黃林生,劉文靜,2,黃文江,2※,趙晉陵,宋富冉,2
(1. 安徽大學(xué)安徽省農(nóng)業(yè)生態(tài)大數(shù)據(jù)工程實(shí)驗(yàn)室,合肥 230601;2. 中國(guó)科學(xué)院遙感與數(shù)字地球研究所,數(shù)字地球重點(diǎn)實(shí)驗(yàn)室,北京 100094)
·農(nóng)業(yè)信息與電氣技術(shù)·
小波分析與支持向量機(jī)結(jié)合的冬小麥白粉病遙感監(jiān)測(cè)
黃林生1,劉文靜1,2,黃文江1,2※,趙晉陵1,宋富冉1,2
(1. 安徽大學(xué)安徽省農(nóng)業(yè)生態(tài)大數(shù)據(jù)工程實(shí)驗(yàn)室,合肥 230601;2. 中國(guó)科學(xué)院遙感與數(shù)字地球研究所,數(shù)字地球重點(diǎn)實(shí)驗(yàn)室,北京 100094)
為利用遙感影像數(shù)據(jù)在區(qū)域尺度上實(shí)現(xiàn)快速、準(zhǔn)確地監(jiān)測(cè)小麥白粉病的發(fā)生、發(fā)展情況,該研究基于環(huán)境與災(zāi)害監(jiān)測(cè)預(yù)報(bào)小衛(wèi)星(HJ-1A/1B)數(shù)據(jù)對(duì)地表溫度(land surface temperature,LST)進(jìn)行反演、提取4個(gè)波段反射率數(shù)據(jù)并構(gòu)建 7個(gè)植被指數(shù)。耦合K-mean和 Relief算法對(duì)小麥白粉病遙感特征進(jìn)行篩選。通過支持向量機(jī)(support vector machine,SVM)與小波特征(Gabor)結(jié)合SVM(GaborSVM)的方法分別建立河北省晉州市小麥白粉病發(fā)生監(jiān)測(cè)模型,并對(duì)2種模型的監(jiān)測(cè)精度進(jìn)行對(duì)比。結(jié)果表明:歸一化植被指數(shù)(normalized difference vegetation index,NDVI)、比值植被指數(shù)(simple ratio index,SR)和地表溫度3種特征參量可較好地表征小麥白粉病的發(fā)生情況,GaborSVM的總體精度達(dá)到86.7%,優(yōu)于SVM的80%。因此,小波分析與支持向量機(jī)結(jié)合的方法可用于基于衛(wèi)星遙感影像的大面積病害監(jiān)測(cè),對(duì)提高病害監(jiān)測(cè)精度具有重要應(yīng)用價(jià)值。
遙感;支持向量機(jī);病害;白粉病;小波特征
小麥白粉病嚴(yán)重影響小麥產(chǎn)量,據(jù)統(tǒng)計(jì),白粉病危害一般可使小麥減產(chǎn)5%~10%,嚴(yán)重區(qū)域可達(dá)20%以上[1]。準(zhǔn)確獲取病害發(fā)生狀況和其空間分布對(duì)于病害防治是十分必要的,傳統(tǒng)的病蟲害監(jiān)測(cè)主要依靠植保人員的田間調(diào)查和田間取樣等方式,盡管這些傳統(tǒng)方法的真實(shí)性和可靠性較高,但耗時(shí)、費(fèi)力,難以適應(yīng)目前大范圍的病蟲害實(shí)時(shí)監(jiān)測(cè)和預(yù)報(bào)的需求,因此有必要建立基于遙感影像的監(jiān)測(cè)模型[2]。
目前,一些學(xué)者利用遙感寬波段數(shù)據(jù)對(duì)病蟲害進(jìn)行了一系列研究。馬慧琴等[1]利用Landsat 8遙感影像數(shù)據(jù)結(jié)合氣象數(shù)據(jù)采用相關(guān)向量機(jī)的模型實(shí)現(xiàn)小麥白粉病的區(qū)域尺度監(jiān)測(cè),證明了遙感影像數(shù)據(jù)單獨(dú)使用無法得到滿足需求的試驗(yàn)結(jié)果,需與氣象數(shù)據(jù)結(jié)合分析。Huang等[3-4]發(fā)現(xiàn)小麥白粉病由于光譜響應(yīng)總體上較平滑,不同于某些僅在較窄波段范圍內(nèi)發(fā)生響應(yīng)的病害,因此采用寬波段的光譜特征識(shí)別白粉病是可行的。Luo等[5]利用LST(land surface temperature)等數(shù)據(jù)構(gòu)建二維特征空間對(duì)小麥蚜蟲進(jìn)行了預(yù)測(cè),發(fā)現(xiàn)LST對(duì)蚜蟲是否發(fā)生起決定性作用,是蚜蟲發(fā)生發(fā)展的一個(gè)關(guān)鍵性因子。張競(jìng)成等[6-8]研究了小麥白粉病主要的敏感波段及敏感植被指數(shù)。以上分析表明寬波段植被指數(shù)對(duì)于病害識(shí)別是有可用性的,但寬波段植被指數(shù)所含信息較為籠統(tǒng),單獨(dú)使用無法得到滿意的試驗(yàn)結(jié)果。因此嘗試對(duì)寬波段植被指數(shù)進(jìn)行進(jìn)一步細(xì)化研究,從而得到更多有用信息,提高分類精度。小波分析是多種分析的結(jié)合算法,能夠從多尺度、多方向上分解數(shù)據(jù)[9],實(shí)現(xiàn)對(duì)數(shù)據(jù)的細(xì)化分析。魯軍景等[10]利用航空遙感高光譜數(shù)據(jù)采用小波分析的方法識(shí)別小麥白粉病的敏感波段,并得到了較高的識(shí)別精度,高光譜數(shù)據(jù)包含大量細(xì)節(jié)信息,證明小麥白粉病在細(xì)節(jié)信息中有較好體現(xiàn),但航空遙感高光譜數(shù)據(jù)在大范圍尺度的監(jiān)測(cè)上存在一定局限性。以下分析采用不同的源數(shù)據(jù),在進(jìn)行識(shí)別分類時(shí)利用小波分析來提取細(xì)節(jié)信息,均達(dá)到了提高識(shí)別精度的目的。Chen等[11]在對(duì)地震信號(hào)譜分解中先尋找小波變換的最優(yōu)旋轉(zhuǎn)因子,再進(jìn)行處理,降低了算法的運(yùn)算復(fù)雜度,并得到較好的試驗(yàn)結(jié)果。印勇等[12]在對(duì)人臉表情識(shí)別時(shí)采用了PCA(principal component analysis)算法對(duì)小波特征進(jìn)行降維處理,提高了算法的運(yùn)算效率及精度。牛連強(qiáng)等[13]在表情識(shí)別試驗(yàn)中,利用 LBP(local binary patterns)算法結(jié)合小波變換的方法,大幅度降低了特征的維數(shù),并提高了特征提取的準(zhǔn)確性,得到了100%的識(shí)別率。上述3組研究表明小波分析算法在圖像識(shí)別領(lǐng)域有較高的應(yīng)用價(jià)值,但目前尚未出現(xiàn)小波分析應(yīng)用于寬波段植被指數(shù)提取病害信息方面的研究,因此嘗試將小波變換(Gabor)應(yīng)用于寬波段植被指數(shù),并對(duì)得到的小波特征進(jìn)行篩選,突出對(duì)病害敏感的因子,以提高病害識(shí)別精度。
支持向量機(jī)在機(jī)器學(xué)習(xí)領(lǐng)域通常用來模式識(shí)別、分類及回歸分析,此算法結(jié)構(gòu)穩(wěn)定,使用方便,相較于人工神經(jīng)網(wǎng)絡(luò)等其他算法具有能夠獲得全局最優(yōu)解的優(yōu)點(diǎn)[14-15]。Wang等[16]利用支持向量機(jī)模型對(duì)小麥條銹病進(jìn)行分類和識(shí)別,獲得了 97%的識(shí)別精度。袁瑩等[17]利用 SVM(support vector machine)模型對(duì)玉米顆粒霉變程度進(jìn)行判別,準(zhǔn)確率達(dá)到91%。張錄達(dá)等[18]利用SVM對(duì)小麥蛋白質(zhì)含量進(jìn)行了預(yù)測(cè),并得到了較好的分析結(jié)果。以上SVM模型在小范圍病害數(shù)據(jù)分類識(shí)別中具有較高的應(yīng)用價(jià)值,但未嘗試使用小波變換結(jié)合SVM在大區(qū)域尺度的小麥白粉病識(shí)別中進(jìn)行應(yīng)用,本研究將二者結(jié)合進(jìn)行試驗(yàn)分析,實(shí)現(xiàn)區(qū)域尺度的小麥白粉病發(fā)生分布的監(jiān)測(cè)。
基于以上分析,本文以河北晉州市為研究對(duì)象,嘗試僅利用環(huán)境星遙感數(shù)據(jù)經(jīng)過小波變換及特征篩選后,結(jié)合SVM算法建立的監(jiān)測(cè)模型(GaborSVM),最終實(shí)時(shí)準(zhǔn)確獲取大面積小麥白粉病發(fā)生的空間分布特征,為白粉病防治提供依據(jù),提高農(nóng)藥的使用效率,從而有助于糧食產(chǎn)量的提高。
小麥白粉病監(jiān)測(cè)的具體操作流程如圖1所示。
圖1 小麥白粉病監(jiān)測(cè)流程圖Fig.1 Flow chart of wheat powdery mildew monitoring
1.1 研究區(qū)概況
本研究區(qū)位于河北省石家莊市的晉州(114°58′E~115°12′E,37°48′N~38°10′N)(如圖 2),該區(qū)域?qū)儆邳S河流域白粉病易發(fā)氣候區(qū),晉州市地處滹沱河和滏陽(yáng)河沖積扇的交匯處,地勢(shì)平緩開曠且全境皆平原,由于此地地勢(shì)平坦,氣候單一,同時(shí)種植結(jié)構(gòu)較單一,適合利用遙感衛(wèi)星影像來展開小麥白粉病監(jiān)測(cè)。
1.2 數(shù)據(jù)獲取
研究所用數(shù)據(jù)主要包括遙感數(shù)據(jù)和小麥白粉病實(shí)地調(diào)查數(shù)據(jù)。遙感數(shù)據(jù)為環(huán)境與災(zāi)害監(jiān)測(cè)預(yù)報(bào)小衛(wèi)星星座A、B(HJ-1A/1B星)數(shù)據(jù),根據(jù)研究區(qū)天氣狀況,選擇質(zhì)量較好、時(shí)間最接近地面調(diào)查的影像數(shù)據(jù),即2014年5月29日的CCD光學(xué)數(shù)據(jù)和IRS熱紅外數(shù)據(jù),其詳細(xì)的載荷信息如表1所示。小麥白粉病實(shí)地調(diào)查數(shù)據(jù)于2014年5月27、28日(小麥灌漿期)于晉州調(diào)查獲得,在選擇調(diào)查點(diǎn)區(qū)域時(shí),觀察到晉州市內(nèi)的白粉病發(fā)生情況類似,故希望選擇一處具有代表性的地塊做調(diào)查,周家莊是全國(guó)僅存的人民公社,此處處于種植區(qū)域的中部最大且集中種植小麥的地塊,滿足衛(wèi)星影像處理的要求,同時(shí)此處的小麥白粉病發(fā)生情況較均勻,發(fā)生了不同等級(jí)的小麥白粉病,相較于其他區(qū)域更具有代表性。野外調(diào)查共得40個(gè)有效數(shù)據(jù),調(diào)查方法參見文獻(xiàn)[19]。
圖2 研究區(qū)概況Fig.2 General situation of study area
表1 HJ-1A/1B衛(wèi)星主要載荷參數(shù)信息Table 1 Specifications of multispectral remote sensors onboard HJ-1A and 1B satellites
1.3 數(shù)據(jù)處理
獲取的環(huán)境星CCD影像、IRS影像需要經(jīng)過輻射定標(biāo)、大氣校正和影像裁剪,并結(jié)合Landsat8影像進(jìn)行幾何校正等預(yù)處理。環(huán)境星影像輻射定標(biāo)公式如下:
式中L為輻射亮度,β為絕對(duì)定標(biāo)系數(shù)增益,L0為偏移量,DN為遙感影像像元亮度值。
輻射定標(biāo)系數(shù)來源于中國(guó)資源衛(wèi)星應(yīng)用中心,之后完成相應(yīng)傳感器的波普響應(yīng)函數(shù)待用,并采用 ENVI5.1軟件中FLAASH模塊完成影像的大氣校正,最后對(duì)校正后圖像進(jìn)行裁剪獲取研究區(qū)影像。
預(yù)處理完成后,根據(jù)研究區(qū)的作物類型利用NDVI、數(shù)字高程模型(digital elevation model,DEM)、近紅外反射率數(shù)據(jù),并結(jié)合 ENVI5.1監(jiān)督分類中的最大似然分類提取冬小麥的種植區(qū)域[1]。
利用環(huán)境星影像數(shù)據(jù)選取對(duì)小麥白粉病較敏感的 7個(gè)寬波段植被指數(shù)[5](表2)和紅、綠、藍(lán)和近紅外4個(gè)波段反射率數(shù)據(jù),以及采用單通道算法反演得到的 LST數(shù)據(jù)[20-21]作為白粉病監(jiān)測(cè)模型的初選特征。
表2 寬波段植被指數(shù)Table 2 Wide-band vegetation index
1.4 建模特征選擇
在模型構(gòu)建時(shí)選擇最能反映病害發(fā)生發(fā)展?fàn)顩r的特征變量可以有效提高模型的準(zhǔn)確度。本文在建模特征選擇時(shí)主要包括2個(gè)部分內(nèi)容。首先是針對(duì)提取的12個(gè)植被指數(shù)特征數(shù)據(jù)進(jìn)行特征優(yōu)選,得出最佳特征組合,并用于模型構(gòu)建。其次,為了進(jìn)一步凸顯健康小麥與病害小麥的區(qū)別,將篩選出的特征變量進(jìn)行小波變換,得到一組反映指數(shù)特征某種局部細(xì)節(jié)的小波特征集,同時(shí)對(duì)其進(jìn)行二次篩選得到一組最佳小波特征作為監(jiān)測(cè)模型的輸入變量,具體的實(shí)現(xiàn)過程如下。
1.4.1 寬波段植被指數(shù)篩選
Relief算法是一種特征權(quán)重算法,通過計(jì)算特征與類別間的相關(guān)性賦予特征不同的權(quán)重,但是Relief算法不能識(shí)別類別間的冗余以及特征間的相互負(fù)作用,聚類分析可以得到不同特征對(duì)樣本的聚類精度,可根據(jù)聚類分析的精度來提取最高聚類精度的特征集合,因此研究采用Relief算法[29-30]結(jié)合K-mean算法[31-32]的方法對(duì)植被指數(shù)特征進(jìn)行篩選,得出最佳的特征組合,其中聚類分析通過MATLAB中的K-means函數(shù)實(shí)現(xiàn)。具體的操作過程為根據(jù)Relief算法將特征數(shù)據(jù)按權(quán)重降序排序,將排序后的特征依次組合進(jìn)行聚類分析,具體做法為:①選擇 NDVI進(jìn)行聚類分析;②選擇NDVI、SR進(jìn)行聚類分析;③選擇NDVI、SR、SAVI進(jìn)行聚類分析,按照特征權(quán)重排序依次類推。將取得的聚類精度最大的特征集合用于建模分析。表3列舉出了各個(gè)特征的Relief特征權(quán)重、K-mean獨(dú)個(gè)特征聚類精度及特征組合聚類精度,由第三行數(shù)據(jù)可知在組合到 SAVI時(shí)精度開始下降,在 LST時(shí)有上升。選擇NDVI、SR和LST再次進(jìn)行聚類分析,精度為0.7451,選擇NDVI和LST與SR和LST分別進(jìn)行聚類分析,精度均為0.6078。最終選擇NDVI、SR和LST用于模型的構(gòu)建。
1.4.2 Gabor小波變換及小波特征篩選
盡管寬波段植被指數(shù)可以表達(dá)出小麥白粉病的相關(guān)特征,但由于寬波段植被指數(shù)本身的特點(diǎn),運(yùn)用的波段范圍較大,存有誤差,因此有必要對(duì)其細(xì)節(jié)信息進(jìn)行進(jìn)一步的濾波提取。小波變換可以實(shí)現(xiàn)對(duì)數(shù)據(jù)的濾波、去噪等優(yōu)化。張競(jìng)成[6]在對(duì)小麥白粉病葉片光譜特征的研究中發(fā)現(xiàn)小波特征與病情嚴(yán)重度有較強(qiáng)的相關(guān)性,因此小波特征在區(qū)域尺度白粉病識(shí)別上可以嘗試?yán)?。小波變換具有多分辨率特性,采用多通道濾波,每個(gè)通道都可以得到數(shù)據(jù)的某種局部細(xì)節(jié)特征,突出數(shù)據(jù)的敏感信息,故而在某種程度上優(yōu)化了對(duì)光譜信息的利用。將篩選得到的NDVI、SR和LST進(jìn)行小波變換,并從變換得到的小波特征集中篩選出對(duì)有無小麥白粉病區(qū)別最大的小波特征,將其用于小麥白粉病的分類識(shí)別以提高識(shí)別精度。
表3 各個(gè)特征的Relief特征權(quán)重、K-mean聚類精度、特征組合精度Table 3 Feature weights by Relief, clustering precision by K-mean and precision by combined features
Gabor小波能同時(shí)對(duì)時(shí)間和頻率進(jìn)行局部分析,這使得對(duì)平穩(wěn)信號(hào)的分析更加容易,對(duì) Gabor利用傅立葉展開,就是利用時(shí)間和頻率同時(shí)定義一個(gè)時(shí)間函數(shù)的方法,而Gabor小波變換就是求解Gabor的展開系數(shù)[33]。本研究采用高斯核函數(shù)作為母小波構(gòu)建小波核函數(shù)將植被指數(shù)特征與小波核函數(shù)進(jìn)行卷積運(yùn)算,卷積后的幅值作為建模特征信息,在農(nóng)業(yè)應(yīng)用方面通常采用高斯函數(shù)作為母小波函數(shù)構(gòu)建小波核函數(shù)[34]:
式中(,)g x y為高斯調(diào)制函數(shù),xσ和yσ為其在(,)x y2個(gè)坐標(biāo)軸上的標(biāo)準(zhǔn)差, (,)h x y為小波函數(shù),W為復(fù)正弦函數(shù)在橫軸上的頻率, ( )H u,v為小波函數(shù)的傅立葉變換形式,u為頻域中的自變量頻率,v為對(duì)應(yīng)頻率信號(hào)的幅度值,uσ和vσ為其在()u,v2個(gè)坐標(biāo)軸上的標(biāo)準(zhǔn)差。
式中(h*I)表示濾波器h與數(shù)據(jù)I的卷積,hR表示濾波器h的實(shí)部,hI表示濾波器h的虛部,S(x,y)即為經(jīng)過Gabor濾波器得到的特征。以h(x,y)為母小波,對(duì)其進(jìn)行尺度和旋轉(zhuǎn)變換,可以得到一組自相似的濾波器:
本試驗(yàn)中t=5,K=8,α=。
因此,研究共構(gòu)建5個(gè)尺度8個(gè)方向共40個(gè)小波核函數(shù),使得小波變換后的數(shù)據(jù)量擴(kuò)大為原來的40倍。為了找到最佳分類的小波特征,同時(shí)去除特征維數(shù)過多對(duì)模型運(yùn)算效率的影響[35],對(duì)小波特征進(jìn)行了進(jìn)一步篩選。研究采用獨(dú)立樣本T檢驗(yàn)的方式對(duì)小波特征進(jìn)行篩選處理[10,33,36]。
經(jīng)過獨(dú)立樣本T檢驗(yàn)選擇對(duì)有無病害具有顯著性差異(P<0.001)且T統(tǒng)計(jì)的相伴概率最小的小波特征構(gòu)建監(jiān)測(cè)模型,并得到其對(duì)應(yīng)的小波核函數(shù)。
m、n及對(duì)應(yīng)的尺度因子和旋轉(zhuǎn)角度如表4所示。
表4 最佳小波函數(shù)的參數(shù)Table 4 Parameters of optimal wavelet function
1.5 模型構(gòu)建
支持向量機(jī)是基于統(tǒng)計(jì)學(xué)習(xí)理論的一種機(jī)器學(xué)習(xí)方法,它的核心思想是結(jié)構(gòu)風(fēng)險(xiǎn)最小化,通過核函數(shù)把輸入線性不可分的數(shù)據(jù)映射到高維空間,構(gòu)造超平面,使得不同樣本之間的類間隔最大,類內(nèi)間隔最小,它具有結(jié)構(gòu)簡(jiǎn)單、適應(yīng)性強(qiáng)、全局最優(yōu)等特點(diǎn),能較好的解決高維特征、非線性、過學(xué)習(xí)與不確定性等問題,廣泛應(yīng)用于遙感影像分類中[37]。該模型的判別函數(shù)為
式中ai為 Lagrange乘子,SV為支持向量,xi、yi為 2類中的支持向量,b為閾值,其中k(xi,x)為滿足Mercer定理的正定核函數(shù)[37-40]。
本研究基于SVM算法共建立3個(gè)模型,第一個(gè)模型利用全部的12個(gè)植被指數(shù)結(jié)合SVM算法建立對(duì)照試驗(yàn),第二個(gè)模型對(duì)12個(gè)植被指數(shù)進(jìn)行指數(shù)篩選,用得到3個(gè)植被指數(shù)結(jié)合SVM算法建立模型,第三個(gè)模型在第二個(gè)模型的基礎(chǔ)上對(duì)3個(gè)植被指數(shù)進(jìn)行Gabor小波變換,再對(duì)得到的小波特征進(jìn)行篩選,用得到的小波特征結(jié)合SVM建立模型(GaborSVM),利用Gabor小波變換在敏感特征提取方面的優(yōu)勢(shì)和支持向量機(jī)在小樣本分類中的優(yōu)勢(shì)以提高監(jiān)測(cè)模型的精度和效率。
本試驗(yàn)共獲得40個(gè)發(fā)生白粉病的調(diào)查點(diǎn)數(shù)據(jù),調(diào)查時(shí)將其分為0(無病害)、1(輕度)、2(中度)、3(重度)、4(特重)共5個(gè)等級(jí)。由于無病害與輕度較難區(qū)分,故將以上 5類樣本分為健康(無病害、輕度)和病害(中度、重度和特重)2類。其中25個(gè)為訓(xùn)練樣本構(gòu)建模型,15個(gè)為測(cè)試樣本用于模型的驗(yàn)證。
2.1 研究區(qū)小麥白粉病監(jiān)測(cè)
利用2014年5月29日的影像數(shù)據(jù),以單個(gè)像元為單位,利用Relief算法與K-mean聚類相結(jié)合的方式篩選出3個(gè)特征指數(shù)NDVI、LST和SR,分別利用SVM模型及GaborSVM模型得到2014年5月29日的小麥白粉病發(fā)生分布情況如圖3所示,圖3a為將全部12個(gè)植被指數(shù)運(yùn)用SVM模型預(yù)測(cè)結(jié)果,圖3b為經(jīng)過特征篩選后采用NDVI、LST、SR的SVM監(jiān)測(cè)結(jié)果,圖3c為分別對(duì)NDVI、LST、SR小波變換后,利用經(jīng)過獨(dú)立樣本T檢驗(yàn)得到的最優(yōu)小波特征進(jìn)行SVM的監(jiān)測(cè)結(jié)果。從圖3中可以看出3種監(jiān)測(cè)模型的白粉病發(fā)生情況的總體空間分布相似,東部發(fā)病情況較西部嚴(yán)重。而發(fā)病面積占總種植面積的百分比圖3a為49%、圖3b為45%和圖3c為38%。圖3a與其余2幅圖相比,白粉病的發(fā)生情況較為零散。圖3b與圖3c大體相同,呈現(xiàn)整塊的區(qū)域分布,僅在某些細(xì)小部位存在區(qū)別:在圖3b中處于健康區(qū)域內(nèi)的小塊病害區(qū)域,在圖3c中部分被分為健康區(qū)域。而小麥白粉病是由布氏白粉菌引起的,具有繁殖快,傳播面廣的特點(diǎn)[41]。因此,在小麥灌漿期白粉病零散發(fā)生的概率較低。由此可以間接得出SVM結(jié)合特征篩選模型與GaborSVM結(jié)合特征篩選模型的可信度高于SVM未經(jīng)特征篩選模型并且GaborSVM結(jié)合特征篩選模型相較于SVM結(jié)合特征篩選模型有了一定的改善。
從整體上看 3個(gè)模型的空間分布相類似,為了進(jìn)一步觀察監(jiān)測(cè)結(jié)果,可以從局部圖中查看。圖 4為小麥白粉病在調(diào)查點(diǎn)區(qū)域的監(jiān)測(cè)結(jié)果圖。1號(hào)、2號(hào)區(qū)域?qū)嶋H調(diào)查結(jié)果均為健康區(qū)域。圖4a在利用SVM建模在1號(hào)區(qū)域中得到的監(jiān)測(cè)結(jié)果為染病,在 2號(hào)區(qū)域中的到的監(jiān)測(cè)結(jié)果為染病病區(qū)域大于健康區(qū)域;圖4b在特征篩選后利用SVM建模在1號(hào)區(qū)域中得到的監(jiān)測(cè)結(jié)果為健康,在2號(hào)區(qū)域中的到的監(jiān)測(cè)結(jié)果為染病;圖4c利用GaborSVM建模在1號(hào)區(qū)域與2號(hào)區(qū)域中得到的監(jiān)測(cè)結(jié)果均為健康。GaborSVM模型的監(jiān)測(cè)結(jié)果與實(shí)際調(diào)查結(jié)果最相似,在局部圖中4a中小麥白粉病分布零散,而圖4b、c中小麥白粉病分布較集中,這與總體分析結(jié)果相一致。因此GaborSVM模型可適用于小麥白粉病監(jiān)測(cè)。
圖3 小麥白粉病監(jiān)測(cè)結(jié)果空間分布圖Fig.3 Monitoring spatial map of wheat powdery mildew
圖4 小麥白粉病監(jiān)測(cè)結(jié)果空間局部分布圖Fig.4 Monitoring spatial local map of wheat powdery mildew
2.2 模型的評(píng)估與驗(yàn)證
采用獨(dú)立的樣本數(shù)據(jù)對(duì)模型進(jìn)行驗(yàn)證能夠更好地體現(xiàn)實(shí)際模型的精度[12]。本試驗(yàn)采用2014年5月27、28日的白粉病的地面調(diào)查點(diǎn)數(shù)據(jù)對(duì)模型監(jiān)測(cè)結(jié)果進(jìn)行評(píng)價(jià)。表5中列出了SVM模型與GaborSVM結(jié)合Relief算法與K-mean聚類的用戶精度、總體精度和Kappa系數(shù)。從結(jié)果中可以看出3組試驗(yàn)都獲得了較好的試驗(yàn)結(jié)果。
從總體精度上看,SVM 模型的總體精度低于GaborSVM模型,說明Gabor小波特征相較于原始植被指數(shù)特征對(duì)病害的識(shí)別率較高,GaborSVM 模型的 Kappa系數(shù)也達(dá)到0.583,高于2個(gè)SVM模型的0.286和0.444。并且在2個(gè)SVM模型中,通過特征篩選的SVM模型精度高于未進(jìn)行特征篩選的SVM模型,可以推測(cè)是由于去除了冗余特征及負(fù)相關(guān)特征所致。從用戶精度來看,3組模型中病害的用戶精度分別為 50%、83.3%、91.7%,表明3個(gè)模型對(duì)病害的識(shí)別精度在不斷提高,GaborSVM的用戶精度達(dá)到91.7%,表明此模型能較為準(zhǔn)確的識(shí)別病害樣本。以上結(jié)果表明,小波特征能提高監(jiān)測(cè)模型對(duì)健康與病害的區(qū)分精度,且特征篩選有助于提高模型精度。
表5 總體驗(yàn)證結(jié)果Table 5 Overall verification results
1)特征篩選結(jié)合SVM模型比SVM模型總體精度從60%提高到80%,說明去除特征間的冗余性確實(shí)可以提高模型精度與效率;GaborSVM模型的總體精度達(dá)到86.7%,此模型與特征篩選結(jié)合SVM模型相比總體精度從80%提高到86.7%,說明小波變換應(yīng)用于植被指數(shù)可以提高小麥白粉病的監(jiān)測(cè)精度。
2)GaborSVM模型的Kappa系數(shù)為0.583為SVM模型0.286的1倍多,GaborSVM模型的Kappa系數(shù)與特征篩選結(jié)合SVM模型相比也有明顯提高,說明GaborSVM模型的一致性有了明顯的提高,在實(shí)際應(yīng)用中更為可靠。此實(shí)驗(yàn)結(jié)果滿足農(nóng)業(yè)部門對(duì)小麥白粉病發(fā)生及時(shí)監(jiān)測(cè)的需求,可指導(dǎo)其及時(shí)制定相關(guān)的應(yīng)對(duì)治理措施,減少產(chǎn)量損失,提高經(jīng)濟(jì)效益。
訓(xùn)練樣本的質(zhì)量和數(shù)量會(huì)影響模型的精度,本研究開展時(shí)由于成本限制,地域限制,采樣量不足,僅獲取了河北石家莊的小部分區(qū)域的數(shù)據(jù),因此模型的通用性有待進(jìn)一步驗(yàn)證。初步選取的植被特征指數(shù)不完整,可選擇更多敏感指數(shù)進(jìn)行試驗(yàn),以提高試驗(yàn)精度。選用的因子均來自遙感數(shù)據(jù),未選用其他影響病害發(fā)生發(fā)展的氣象因子、農(nóng)田管理信息等,這一方面降低了數(shù)據(jù)獲取難度,但另一方面可能會(huì)影響模型的精度,在今后的研究中可以融合更多數(shù)據(jù),對(duì)比分析試驗(yàn),找到既易獲取、易處理又能提高精度的數(shù)據(jù)來構(gòu)建監(jiān)測(cè)模型。研究在建立監(jiān)測(cè)模型時(shí)使用了 GaborSVM 算法,一方面由于GaborSVM模型的測(cè)試地點(diǎn)處于平原區(qū)域,在復(fù)雜地形的情況下仍需進(jìn)一步測(cè)試,模型的可移植性仍需驗(yàn)證。另一方面 Gabor特征在建模前需對(duì)其進(jìn)行進(jìn)一步篩選,而篩選算法可以有進(jìn)一步改進(jìn)測(cè)試,以得到更多有效特征,提高識(shí)別精度和數(shù)據(jù)處理效率。
[1] 馬慧琴,黃文江,景元書.遙感與氣象數(shù)據(jù)結(jié)合預(yù)測(cè)小麥灌漿期白粉病[J].農(nóng)業(yè)工程學(xué)報(bào),2016,32(9):165-172.Ma Huiqin, Huang Wenjiang, Jing Yuanshu. Wheat powdery mildew forecasting in filling stage based on remote sensing and meteorological data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 165-172. (in Chinese with English abstract)
[2] Sankaran S, Mishra A, Ehsani R, et al. A review of advanced techniques for detecting plant diseases[J]. Computers and Electronics in Agriculture, 2010, 72(1): 1-13.
[3] Huang W, Lamb D W, Niu Z, et al. Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging[J]. Precision Agriculture,2007, 8(4/5): 187-197.
[4] Devadas R, Lamb D W, Simpfendorfer S, et al. Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves[J]. Precision Agriculture, 2009, 10(6):459-470.
[5] Luo Juhua, Zhao Chunjiang, Huang Wenjiang, et al.Discriminating wheat aphid damage degree using 2-dimensional feature space derived from landsat 5 TM[J]. Sensor Letters,2012, 10(1/2): 608-614.
[6] 張競(jìng)成.多源遙感數(shù)據(jù)小麥病害信息提取方法研究[D].杭州:浙江大學(xué),2012.Zhang Jingcheng. Methods for Information Extraction of Wheat Disease Based on Multi-source Remote Sensing Data[D]. Hangzhou: Zhejiang University, 2012. (in Chinese with English abstract)
[7] Zhang Jingcheng, Pu Ruiliang, Wang Jihua, et al. Detecting powdery mildew of winter wheat using leaf level hyperspectral measurements[J]. Computers and Electronics in Agriculture,2012, 85: 13-23.
[8] Zhang Jingcheng, Pu Ruiliang, Yuan Lin, et al. Monitoring powdery mildew of winter wheat by using moderate resolution multi-temporal satellite imagery[J]. PloS one, 2014, 9(4):e93107.
[9] 崔海濱,楊柯,張龍,等.基于Gabor變換的TDLAS檢測(cè)信號(hào)的降噪研究[J].光譜學(xué)與光譜分析,2016,36(9):2997-3002.Cui Haibing, Yang Ke, Zhang Long, et al. Tunable diode laser absorption spectroscopy (TDLAS) detection signal denoising based on gabor transform[J]. Spectroscopy and Spectral Analysis, 2016, 36(9): 2997-3002. (in Chinese with English abstract)
[10] 魯軍景,黃文江,張競(jìng)成,等.基于小波特征的小麥白粉病與條銹病的定量識(shí)別[J].光譜學(xué)與光譜分析,2016,36(6):1854-1858.Lu Junjing, Huang Wenjiang, Zhang Jingcheng, et al.Quantitative identification of yellow rust and powdery mildew in winter wheat based on wavelet feature[J].Spectroscopy and Spectral Analysis, 2016, 36(6): 1854-1858. (in Chinese with English abstract)
[11] Chen Y P, Peng Z M, He Z H, et al. The optimal fractional Gabor transform based on the adaptive window function and its application[J]. Applied Geophysics, 2013, 10(3): 305-313.
[12] 印勇,史金玉,劉丹平.基于 Gabor 小波的人臉表情識(shí)別[J].光電工程,2009,36(5): 111-116.Ying yong, Shi Jingyu, Liu Danping. Facial expression recognition based on Gabor wavelet transform[J].Photoelectric engineering, 2009, 36(5): 111-116. (in Chinese with English abstract)
[13] 牛連強(qiáng),趙子天,張勝男.基于 Gabor 特征融合與 LBP直方圖的人臉表情特征提取方法[J].沈陽(yáng)工業(yè)大學(xué)學(xué)報(bào),2016,38(1):63-68.Niu Lianqiang, Zhao Zitian, Zhang Shengnan. Extraction method for facial expression features based on Gabor feature fusion and LBP hiatogram[J]. Journal of Shenyang University of Technology, 2016, 38(1): 63-68. (in Chinese with English abstract)
[14] 王道明,魯昌華,蔣薇薇,等.基于粒子群算法的決策樹SVM 多分類方法研究[J].電子測(cè)量與儀器學(xué)報(bào),2015,29(4):611-615.Wang Daoming, Lu Changhua, Jiang Weiwei, et al. Study on PSO-based decision-tree SVM multi-class classification method[J]. Journal of Electronic Measurement and Instrumentation, 2015, 29(4): 611-615. (in Chinese with English abstract)
[15] 陳中杰,蔡勇,蔣剛.復(fù)高斯小波核函數(shù)的支持向量機(jī)研究[J].計(jì)算機(jī)應(yīng)用研究,2012,29(9):3263-3265.Chen Zhongjie, Cai Yong, Jiang Gang. Study on SVM of complex Gaussian wavelet kernel function[J]. Journal of Computer Applications, 2012, 29(9): 3263-3265. (in Chinese with English abstract)
[16] Wang H G, Ma Z H, Wang T, et al. Application of hyperspectral data to the classification and identification of severity of wheat stripe rust (in Chinese) [J]. Spectroscopy and Spectral Analysis , 2007, 27(9): 1811-1814.
[17] 袁瑩,王偉,褚璇,等.光譜特征波長(zhǎng)的 SPA 選取和基于 SVM 的玉米顆粒霉變程度定性判別[J].光譜學(xué)與光譜分析,2016,36(1):226-230.Yuan Ying, Wang Wei, Chu Xuan, et al. Selection of characteristic wavelengths using SPA and qualitative discrimination of mildew degree of corn kernels based on SVM[J]. Spectroscopy and Spectral Analysis, 2016, 36(1):226-230. (in Chinese with English abstract)
[18] 張錄達(dá),金澤宸,沈曉南,等.SVM 回歸法在近紅外光譜定量分析中的應(yīng)用研究[J].光譜學(xué)與光譜分析,2005,25(9):1400-1403.Zhang Luda, Jin Zechen, Shen Xiaonan, et al. Applied study on support vector machine (SVM) regression method in quantitative analysis with near-infrared spectroscopy[J].Spectroscopy and Spectral Analysis, 2005, 25(9): 1400-1403. (in Chinese with English abstract)
[19] Luo J, Wang D, Dong Y, et al. Developing an aphid damage hyperspectral index for detecting aphid (Hemiptera:Aphididae) damage levels in winter wheat[C]//Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International. Ieee, 2011: 1744-1747.
[20] 徐涵秋.新型 Landsat8 衛(wèi)星影像的反射率和地表溫度反演[J].地球物理學(xué)報(bào),2015,58(3):741-747.Xu Hanqiu. Retrieval of the reflectance and land surface temperature of newly-launched Landsat 8 satellite[J]. Chinese Journal of Geophysics, 2015, 58(3): 741-747. (in Chinese with English abstract)
[21] Jiménez-Mu?oz J C, Sobrino J A. A generalized singlechannel method for retrieving land surface temperature from remote sensing data[J]. Journal of Geophysical Research:Atmospheres, 2003, 108(D22): ACL2.1-ACL2.9.
[22] Verstraete M M, Pinty B, Myneni R B. Potential and limitations of information extraction on the terrestrial biosphere from satellite remote sensing[J]. Remote Sensing of Environment, 1996, 58(2): 201-214.
[23] Chen S F, Goodman J. An empirical study of smoothing techniques for language modeling[C]//Proceedings of the 34th annual meeting on Association for Computational Linguistics. Association for Computational Linguistics, 1996:310-318.
[24] Rouse B T, Wells R J H, Warner N L. Proportion of T and B lymphocytes in lesions of Marek's disease: theoretical implications for pathogenesis[J]. The Journal of Immunology,1973, 110(2): 534-539.
[25] Rondeaux G, Steven M, Baret F. Optimization of soil-adjusted vegetation indices[J]. Remote Sensing of Environment, 1996, 55(2): 95-107.
[26] Roujean J L, Breon F M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements[J].Remote sensing of Environment, 1995, 51(3): 375-384.
[27] Huete A R. A soil-adjusted vegetation index (SAVI) [J].Remote sensing of environment, 1988, 25(3): 295-309.
[28] Person R S, Kudina L P. Discharge frequency and discharge pattern of human motor units during voluntary contraction of muscle[J]. Electroencephalography and Clinical Neurophysiology,1972, 32(5): 471-483.
[29] Kohavi R, John G H. Wrappers for feature subset selection[J].Artificial Intelligence, 1997, 97(1): 273-324.
[30] Kira K, Rendell L A. The feature selection problem:Traditional methods and a new algorithm[C]//AAAI. 1992, 2:129-134.
[31] 孫吉貴,劉杰,趙連宇.聚類算法研究[J].軟件學(xué)報(bào),2008,19(1):48-61.
[32] 王千,王成,馮振元,等.K-means 聚類算法研究綜述[J].電子設(shè)計(jì)工程,2012,20(7):21-24.
[33] 葉超.基于 Gabor 小波和 SVM 的人臉識(shí)別算法研究[D].太原:中北大學(xué),2014.Ye Chao. The Optimization Algorithm of Face Recognition Based on Gabor Wavelets and SVM[D]. Taiyuan: North University of China, 2014. (in Chinese with English abstract)
[34] 魯軍景,黃文江,蔣金豹,等.小波特征與傳統(tǒng)光譜特征估測(cè)冬小麥條銹病病情嚴(yán)重度的對(duì)比研究[J].麥類作物學(xué)報(bào),2015,35(10):1456-1461.Lu Junjing,Huang Wenjiang,Jiang Jinbao, et al. Comparison of wavelet features and conventional spectral features on estimating severity of stripe rust in winter wheat[J]. Journal of Microbiology, 2015, 35(10): 1456-1461. (in Chinese with English abstract)
[35] 張麗新.高維數(shù)據(jù)的特征選擇及基于特征選擇的集成學(xué)習(xí)研究[D].北京:清華大學(xué),2004.Zhang Lixin. Study on Feature Selection and Ensemble Learning Based on Feature Selection for High-Dimensional Datasets[D]. Beijing: Tsinghua University,2004. (in Chinese with English abstract)
[36] 鄧曾,李丹,柯櫻海,等.基于改進(jìn) SVM 算法的高分辨率遙感影像分類[J].國(guó)土資源遙感,2016,28(3):12-18.
[37] 何東健,喬永亮,李攀,等.基于 SVM-DS 多特征融合的雜草識(shí)別[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(2):182-187.He Dongjiang, Qiao Yongliang, Li Pan, et al. Weed recognition based on SVM-DS multi-feature fusion[J].Journal of agricultural machinery, 2013, 44(2): 182-187. (in Chinese with English abstract)
[38] 張學(xué)工.關(guān)于統(tǒng)計(jì)學(xué)習(xí)理論與支持向量機(jī)[J].自動(dòng)化學(xué)報(bào),2000,26(1):32-42.
[39] Huang D Y, Hu W C, Chang S H. Vision-based hand gesture recognition using PCA+ Gabor filters and SVM[C]//Intelligent Information Hiding and Multimedia Signal Processing, 2009. IIH-MSP'09. Fifth International Conference on. IEEE, 2009: 1-4.
[40] Sun Z, Bebis G, Miller R. On-road vehicle detection using Gabor filters and support vector machines[C]//Digital Signal Processing, 2002. DSP 2002. 2002 14th International Conference on. IEEE, 2002, 2: 1019-1022.
[41] 鄭秋紅,楊霏云,朱玉潔.小麥白粉病發(fā)生氣象條件和氣象預(yù)報(bào)研究進(jìn)展[J].中國(guó)農(nóng)業(yè)氣象,2013,34(3):358-365.Zheng Qiuhong, Yang Feiyun, Zhu Yujie. Meteorological factors and its forecast on wheat powdery mildew occurrence in China[J]. Chinese Journal of Agrometeorology, 2013,34(3): 358-365. (in Chinese with English abstract)
Remote sensing monitoring of winter wheat powdery mildew based on wavelet analysis and support vector machine
Huang Linsheng1, Liu Wenjing1,2, Huang Wenjiang1,2※, Zhao Jinling1, Song Furan1,2
(1.Anhui Engineering Laboratory of Agro-Ecological Big Data, Anhui University, Hefei230601,China;2.Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences, Beijing100094,China)
Wheat powdery mildew is one of the main serious diseases for winter wheat. A fast and accurate monitoring of the disease at a regional scale plays a vital role in reducing yield loss. Remote sensing data has great advantages over traditional data in disease monitoring, including simpler operation, more real-time and higher resolution. In this study, Chinese HJ-1A/1B data with high revisit frequency and 30 m spatial resolution was used to inverse Land Surface Temperature (LST), extract four-band reflectance data, and build seven vegetation indices. These indices should be filtrated to improve accuracy of the model due to redundancy of them. Then, we implemented screening features with the combination of Relief andK-mean algorithm. Relief algorithm which can provide the basis for feature evaluation, so features were ranked in descending order judged by feature weights in preparation for the next process. Clustering accuracy obtained byK-mean algorithm. According to the weight of the feature, the features clustered in turn to performK-mean analysis. Then the cluster with the highest precision was picked out, and we finally got the normalized difference vegetation index (NDVI), Simple vegetation index (SR) and surface temperature (LST) as the feature set. Wavelet feature can decompose the data in multi-scale and multi-direction, which can highlight the sensitive factor of vegetation index to a certain extent. Forty wavelet functions were constructed from five scales and eight directions, and made them convolve with features. Because there were too many wavelet features after convolved, the independent T-test samples were used to obtain the most sensitive wavelet feature of disease and the corresponding wavelet kernel function. After this process, three features corresponding to vegetation indices were available.These three wavelet features were used as input variables of the model. Support vector machine is a kind of machine learning method based on statistical learning theory. Its core idea is to minimize the structural risk by mapping the input linear indivisible data to the high dimensional space, which makes the difference between different samples. The class interval is the largest while the intra-class interval is the smallest, then the hyper plane is constructed to classify data. The monitoring model of wheat powdery mildew in Jinzhou City of Hebei Province was established by using support vector machine (SVM) with three groups of features. The first group used twelve vegetation indices as the input variables of the model, which served as a control group. The second one used three features after feature selection and the third used three features of the wavelet transform. Then the monitoring precision of the three models was compared and analyzed. The experimental results showed that the overall accuracy and the kappa coefficient of the third model (called GaborSVM) were 86.7% and 0.583, respectively,performing better over the first model (60%, 0.286) and the second model (80%, 0.444). These results also showed that the combined method of wavelet analysis with SVM (GaborSVM) can be applied to large area disease monitoring based on satellite remote sensing image, and has important application value in improving the accuracy of disease monitoring.
remote sensing; support vector machine; diseases; powdery mildew; wavelet feature
10.11975/j.issn.1002-6819.2017.14.026
TP79
A
1002-6819(2017)-14-0188-08
黃林生,劉文靜,黃文江,趙晉陵,宋富冉. 小波分析與支持向量機(jī)結(jié)合的冬小麥白粉病遙感監(jiān)測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(14):188-195.
10.11975/j.issn.1002-6819.2017.14.026 http://www.tcsae.org
Huang Linsheng, Liu Wenjing, Huang Wenjiang, Zhao Jinling, Song Furan. Remote sensing monitoring of winter wheat powdery mildew based on wavelet analysis and support vector machine[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2017, 33(14): 188-195. (in Chinese with English abstract)
doi:10.11975/j.issn.1002-6819.2017.14.026 http://www.tcsae.org
2017-01-03
2017-07-07
安徽省自然科學(xué)基金(1608085MF139);安徽省科技重大專項(xiàng)(16030701091);中國(guó)科學(xué)院國(guó)際合作局對(duì)外合作重點(diǎn)項(xiàng)目(131211KYSB20150034);國(guó)家自然科學(xué)基金國(guó)際合作項(xiàng)目(61661136004);國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0300702)
黃林生,博士,副教授,研究方向?yàn)檗r(nóng)業(yè)遙感技術(shù)與應(yīng)用。合肥安徽大學(xué)安徽省農(nóng)業(yè)生態(tài)大數(shù)據(jù)工程實(shí)驗(yàn)室,230601。
Email:linsheng0808@163.com
※通信作者:黃文江,博士,研究員,博士生導(dǎo)師。研究方向?yàn)橹脖欢窟b感。北京 中國(guó)科學(xué)院遙感與數(shù)字地球研究所,100094。
Email:huangwj@radi.ac.cn