其鋪在載玻片上,用指甲油封片,隨后用激光共聚焦顯微鏡進(jìn)行觀察。
當(dāng)細(xì)胞密度達(dá)到80%左右時(shí)進(jìn)行轉(zhuǎn)染,將每一對(duì)質(zhì)粒進(jìn)行共轉(zhuǎn),每一對(duì)質(zhì)粒轉(zhuǎn)兩瓶;將轉(zhuǎn)染72 h后的細(xì)胞用PBS潤洗2—3次,加入1 mL的IP裂解液和10 μL的PMSF,在冰上搖動(dòng)裂解30 min,然后液氮反復(fù)凍融2次,使細(xì)胞完全裂解,取出30 μl作為總蛋白樣品;將細(xì)胞裂解液于4℃,12 000×離心30 min,收集上清到1.5 mL EP管中備用,同時(shí)取出30 μL作為上清液樣品;在兩個(gè)新的1.5 mL EP管中分別加入50 μL protein A磁珠;將加有磁珠的EP管放到磁力架上,待磁珠完全被吸附住之后,將上清吸出棄掉,PBS清洗兩次;分別在兩個(gè)EP管中加入400 μL孵育液(PBST),同時(shí),一個(gè)管中加入1﹕250稀釋的鼠/兔IgG,另一個(gè)加入1﹕250稀釋的鼠/兔標(biāo)簽抗體,在旋轉(zhuǎn)搖床上孵育30 min;對(duì)磁珠進(jìn)行清洗,將得到的兩管細(xì)胞裂解上清液分別加入兩管中,在旋轉(zhuǎn)搖床上孵育1 h;繼續(xù)清洗磁珠3次,然后分別加入60 μL PBS和12 μL的5×蛋白上樣緩沖液,同時(shí)在總蛋白和上清液樣品中也加入5×蛋白上樣緩沖液,經(jīng)沸水煮10 min;瞬時(shí)離心后,再次放到磁力架上,將煮好的蛋白溶液,轉(zhuǎn)移至新的1.5 mL EP管,-20℃保存?zhèn)溆谩?/p>
制備12% SDS-PAGE膠,將上述制備好的蛋白點(diǎn)入孔中,以10 mA恒定電流進(jìn)行蛋白濃縮,等樣品跑出濃縮膠進(jìn)入分離膠后將電流調(diào)至恒流15 mA;根據(jù)蛋白大小,適時(shí)終止電泳,將凝膠中的蛋白通過轉(zhuǎn)膜儀轉(zhuǎn)至PVDF膜上;隨后將PVDF膜用封閉液(含5%脫脂奶粉的TBST溶液)于37℃封閉1.5 h以上;一抗孵育,用對(duì)應(yīng)鼠源Flag/HA抗體(用封閉液1﹕3 000稀釋),于37℃恒溫培養(yǎng)進(jìn)行孵育1 h;PVDF膜用TBST溶液在搖床上搖動(dòng)洗滌5 min×5次;二抗孵育,向每個(gè)孔中加入HRP標(biāo)記的山羊抗小鼠IgG(H+L)(用封閉液1﹕ 5 000稀釋),于37℃恒溫培養(yǎng)進(jìn)行孵育1 h;PVDF膜再次用TBST溶液搖動(dòng)洗滌5 min×5次;最后使用ECL顯色液顯影并通過蛋白曝光儀觀察試驗(yàn)結(jié)果。
成功克隆了家蠶和的CDS序列,其中(GenBank登錄號(hào):NP_001040150.1)的開放閱讀框(open reading frame,ORF)為882 bp,編碼293個(gè)氨基酸,預(yù)測(cè)的蛋白分子量為32.71 kD,等電點(diǎn)為11.76。(GenBank登錄號(hào):NP_001091768.1)的開放閱讀框?yàn)?31 bp,編碼176個(gè)氨基酸,預(yù)測(cè)的蛋白分子量為20.17 kD,等電點(diǎn)為11.42。同時(shí),分別對(duì)RNPS1和9G8的蛋白結(jié)構(gòu)域進(jìn)行預(yù)測(cè),分析發(fā)現(xiàn)這兩個(gè)基因分別在149—223、8—76氨基酸處含有一個(gè)RNA識(shí)別基序(RNA recognition motif,RRM),并且RNPS1和9G8都具有一個(gè)富含絲氨酸/精氨酸(S/R)重復(fù)序列的RS結(jié)構(gòu)域(圖1)。此外,9G8在103—119氨基酸處還含有一個(gè)鋅指結(jié)構(gòu)域(zinc finger domain)。
分別選取了人()、小鼠()、非洲爪蟾()、斑馬魚()和棉紅鈴蟲()等進(jìn)行同源氨基酸序列比對(duì)。結(jié)果表明,家蠶RNPS1和9G8在進(jìn)化中高度保守,與其他物種中的同源基因在RRM結(jié)構(gòu)域的氨基酸序列相似性接近80%(圖2)。同時(shí),9G8在鋅指結(jié)構(gòu)域的氨基酸序列相似性也高達(dá)80%(圖3)。
為了進(jìn)一步分析家蠶RNPS1和9G8同其他物種在進(jìn)化上的親緣關(guān)系,通過同源檢索獲得多個(gè)物種的RNPS1和9G8氨基酸序列,并利用軟件Clustalx 1.83和MEGA 6.0構(gòu)建系統(tǒng)進(jìn)化樹。結(jié)果表明,系統(tǒng)進(jìn)化樹分為脊椎動(dòng)物和無脊椎動(dòng)物兩大支,而家蠶RNPS1聚類于無脊椎動(dòng)物一支,與同為鱗翅目昆蟲的斑點(diǎn)木蝶()、黑脈金斑蝶()等親緣關(guān)系較近(圖4)。9G8也聚類于無脊椎動(dòng)物一支,與同為鱗翅目昆蟲的黑脈金斑蝶、金鳳蝶()等關(guān)系較近(圖5)。以上結(jié)果表明,家蠶RNPS1和9G8與鱗翅目昆蟲中的同源基因都具有高度保守的RNA識(shí)別基序和RS結(jié)構(gòu)域,且都與鱗翅目昆蟲聚為一類。
構(gòu)建了融合HA標(biāo)簽的pIZ-RNPS1-OE、pIZ-9G8-OE真核過表達(dá)載體以及融合Flag標(biāo)簽的pIZ-CDK11A- OE、pIZ-CDK11B-OE真核過表達(dá)載體。轉(zhuǎn)染家蠶BmN-SWU1細(xì)胞系,轉(zhuǎn)染48 h后進(jìn)行免疫熒光分析,同時(shí)以DAPI作為細(xì)胞核染料。激光共聚焦結(jié)果顯示,RNPS1分別與CDK11A和CDK11B共定位于細(xì)胞核中,且具有點(diǎn)狀共聚集現(xiàn)象;同時(shí)發(fā)現(xiàn),RNPS1還具有胞質(zhì)定位,點(diǎn)狀聚集于核外周;這主要由于RNPS1屬于核質(zhì)穿梭蛋白,需要同時(shí)在核和胞質(zhì)中行使功能(圖6-A)。9G8分別與CDK11A、CDK11B在細(xì)胞核中也具有共定位現(xiàn)象(圖6-B)。以上結(jié)果表明,CDK11A和CDK11B可分別與RNPS1和9G8相互作用。
黃色部分為RRM結(jié)構(gòu)域,綠色部分為RS結(jié)構(gòu)域The RRM domain was shown in yellow background, the RS domain was shown in green background
紅色線條區(qū)域的序列表示保守的RRM結(jié)構(gòu)域;藍(lán)色背景區(qū)表示在所有比對(duì)物種中一致的氨基酸殘基;綠色背景區(qū)表示在75%或以上的比對(duì)物種中一致的氨基酸殘基。圖3同Sequences in the red line area indicated the RRM domain; Amino acid residues shaded with blue were identical in all species and that of shaded with green were identical in 75% or more species. The same as Fig. 3
紫色線條區(qū)域的序列表示保守的鋅指結(jié)構(gòu)域Sequences in the purple line area indicated the zinc finger domain
圖4 家蠶RNPS1蛋白與其他同源蛋白的進(jìn)化樹
圖5 家蠶9G8蛋白與其他同源蛋白的進(jìn)化樹
圖6 熒光共定位分析CDK11A、CDK11B與RNPS1和9G8的相互作用,DAPI染細(xì)胞核
分別將RNPS1-Flag與CDK11A-HA,RNPS1-Flag與CDK11B-HA,9G8-Flag與CDK11A-HA以及9G8-Flag與CDK11B-HA,在家蠶細(xì)胞系BmN-SWU1中共同轉(zhuǎn)染,72 h后進(jìn)行免疫共沉淀試驗(yàn)。首先,分別用Flag抗體去沉淀RNPS1-Flag、9G8-Flag,隨后用HA抗體進(jìn)行western blot分別檢測(cè)CDK11A-HA、CDK11B-HA,觀察CDK11A和CDK11B是否能被RNPS1和9G8沉淀下來;然后,進(jìn)行反向驗(yàn)證,用HA抗體分別沉淀CDK11A-HA和CDK11B-HA,再用Flag抗體進(jìn)行western blot分析RNPS1和9G8能否被CDK11沉淀下來。結(jié)果顯示,在所有的總蛋白和細(xì)胞裂解離心后的上清液樣品中,均能檢測(cè)到對(duì)應(yīng)目的條帶的表達(dá),表明共轉(zhuǎn)染的細(xì)胞均能正常表達(dá)目的蛋白,并且蛋白溶于上清。同時(shí),在所有的共沉淀?xiàng)l帶中,均能檢測(cè)到對(duì)應(yīng)目的條帶,表明CDK11A、CDK11B均與RNPS1和9G8具有相互作用(圖7)。
CDK11是由p34cdc2(CDC2L1和CDC2L2)編碼的一類重要的細(xì)胞周期調(diào)控蛋白,能夠形成不同的亞型,主要包括CDK11P110、CDK11P58和CDK11P46[1]。不同亞型行使不同的功能,CDK11P110能夠與cyclinL相互作用參與轉(zhuǎn)錄調(diào)控、pre-RNA剪接和自噬[4-5,13,20-21]。CDK11P58在G2/M期特定表達(dá),能夠與cyclinD3相互作用,參與有絲分裂過程中中心體的成熟、紡錘體的形成和姐妹染色單體結(jié)合[7-9]。在細(xì)胞凋亡時(shí),由CDK11P110和CDK11P58切割產(chǎn)生第3種異構(gòu)體CDK11P46,CDK11P46異常表達(dá)將會(huì)誘導(dǎo)凋亡[21]。小鼠中敲除CDK11(CDK11P110和CDK11P58均被敲除)后,胚泡發(fā)育的過程中出現(xiàn)增殖缺陷和早期胚胎死亡,暗示了CDK11在細(xì)胞增殖和轉(zhuǎn)錄調(diào)控等過程具有必不可少的作用[22]。在人類中,CDK11p110是研究最廣泛的CDK11剪切體,報(bào)道最多的是其參與轉(zhuǎn)錄與mRNA剪接。而筆者課題組之前的研究已經(jīng)克隆并鑒定了家蠶CDK11的兩種剪切體CDK11A和CDK11B[18],在本研究中也發(fā)現(xiàn)CDK11A和CDK11B與剪接因子RNPS1和9G8具有相互作用,因此推測(cè)CDK11可能參與pre-RNA的剪接成熟過程。據(jù)報(bào)道,CDK11P110能夠與RNA聚合酶II、轉(zhuǎn)錄延伸因子和pre-RNA結(jié)合形成大分子聚合物來參與轉(zhuǎn)錄和pre-RNA剪接等生物過程[23-24]。進(jìn)一步研究表明,CDK11p110定位于兩個(gè)剪接因子隔室(splicing factor compartments,SFC)和核質(zhì),與其相互作用的剪接因子包括RNPS1和9G8,其參與了pre-RNA的剪接成熟過程[23,25]。RNPS1屬于SR蛋白家族一員,作為剪接的普遍活化劑,能夠以底物特異性方式促進(jìn)可選擇剪接[10,26]。RNPS1也能通過磷酸化反應(yīng)影響pre-RNA剪接和mRNA翻譯[27]。9G8是一個(gè)核質(zhì)穿梭蛋白,能夠促進(jìn)mRNA的核質(zhì)輸出[3]。9G8的磷酸化狀態(tài)對(duì)于其剪接和導(dǎo)出功能至關(guān)重要,9G8能夠以高磷酸化形式募集到mRNA,而在剪接期間變?yōu)榈土姿峄痆3,12]。SR蛋白能夠通過其RS結(jié)構(gòu)域或特有的結(jié)構(gòu)域?qū)崿F(xiàn)與pre-RNA特異性序列或者其他剪接因子的相互作用,協(xié)同完成剪切位點(diǎn)的正確選擇,并促進(jìn)剪切體的形成[14,28-30]?;谶@些已有研究,筆者推測(cè)在家蠶中蛋白激酶CDK11能夠磷酸化剪接因子RNPS1和9G8,進(jìn)而參與pre-RNA的剪接過程,但具體機(jī)制仍需深入研究。
L:細(xì)胞裂解液Cell lysate;S:上清Supernatant;P:免疫沉淀Immunoprecipitation;IgG:對(duì)照Control
許多重要基因的表達(dá)需要通過RNA選擇性剪接進(jìn)行調(diào)控,同時(shí)很多疾病的產(chǎn)生是由于RNA剪接發(fā)生紊亂導(dǎo)致的[2-3,31]。雖然目前有關(guān)RNA剪接的研究有很多,但具體調(diào)控機(jī)制仍不清楚,下一步擬通過磷酸化檢測(cè)以及基因過表達(dá)與敲除等策略進(jìn)行深入研究;也可通過基因工程的手段改變SR蛋白或它的作用底物,以進(jìn)行更多方面的應(yīng)用研究。
克隆并鑒定了兩個(gè)剪切因子和,并且通過同源序列比對(duì)和系統(tǒng)進(jìn)化分析顯示,家蠶RNPS1和9G8具有典型的RRM結(jié)構(gòu)域以及RS結(jié)構(gòu)域,屬于SR蛋白家族,與其他鱗翅目昆蟲具有較高的同源性。通過免疫熒光和免疫共沉淀均證明CDK11A和CDK11B能夠與剪切因子RNPS1和9G8相互作用。
[1] HU D, MAYEDA A, TREMBLEY J H, LAHTI J M, KIDD V J. CDK11 complexes promote pre-mRNA splicing., 2003, 278(10): 8623-8629.
[2] LIU S, CHENG C. Alternative RNA splicing and cancer., 2013, 4(5): 547-566.
[3] DING S, SHI J, QIAN W, IQBAL K, GRUNDKE-IQBAL I, GONG C X, LIU F. Regulation of alternative splicing of tau exon 10 by 9G8 and Dyrk1A., 2012, 33(7): 1389-1399.
[4] ZHOU Y, HAN C, LI D, YU Z, LI F, LI F, AN Q, BAI H, ZHANG X, DUAN Z, KAN Q. Cyclin-dependent kinase 11p110(CDK11p110) is crucial for human breast cancer cell proliferation and growth., 2015, 5: 10433.
[5] TREMBLEY J H, HU D, HSU L C, YEUNG C Y, SLAUGHTER C, LAHTI J M, KIDD V J. PITSLRE p110 protein kinases associate with transcription complexes and affect their activity., 2002, 277(4): 2589-2596.
[7] FRANCK N, MONTEMBAULT E, ROME P, PASCAL A, CREMET J Y, GIET R. CDK11p58is required for centriole duplication and Plk4 recruitment to mitotic centrosomes., 2011, 6(1): e14600.
[8] YUN X, WU Y, YAO L, ZONG H, HONG Y, JIANG J, YANG J, ZHANG Z, GU J. CDK11p58protein kinase activity is associated with Bcl-2 down-regulation in pro-apoptosis pathway., 2007, 304(1/2): 213-218.
[9] RAKKAA T, ESCUDE C, GIET R, MAGNAGHI-JAULIN L, JAULIN C. CDK11p58kinase activity is required to protect sister chromatid cohesion at centromeres in mitosis., 2014, 22(3): 267-276.
[10] MAYEDA A, BADOLATO J, KOBAYASHI R, ZHANG M Q, GARDINER E M, KRAINER A R. Purification and characterization of human RNPS1: a general activator of pre-mRNA splicing., 1999,18(16): 4560-4570.
[11] LOYER P, TREMBLEY J H, LAHTI J M, KIDD V J. The RNP protein, RNPS1, associates with specific isoforms of the p34cdc2- related PITSLRE protein kinase in vivo., 1998, 111(11): 1495-1506.
[12] SWARTZ J E, BOR Y C, MISAWA Y, REKOSH D, HAMMARSKJOLD M L. The shuttling SR protein 9G8 plays a role in translation of unspliced mRNA containing a constitutive transport element., 2007, 282(27): 19844-19853.
[13] VALENTE S T, GILMARTIN G M, VENKATARAMA K, ARRIAGADA G, GOFF S P. HIV-1 mRNA 3′ end processing is distinctively regulated by eIF3f, CDK11, and splice factor 9G8., 2009, 36(2): 279-289.
[14] MACIOLEK N L, MCNALLY M T. Serine/arginine-rich proteins contribute to negative regulator of splicing element-stimulated polyadenylation in rous sarcoma virus., 2007, 81(20): 11208-11217.
教育部2016年發(fā)布的《教育現(xiàn)代化進(jìn)程監(jiān)測(cè)評(píng)價(jià)指標(biāo)體系研究》專題組最新報(bào)告顯示,在全國15個(gè)副省級(jí)城市中,廣州教育現(xiàn)代化排名位居前列,其中教育普及發(fā)展指標(biāo)排名第二,教育條件保障指標(biāo)排名第二,教育質(zhì)量要素指標(biāo)排名第四。
[15] BJORK P, JIN S, ZHAO J, SINGH O P, PERSSON J O, HELLMAN U, WIESLANDER L. Specific combinations of SR proteins associate with single pre-messenger RNAsand contribute different functions., 2009, 184(4): 555-568.
[16] ISSHIKI M, TSUMOTO A, SHIMAMOTO K. The serine/arginine- rich protein family in rice plays important roles in constitutive and alternative splicing of pre-mRNA., 2006, 18(1): 146-158.
[17] LOYER P, TREMBLEY J H, KATONA R, KIDD V J, LAHTI J M. Role of CDK/cyclin complexes in transcription and RNA splicing., 2005, 17(9): 1033-1051.
[18] LIU T H, WU Y F, DONG X L, PAN C X, DU G Y, YANG J G, WANG W, BAO X Y, CHEN P, PAN M H, LU C. Identification and characterization of the BmCyclin L1-BmCDK11A/B complex in relation to cell cycle regulation., 2017. http://dx.doi.org/ 10.1080/15384101.2017.1304339.
[19] PAN M H, CAI X J, LIU M, LV J, TANG H, TAN J, LU C. Establishment and characterization of an ovarian cell line of the silkworm,., 2010, 42(1): 42-46.
[20] LI T, INOUE A, LAHTI J M, KIDD V J. Failure to proliferate and mitotic arrest of CDK11p110/p58-null mutant mice at the blastocyst stage of embryonic cell development., 2004, 24(8): 3188-3197.
[21] SAKASHITA E, TATSUMI S, WERNER D, ENDO H, MAYEDA A. Human RNPS1 and its associated factors: a versatile alternative pre-mRNA splicing regulator in vivo., 2004, 24(3): 1174-1187.
[22] JIA B, CHOY E, COTE G, HARMON D, YE S, KAN Q, MANKIN H, HORNICEK F, DUAN Z. Cyclin-dependent kinase 11 (CDK11) is crucial in the growth of liposarcoma cells., 2014, 342(1): 104-112.
[23] CHOI H H, CHOI H K, JUNG S Y, HYLE J, KIM B J, YOON K, CHO E J, YOUN H D, LAHTI J M, QIN J, KIM S T. CHK2 kinase promotes pre-mRNA splicing via phosphorylating CDK11p110., 2014, 33(1): 108-115.
[24] HUANG Y, YARIO T A, STEITZ J A. A molecular link between SR protein dephosphorylation and mRNA export., 2004, 101(26): 9666-9670.
[25] LI X, NIU T, MANLEY J L. The RNA binding protein RNPS1 alleviates ASF/SF2 depletion-induced genomic instability., 2007, 13(12): 2108-2115.
[26] LOYER P, BUSSON A, TREMBLEY J H, HYLE J, GRENET J, ZHAO W, RIBAULT C, MONTIER T, KIDD V J, LAHTI J M. The RNA binding motif protein 15B (RBM15B/OTT3) is a functional competitor of serine-arginine (SR) proteins and antagonizes the positive effect of the CDK11p110-cyclin L2alpha complex on splicing., 2011, 286(1): 147-159.
[27] HUANG Y, GATTONI R, ST VENIN J, STEITZ J A. SR splicing factors serve as adapter proteins for TAP-dependent mRNA export., 2003, 11(3): 837-843.
[28] 丁紹紅, 尹曉敏, 施建華, 錢慰, 劉飛. 糖原合酶激酶-3調(diào)節(jié)9G8介導(dǎo)的tau外顯子10的可變剪接. 生物化學(xué)與生物物理進(jìn)展, 2010, 37(2): 161-166.
DING S H, YIN X M, SHI J H, QIAN W, LIU F. GSK-3modulates 9G8-mediated alternative splicing of tau exon 10., 2010, 37(2): 161-166. (in Chinese)
[29] 王善治, 袁榴娣. SR蛋白研究進(jìn)展. 東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2003, 22(4): 279-281, 286.
WANG S Z, YUAN L D. Progress of the research on SR protein.,2003, 22(4): 279-281, 286. (in Chinese)
[30] 蔣亞明, 董戰(zhàn)旗, 陳婷婷, 胡楠, 董非凡, 黃亮, 唐良彤, 潘敏慧. 桿狀病毒LEF-11蛋白自身相互作用關(guān)鍵區(qū)域的鑒定. 中國農(nóng)業(yè)科學(xué), 2017, 50(20): 4028-4035.
JIANG Y M, DONG Z Q, CHEN T T, HU N, DONG F F, HUANG L, TANG L T, PAN M H. Identification the key areas ofnucleopolyhedrovirus LEF-11 self-interaction., 2017, 50(20): 4028-4035. (in Chinese)
[31] 邢永強(qiáng), 劉國慶, 蔡祿. Pre-mRNA選擇性剪接的調(diào)控及選擇性剪接數(shù)據(jù)庫. 中國生物化學(xué)與分子生物學(xué)報(bào), 2016, 32(1): 17-28.
XING Y Q, LIU G Q, CAI L. Regulation and database of Pre-mRNA alternative splicing.,2016, 32(1): 17-28. (in Chinese)
(責(zé)任編輯 岳梅)
Identification of the interactions of CDK11 with RNPS1 and 9G8 in the silkworm ()
ZHANG Qian1, LIU TaiHang1, DONG XiaoLong1, WU YunFei1, YANG JiGui1, ZHOU Liang1, PAN CaiXia1, PAN MinHui1,2
(1State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716;2Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716)
The objective of this study is to identify the interactions of silkworm () CDK11 with RNPS1 and 9G8, and to lay a foundation for the analysis of whether it is involved in the splicing of precursor RNA.Thegene sequences in this study were found in silkworm genome database SilkDB, and Primer 5.0 was used for primer design. Firstly, two important splicing factors RNPS1 and 9G8 were cloned by PCR and the overexpression vector with different epitope tags was constructed. Then, NCBI was used to retrieve and obtain the relevant sequence of other species. The online prediction software SMART was used for domain prediction. ClustalX 1.83 and GENEDOC 3.2 were used to predict the homologous sequence, and the phylogenetic tree was constructed by software MEGA 6.0. Next, immunofluorescence was used to verify the co-localization of CDK11A and CDK11B with RNPS1 and 9G8, respectively. Finally, the interaction of CDK11A and CDK11B with RNPS1 and 9G8 was further confirmed by immunoprecipitation.The open reading frame of RNPS1 is 882 bp, encoding 293 amino acids. And the open reading frame of 9G8 is 531 bp, encoding 176 amino acids. Both RNPS1 and 9G8 belong to the SR protein family, which has RS domain that contains rich of serine/arginine (S/R) repeats. Homozygous sequence alignment showed that both RNPS1 and 9G8 had a typical RRM domain, and 9G8 also contained a zinc finger domain. Phylogenetic analysis showed that RNPS1 was clustered in an invertebrate, which possessed high homology with other Lepidoptera insects likeand. 9G8 also clustered in an invertebrate, and had close relationship with other Lepidoptera insects likeand. Fluorescence co-localization showed that RNPS1 was co-located in the nucleus with CDK11A and CDK11B, respectively, and had dot-like co-aggregation. While, 9G8 also had a co-localization with CDK11A and CDK11B in the nucleus, respectively. Furthermore, by using immunoprecipitation, it was found that the expression of the corresponding band was detected in all total protein and supernatant samples after cell lysis, indicating that the co-transfected cells were able to express the protein of interest and the protein was dissolved in the supernatant. At the same time, in all the coprecipitation bands, the corresponding target bands could be detected. The above results indicated that both CDK11A and CDK11B interacted with RNPS1 and 9G8.Both RNPS1 and 9G8 have a typical RRM domain which belong to the SR family. CDK11A and CDK11B have interaction with RNPS1 and 9G8.
; CDK11;;; pre-RNA splicing
2017-05-25;
國家自然科學(xué)基金(31472152,31572466)
接受日期:2017-07-01
聯(lián)系方式:張倩,E-mail:358441891@qq.com。劉太行,E-mail:sitoyy@163.com。張倩和劉太行為同等貢獻(xiàn)作者。通信作者潘敏慧,E-mail:pmh047@126.com