龔雪文,劉 浩,劉東鑫,王灣灣,孫景生※
(1. 中國農(nóng)業(yè)科學院農(nóng)田灌溉研究所/農(nóng)業(yè)部作物需水與調(diào)控重點開放實驗室,新鄉(xiāng) 453003;2. 中國農(nóng)業(yè)科學院研究生院,北京 100081;3. 華北水利水電大學水利學院,鄭州 450000)
基于模糊算法的溫室番茄調(diào)虧滴灌制度綜合評判
龔雪文1,2,3,劉 浩1,劉東鑫3,王灣灣1,孫景生1※
(1. 中國農(nóng)業(yè)科學院農(nóng)田灌溉研究所/農(nóng)業(yè)部作物需水與調(diào)控重點開放實驗室,新鄉(xiāng) 453003;2. 中國農(nóng)業(yè)科學院研究生院,北京 100081;3. 華北水利水電大學水利學院,鄭州 450000)
該文研究利用改進的模糊綜合評判模型在溫室滴灌番茄生長、產(chǎn)量、品質(zhì)和耗水進行綜合評判的可行性。于2015和2016年在中國農(nóng)業(yè)科學院新鄉(xiāng)綜合試驗基地的日光溫室內(nèi),以滴灌番茄為研究對象,參考20 cm標準蒸發(fā)皿的累積蒸發(fā)量,分別在開花坐果期和成熟采摘期進行充分灌溉、輕度虧缺和中度虧缺,采用改進的模糊綜合評判模型,對調(diào)虧灌溉制度溫室番茄的生長指標、產(chǎn)量指標、耗水指標和品質(zhì)指標進行綜合評價。結(jié)果表明:不考慮階段水分虧缺條件下,番茄的生長指標、產(chǎn)量指標和蒸發(fā)蒸騰量指標均隨灌水量的增大而增大,品質(zhì)指標則相反。輕度虧缺對番茄品質(zhì)指標的影響較小(兩者的品質(zhì)綜合評判指數(shù)為0.135和0.138,0.125和0.124),采摘期輕度虧缺的生長指標和產(chǎn)量指標的綜合評判指數(shù)高于花果期輕度虧缺處理,且全生育期蒸發(fā)蒸騰量較低;花果期中度虧缺的產(chǎn)量指標和品質(zhì)指標的綜合評判指數(shù)與采摘期中度虧缺相近,但前者的總蒸發(fā)蒸騰量低于后者。因此,推薦水資源充足地區(qū)可采用在成熟采摘期輕度虧缺的灌溉模式,而水資源短缺地區(qū)采用在開花坐果期中度虧缺的灌溉模式。研究可為溫室調(diào)虧滴灌制度的優(yōu)化提供參考。關(guān)鍵詞:溫室;土壤含水率;蒸發(fā)蒸騰量;模糊算法;調(diào)虧灌溉;專家預測法
模糊算法于1965年由美國自動控制論專家扎德教授提出,后經(jīng)發(fā)展,已有多個子模塊,如模糊綜合決策、模糊聚類分析、模糊模式識別以及模糊控制等。模糊綜合評判屬于模糊綜合決策的一種,即對多因素影響的既定目標做出全面而有效的評比和判定。模糊算法在農(nóng)業(yè)水資源領(lǐng)域的應用主要集中在灌溉系統(tǒng)設計[1-2]、水污染評價[3-4]、農(nóng)業(yè)土地資源評價[5-6]以及溫室環(huán)境控制[7-8]等,汪順生等[9]采用模糊綜合評判法對不同溝灌方式夏玉米耗水特性及產(chǎn)量進行了評價,評判結(jié)果與大田試驗結(jié)果具有較好的一致性;張伶鳦等[10]結(jié)合模糊控制與調(diào)虧理論設計了寒地水稻智能灌溉策略,該策略可提高水分利用效率的20.5%??梢姡:惴ú粌H可用來評價灌水制度,而且與灌水理論相結(jié)合有助于制定合理的灌溉策略,在農(nóng)業(yè)生產(chǎn)實踐方面的應用具有較大發(fā)展空間。
調(diào)虧灌溉(regulated deficit irrigation,RDI)是一種高效節(jié)水灌溉制度,通過在作物特定生長階段施加一定的水分脅迫,迫使光合產(chǎn)物向人們所需要的組織器官分配,且恢復正常灌水后仍可保證作物的正常生長,從而實現(xiàn)增產(chǎn)優(yōu)質(zhì)的效果[11]。RDI的增產(chǎn)機理是針對作物不同組織器官對水分的感知程度,進行合理調(diào)控[12]。溫室合理的RDI制度不僅能提高果實的產(chǎn)量改善品質(zhì),而且能有效減少耗水量,實現(xiàn)水資源的最大化利用[13]。對于溫室梨棗樹,在果實成熟期進行水分虧缺(灌水定額為充分供水的1/2,土壤含水率為90%的田間持水率為充分供水)可顯著改善棗的品質(zhì),提高水分利用效率[14-15];劉煉紅等[16]利用灌溉頻率控制調(diào)虧灌溉水量,認為溫室滴灌西瓜在苗期、開花坐果期、果實膨大期和成熟期的灌水頻率依次為4、2、4和6 d時可提高坐果率,減少耗水量。大量研究表明,調(diào)虧灌溉在溫室番茄作物節(jié)水、改善品質(zhì)方面效果顯著[17-20]。目前評價調(diào)虧灌溉制度性能的研究多以產(chǎn)量、品質(zhì)和水分利用率等實測數(shù)據(jù)作為評價依據(jù),而應用數(shù)學模型評價灌溉制度的研究卻比較少見,尤其對于溫室栽培模式。為此,本文采用改進的模糊綜合評判模型,對溫室滴灌番茄的生長指標、產(chǎn)量指標、品質(zhì)指標和耗水指標進行了綜合評判,同時分析了各項指標對調(diào)虧灌溉制度的響應,旨在為溫室滴灌番茄調(diào)虧灌溉制度的優(yōu)化提供借鑒。
1.1 試驗區(qū)概況
本試驗于2015和2016年的3—6月在中國農(nóng)業(yè)科學院新鄉(xiāng)綜合試驗基地的日光溫室內(nèi)進行,該試驗站位于新鄉(xiāng)縣七里營鎮(zhèn)(35°9′N,113°5′E,海拔 78.7 m),多年平均降水量為540 mm,蒸發(fā)量在1 910 mm左右,全年平均氣溫為14.5 ℃,年日照時數(shù)2 395 h,無霜期200 d。試驗所用日光溫室坐北朝南,占地510 m2(60 m×8.5 m),下沉0.5 m,溫室采用鋼架結(jié)構(gòu)建造,覆蓋無滴聚乙烯薄膜。日光溫室后墻和山墻內(nèi)鑲嵌有60 cm厚的保溫材料,頂部用5 cm厚的保溫棉被覆蓋,以確保溫室內(nèi)平均溫度控制在20 ℃以上。本試驗采用的小區(qū)0~80 cm土壤質(zhì)地為壤土,每20 cm為一層,土壤剖面容重依次為1.47、1.44、1.52和1.54 g/cm3,田間持水率依次為0.31、0.28、0.32和0.38 cm3/cm3,80~100 cm為砂壤土,容重和田間持水率分別為1.46 g/cm3和0.33 cm3/cm3。
1.2 試驗設計
試驗品種選用“金頂新星”,分別于2015年1月5日和2016年1月6日育苗,2015年3月8日和2016年3月9日移栽。供水方式采用滴灌(滴頭間距為33 cm, 滴頭流量為1.1 L/h),1帶2行布置,滴頭與植株對應,采用精度為0.001 m3的水表控制各小區(qū)的灌水量。參考20 cm標準蒸發(fā)皿的累計蒸發(fā)量(Ep)控制灌水量和灌水時間,當Ep達到(20±2) mm時開始灌水。灌水制度參考劉浩[21]對日光溫室滴灌番茄的研究結(jié)論制定,即分別在開花坐果期和成熟采摘期設計充分灌溉(0.9Ep)、輕度虧缺(0.7Ep)和中度虧缺(0.5Ep)3種調(diào)虧水平。由于幼苗期需進行蹲苗,因此苗期不做水分處理,各試驗處理和全生育期灌水量如表1所示。試驗小區(qū)單畦長8.0 m,寬1.1 m,采用雙行種植模式,行距45 cm,株距33 cm。每個處理4次重復,單畦定植50株,種植密度為5.7株/m2,試驗小區(qū)采用完全隨機區(qū)組排列。各小區(qū)之間埋設60 cm深的塑料薄膜,防止水分側(cè)滲。幼苗移栽后,為確保成活率并加強其長勢,所有小區(qū)均以滴灌方式灌水20 mm,進入開花坐果期之前不再灌水。各處理施肥情況一致,移栽前施干雞糞(20 t/hm2)、三元復合肥(675 kg/hm2)、尿素(225 kg/hm2)作為底肥,番茄進入坐果期后隨滴灌追施沃夫特水溶肥,單次追肥量為 75 kg/hm2,共追肥6次。
表1 日光溫室滴灌番茄水分處理設計Table 1 Water treatment design of drip irrigation for tomato in solar greenhouse
1.3 試驗觀測項目
1.3.1 氣象數(shù)據(jù)
日光溫室中部安裝有一套自動氣象監(jiān)測系統(tǒng),該系統(tǒng)包括凈輻射(NR LITE2, Kipp & Zonen, Delft,Netherlands)、總輻射(LI200X, Campbell Scientific Inc.,USA)、溫濕度(CS215, Campbell Scientific Inc., USA)和風速傳感器(Wind Sonic, Gill, UK)。所有氣象數(shù)據(jù)每隔30 min由CR1000數(shù)據(jù)采集器(Campbell Scientific Inc.,USA)自動記錄。采用20 cm ADM7標準蒸發(fā)皿(直徑20 cm,深11 cm)測定水面蒸發(fā)量,于每日7:30—8:00之間完成測量,蒸發(fā)皿置于冠層上方30 cm處,并隨冠層高度進行調(diào)整,每次測量后更換蒸發(fā)皿中的蒸餾水,并重新添加到20 mm水位處。
1.3.2 耗水指標
耗水指標包括階段蒸發(fā)蒸騰量(evapotranspiration,ET)和蒸發(fā)蒸騰水分生產(chǎn)率(water production efficiency,WUE)。采用TRIME-IPH時域反射儀(micromodultechnik GmbH, Germany)測定0~100 cm土層含水率,為確保儀器測定的準確性,定期采用取土烘干法對儀器進行矯正。滴灌為局部灌溉,采用劉浩[21]推薦的最能反應根區(qū)土壤水分狀況的位置進行測量,即同一滴灌帶的 2個滴頭中間位置。由于幼苗期到開花坐果期不做水分處理,這期間含水率每隔7~10 d測量1次,之后每7 d定期測量。采用水量平衡法[22]計算各處理的ET,
式中ET為蒸發(fā)蒸騰量(mm);Pr為降雨量(mm);Ir為灌水量(mm);U為地下水補給量(mm);D為深層滲漏量(mm);W0、Wt分別為時段初和時段末100 cm土層內(nèi)的儲水量(mm)。本試驗中,溫室內(nèi)部無降雨,Pr=0;由于試驗區(qū)地下水位在5.0 m以下,作物無法吸收利用,可忽略地下水補給量,U= 0;滴灌水量較小,不產(chǎn)生無深層滲漏,D= 0。
WUE為番茄產(chǎn)量與總蒸發(fā)蒸騰量的比值[23],%。
1.3.3 生長指標
生長指標包括番茄株高和葉面積指數(shù)(leaf area index,LAI)。株高采用直尺測量,每個重復固定5棵長勢均勻的植株,每個處理測量20株,每隔7~10 d測定子葉到冠層頂部位置的高度,取20棵的平均值作為該處理的平均株高。LAI采用折減系數(shù)法進行計算,具體方法見文獻[24],每個重復固定3棵長勢均勻的植株,每個處理測量12株,取12棵的平均值作為該處理的平均LAI。
1.3.4 產(chǎn)量指標
產(chǎn)量指標包括番茄的總產(chǎn)量和平均單果質(zhì)量。為確保測量的準確性,每個重復在畦田中間位置固定20株,每個處理共測量80株,采用精度為5 g的電子稱單獨測產(chǎn),平均單果質(zhì)量為總產(chǎn)量與番茄總個數(shù)的比值。
1.3.5 品質(zhì)指標
品質(zhì)指標包括維生素C(vitamin C, VC)、可滴定酸(titration acid, TA)、可溶性糖(soluble sugar, SS)和糖酸比(SS/TA)。每個重復測量 3顆同一天開花坐果的番茄,即每個處理測量 9個番茄的品質(zhì)??傻味ㄋ岵捎脷溲趸c溶液滴定,以酚酞酒精溶液為指示劑;可溶性糖含量采用蒽酮比色法測定;VC采用2,6-二氯酚靛酚滴定法測定[25]。
1.4 模糊綜合評判方法
對一個事件或事物的評價,不僅要考慮單因素的評價結(jié)果,更多的是對多指標或多因素指標的評價,這就需要根據(jù)限定因素或指標,對評價對象做一個涵蓋多因素的綜合評價,即綜合評判。在模糊數(shù)學思想中,綜合評判是對多個因素影響的事件做出全面的評價結(jié)果,具體步驟如下[26]:
1.4.1 建立評判因素集
根據(jù)影響番茄生長、產(chǎn)量、品質(zhì)和耗水指標的主要因素,組成因素集U={u1,u2,u3,…,un},然后根據(jù)實際情況,確定生長指標、產(chǎn)量指標、品質(zhì)指標和耗水指標各自的因素集。
1.4.2 建立評判集
根據(jù)被評判的指標因素,確立相應的評判集。如果被評判的因素u有v1,v2,v3,…,vm種評判(m為有限值),則可確定評判集V={v1,v2,v3,…,vm},其中每種評判對應一個模糊子集[9]。
1.4.3 單因素評判
根據(jù)評判因素集合評判集,可以建立U→V的模糊映射f:
式中i=1, 2,…,n;j=1, 2,…,m; 0≤rij≤1,rij表示某個被評判因素ui對評判vj的隸屬度,模糊矩陣R為單因素評判矩陣,如下:
進行模糊綜合評判時,需統(tǒng)一被評價數(shù)據(jù)的單位,對于單位不同的數(shù)據(jù),根據(jù)模糊數(shù)學中的平移標準差變換方法對數(shù)據(jù)進行標準化處理,可根據(jù)下式進行標準化處理:
式中c為試驗實測數(shù)據(jù)。
1.4.4 確定被評判因素的模糊權(quán)重
一般情況下,被評價的n個u1,u2,u3,…,un重要程度是不同的,且各因素對總體的影響也不一樣,因此需要確定每個評判因素對總體的影響程度,本文采用專家預測法確定模糊權(quán)重,即權(quán)重A= (a1,a2,…,an)[27]。
1.4.5 模糊綜合評判模型的改進
一般在模糊綜合評判決策中,采用 max-min合成運算,即用模型M(∧,∨)計算B=A·R,其中
模糊綜合評判模型的改進形式M(·, +)采用加權(quán)平均模型得到綜合評判結(jié)果[26],即
式中B是模糊評判指數(shù)。改進的加權(quán)平均模型對所有因素依權(quán)重大小均衡兼顧,適用于考慮各因素起作用的情況。
2.1 對番茄生長指標和產(chǎn)量指標的模糊綜合評判
采用模糊綜合評判法對番茄的生長指標和產(chǎn)量指標進行評價,生長指標主要選用的平均最大株高(hm)和平均最大葉面積指數(shù)(LAImax),產(chǎn)量指標選用總產(chǎn)量(Y)和平均單果質(zhì)量(FW),采用專家預測法,選擇10位節(jié)水灌溉專家對各指標進行評判后,得到生長指標和產(chǎn)量指標的權(quán)重分別為A1=(0.5, 0.5)和A2=(0.7, 0.3),將數(shù)據(jù)標準化,得到各指標的綜合評判結(jié)果。由表2可知,T1處理的hm、LAImax和Y標準化的評價指標值最大,2015年分別為0.154、0.155和0.152,2016年分別為0.168、0.161和0.158,而T6最小,2015年分別為0.131、0.119和0.133,2016年分別為0.131、0.121和0.129。從不同生育期水分虧缺程度對番茄生長指標和產(chǎn)量指標的影響結(jié)果來看,采摘期輕度虧缺(T2)的hm、LAImax和Y均高于花果期輕度水分虧缺處理(T5),而除hm指標外,采摘期中度虧缺(T3)的LAImax和Y亦高于花果期中度水分虧缺處理(T7)。從生長指標和產(chǎn)量指標的綜合評判指數(shù)來看,T1處理的評價指標最大,2 a的生長指標(GI)分別為0.155和0.164,產(chǎn)量指標(YI)分別為0.151和0.159,而T6最小,2 a的GI分別為0.125和0.126,YI分別為0.136和0.129。從階段調(diào)虧水平來看,無論是花果期或是采摘期,輕度水分虧缺的GI和YI均高于中度水分虧缺處理(T2>T3,T5>T7),采摘期進行輕度水分虧缺的 GI和YI高于花果期(T2>T5),而中度水分虧缺條件下,對YI的影響不大(T3≈T7)。
2.2 對番茄品質(zhì)指標的模糊綜合評判
采用模糊綜合評判法對番茄品質(zhì)指標進行評價,品質(zhì)指標選用VC、TA、SS和SS/TA,采用專家預測法,隨機選取10位節(jié)水灌溉方向的專家,得到品質(zhì)指標的權(quán)重為A3=(0.4, 0.2, 0.2, 0.2),將數(shù)據(jù)標準化,得到各指標的綜合評判結(jié)果(表3)。由表3可知,不考慮階段水分虧缺條件下,即對于處理 T1、T4、T6,番茄的品質(zhì)指標(除SS/TA外)隨灌水量增加而降低,T6處理的綜合評判指數(shù)最大,而 T1最小。從不同階段水分虧缺(T2、T3、T5、T7)對番茄品質(zhì)的影響程度來看,在花果期輕度虧缺的VC大于采摘期輕度虧缺VC(T5>T2),而TA和SS則為采摘期輕度虧缺處理與花果期輕度虧缺大致持平;花果期中度虧缺的 SS略高于采摘期(T7>T3),而VC和TA則相反。從品質(zhì)指標的綜合評判指數(shù)來看,不考慮階段水分虧缺時表現(xiàn)為 T6>T4>T1,考慮階段水分虧缺時,無論是在開花坐果期或是成熟采摘期進行中度水分虧缺的綜合評判指數(shù)均高于輕度水分虧缺處理(T7>T5,T3>T2),而相同水分虧缺水平條件下,無論是在花果期或是采摘期進行輕、中度水分虧缺,其綜合評判指數(shù)相差不大(T2≈T5,T3=T7)。
表2 日光溫室滴灌番茄生長指標和產(chǎn)量指標及其標準化Table 2 Growth and yield index and its standardization of tomato under drip irrigation in solar greenhouse
表3 日光溫室滴灌番茄品質(zhì)指標及其標準化Table 3 Quality index and its standardization of tomato under drip irrigation in solar greenhouse
2.3 對番茄階段蒸發(fā)蒸騰量指標的模糊綜合評判
同樣采用模糊綜合評判法對番茄階段蒸發(fā)蒸騰量指標進行評價,采用專家預測法,隨機選取10位專家對溫室滴灌番茄幼苗期、開花坐果期和成熟采摘期的蒸發(fā)蒸騰量進行評判,得到各階段的權(quán)重為A4=(0.2,0.5, 0.3),將各階段蒸發(fā)蒸騰量的數(shù)據(jù)標準化,得到各指標的綜合評判結(jié)果(表4)。全生育期蒸發(fā)蒸騰量的綜合評判指數(shù)表現(xiàn)為 T1最高,2a分別為 0.155和0.163,T6最低,2a分別為 0.128和 0.121,即全生育期 T1的水分消耗量最大而 T6最小。由于本試驗從開花坐果期開始劃分水分處理,花果期和采摘期輕度虧缺處理的綜合評價指數(shù)均高于中度虧缺處理(T2>T3,T5>T7)。從輕度虧缺水平來看,花果期進行虧缺的評判指數(shù)高于采摘期(T5>T2),這可能是由于營養(yǎng)生長期進行水分虧缺抑制了番茄的耗水性能(如氣孔開度、葉片發(fā)育以及根系生長等),進而影響了植株在生殖生長時期的耗水量[28]。從中度虧缺水平來看,則表現(xiàn)為采摘期進行虧缺的綜合評判指數(shù)高于花果期(T3>T7),與總蒸發(fā)蒸騰量相反,出現(xiàn)該結(jié)果的原因與階段蒸發(fā)蒸騰量的大小和權(quán)重因子有關(guān),由于在花果期T3處理的蒸發(fā)蒸騰量大于T7處理,而在采摘期二者相近,且花果期的權(quán)重大于采摘期,是導致T3綜合評判指數(shù)高于T7的主要原因。權(quán)重的確定在一定程度上影響著評價結(jié)果[29]。
綜上,從品質(zhì)綜合評判指數(shù)來看,處理T6>T3(T4、T7)>T5(T2)>T1;從產(chǎn)量和生長來看,T1>T2>T5>T7(T3、T4)>T6;從耗水來看,T1>T5>T2>T3(T4)>T7>T6。可見,處理難以兼顧所有指標:充分灌水產(chǎn)量最高,但耗水和品質(zhì)最差;2生育期全部調(diào)虧灌溉(T4和T6)中,T6可降低耗水,增加品質(zhì),但產(chǎn)量也極低,而且T4耗水高于T7處理;部分生育期調(diào)虧灌溉處理中(T2、T3、T5、T7),T2優(yōu)于T5,T7優(yōu)于T3。所以,若實際應用中,若強調(diào)節(jié)水、品質(zhì),則可選擇T7處理,若強調(diào)產(chǎn)量,可選擇T2處理。
表4 日光溫室滴灌番茄階段蒸發(fā)蒸騰量指標及其標準化Table 4 Evapotranspiration and its standardization of tomato at different stages under drip irrigation in solar greenhouse
本文以日光溫室滴灌番茄為研究對象,采用改進的模糊綜合評判模型對番茄的生長指標、產(chǎn)量指標、品質(zhì)指標和階段蒸發(fā)蒸騰量指標進行了綜合評判,從各指標的評判結(jié)果來看,改進的模糊綜合評判模型在一定程度上實現(xiàn)了對調(diào)虧灌溉制度的優(yōu)化選擇,該方法為合理選擇溫室滴灌作物調(diào)虧灌溉制度提供了可能。在對品質(zhì)指標和階段蒸發(fā)蒸騰量的評判方面,改進的模糊綜合評判法的評價結(jié)果與實測結(jié)果一致性較好。主成分分析法也可用于番茄綜合品質(zhì)的評價,如王峰等[30]應用主成分分析法對溫室番茄品質(zhì)進行了綜合評價,并提出平均品質(zhì)綜合主成分的概念;岳冬等[31]運用主成分分析法評價了不同性狀的櫻桃番茄和普通番茄各9個品種的品質(zhì)指標。此外,主成分分析法還用于蘋果酒香氣質(zhì)量的評價[32],以及灌水參數(shù)方式的優(yōu)化[33]等。孫雷[29]對比分析了主成分分析法和模糊綜合分析法的區(qū)別,認為二者在對水質(zhì)的評價方面結(jié)果大致相同。主成分分析法是對多指標的綜合評判結(jié)果,即將多個評價指標混合在一起進行最終評價,而模糊算法可以實現(xiàn)分類比較的效果,從多角度方面得到最終的評判結(jié)果,更具有說服力。但該方法也有不足之處,需要人為地給評價指數(shù)賦予權(quán)重,這在一定程度上會影響最終評價結(jié)果[29]。另外,對于溫室獨特小氣候環(huán)境,該方法未能充分考慮溫濕度變化以及長波輻射轉(zhuǎn)化等因素對評價結(jié)果的影響程度,因此,在今后的研究中需進一步考慮該模型的多層次性和多因素性對模型評價結(jié)果的影響。
本文權(quán)重的確定采用的是專家預測法,該方法具有較強的主觀性,通過選取10位節(jié)水灌溉專家進行評判,得到了各評價指標的權(quán)重,該方法受地域和環(huán)境條件的限制,評價結(jié)果難免會出現(xiàn)判斷誤差,但該方法在評價對象的性質(zhì)和發(fā)展趨勢等方面表現(xiàn)出較好的判斷效果。汪順生等[9]采用該方法確定的溝灌夏玉米產(chǎn)量和耗水指標權(quán)重系數(shù),同樣取得了良好的評價效果;金貴等[5]結(jié)合專家評價法構(gòu)建了綜合指數(shù)模型,從而克服了單純數(shù)據(jù)驅(qū)動或知識驅(qū)動方法的不足。可見,專家預測法在模糊綜合評判模型中具有一定的優(yōu)越性,但該方法在權(quán)重確定方面仍然存在諸多不確定性,這種不確定性不僅來源于周圍環(huán)境因子的變化,而且作物自身生理特性的影響也占主要部分。因此,若能結(jié)合環(huán)境因素以及作物自身生理特性建立一個適用性更廣機理性更全面的預測模型,將會進一步提升模糊綜合評判法的準確性。
本文采用改進的模糊算法進行溫室番茄調(diào)虧滴灌制度的綜合評價,結(jié)果表明:
1)不考慮階段水分虧缺條件下,全生育期水分供應量越大,番茄的平均最大株高、平均最大葉面積指數(shù)和產(chǎn)量的評價指標以及蒸發(fā)蒸騰量綜合評價指標就越大,而品質(zhì)指標則相反,說明充分灌水增加了番茄的形態(tài)和產(chǎn)量指標,但卻降低了品質(zhì)指標。
2)成熟采摘期進行輕度水分虧缺(T2)與開花坐果期輕度水分虧缺(T5)相比,兩者的品質(zhì)綜合評判指數(shù)接近(0.135和0.138,0.125和0.124),但前者的生長指標和產(chǎn)量指標高于后者(T2>T5),且蒸發(fā)蒸騰量低(T2<T5)。因此,在水資源較充足地區(qū),推薦采用成熟采摘期輕度虧缺的灌溉模式(T2),在不減少果實品質(zhì)和產(chǎn)量的前提下實現(xiàn)節(jié)水的效果。
3)在開花坐果期進行中度水分虧缺(T7)與成熟采摘期中度水分虧缺(T3)相比,二者的產(chǎn)量指標和品質(zhì)指標接近,但后者的總蒸發(fā)蒸騰量高于后者(T3>T7),因此,對于水資源比較貧乏的地區(qū),推薦采用開花坐果期中度水分虧缺的灌溉模式(T7),保證產(chǎn)量和品質(zhì)的前提下實現(xiàn)節(jié)水灌溉的目的。
[1] Touati F, Al-Hitmi M, Benhmed K, et al. A fuzzy logic based irrigation system enhanced with wireless data logging applied to the state of Qatar[J]. Computers and Electronics in Agriculture, 2013, 98(7): 233-241.
[2] Giusti E, Marsili-Libelli S. A Fuzzy decision support system for irrigation and water conservation in agriculture[J].Environmental Modelling and Software, 2015, 63(C): 73-86.
[3] Cheng Cui Yun, Qian Xin. Evaluation of emergency planning for water pollution incidents in reservoir based on fuzzy comprehensive assessment[J]. Procedia Environmental Sciences, 2010, 2(6): 566-570.
[4] 王肖肖,張妙仙,徐兵兵. 模糊標識指數(shù)與對應分析法在水質(zhì)評價中的聯(lián)合應用[J]. 環(huán)境科學學報,2012,32(5):1227-1235.Wang Xiaoxiao, Zhang Miaoxian, Xu Bingbing. Combination and application of fuzzy identification index and correspondence analysis method in water quality evaluation[J].Acta Scientiae Circumstantiae, 2012, 32(5): 1227-1235. (in Chinese with English abstract)
[5] 金貴,王占岐,胡學東,等. 基于模糊證據(jù)權(quán)模型的青藏高原區(qū)土地適宜性評價[J]. 農(nóng)業(yè)工程學報,2013,29(18):241-250.Jin Gui, Wang Zhanqi, Hu Xuedong, et al. Land suitability evaluation in Qinghai-Tibet Plateau based on fuzzy weight of evidence model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013,29(18): 241-250. (in Chinese with English abstract)
[6] 潘潤秋,劉珺,宋丹妤. 基于模糊綜合分析法的農(nóng)用地分等方法[J]. 農(nóng)業(yè)工程學報,2014,30(18):257–265.Pan Runqiu, Liu Jun, Song Danyu. Agricultural land classification based on fuzzy comprehensive analysis[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(18):257-265. (in Chinese with English abstract)
[7] Ramos-Fernández J C, Balmat J F, Márquez-Vera M A, et al.Fuzzy modeling vapor pressure deficit to monitoring microclimate in greenhouses[J]. IFAC-Papers On Line, 2016,49(16): 371-374.
[8] Hahn F. Fuzzy controller decreases tomato cracking in greenhouses[J]. Computers and Electronics in Agriculture,2011, 77(1): 21-27.
[9] 汪順生,劉東鑫,王康三,等. 不同溝灌方式對夏玉米耗水特性及產(chǎn)量影響的模糊綜合評判[J]. 農(nóng)業(yè)工程學報,2015,31(24):89-94.Wang Shunsheng, Liu Dongxin, Wang Kangsan, et al. Fuzzy comprehensive evaluation on water consumption characteristics and yield of summer corn under different furrow irrigation patterns[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015,31(24): 89-94. (in Chinese with English abstract)
[10] 張伶鳦,王潤濤,張長利,等. 基于調(diào)虧理論和模糊控制的寒地水稻智能灌溉策略[J]. 農(nóng)業(yè)工程學報,2016,32(13):52-58.Zhang Lingyi, Wang Runtao, Zhang Changli, et al. Intelligent irrigation strategy based on regulated deficit theory and fuzzy control for rice in cold region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(13): 52-58. (in Chinese with English abstract)
[11] Mitchell P D, Chalmen D J, Jerie P H, et al. The use of initial with holding of irrigation and tree spacing to enhance the effect of regulated deficit irrigation on pear tree[J]. Journal of the American Society for Horticultural Science, 1986, 111(6):858-861.
[12] 劉聰,張旭輝. 作物不同生長時段對水分脅迫敏感性分析[J]. 氣象科學,1999,19(2):136-141.Liu Cong, Zhang Xuhui. The analysis on sensitivity of crops to water forcing in each growth stage[J]. Scientia Meteorologica Sinica, 1999, 19(2): 136-141. (in Chinese with English abstract)
[13] Yang Hui, Du Taisheng, Qiu Rangjian, et al. Improved water use efficiency and fruit quality of greenhouse crops under regulated deficit irrigation in northwest China[J]. Agricultural Water Management, 2017, 179(1): 193-204.
[14] 馬福生,康紹忠,王密俠,等. 調(diào)虧灌溉對溫室梨棗樹水分利用效率與棗品質(zhì)的影響[J]. 農(nóng)業(yè)工程學報,2006,22(1):37-43.Ma Fusheng, Kang Shaozhong, Wang Mixia, et al. Effect of regulated deficit irrigation on water use efficiency and fruit quality of pear-jujube tree in greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22 (1): 37-43. (in Chinese with English abstract)
[15] 崔寧博,杜太生,李忠亭,等. 不同生育期調(diào)虧灌溉對溫室梨棗品質(zhì)的影響[J]. 農(nóng)業(yè)工程學報,2009,25(7):32-38.Cui Ningbo, Du Taisheng, Li Zhongting, et al. Effects of regulated deficit irrigation at different growth stages on greenhouse pear-jujube quality[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(7): 32-38. (in Chinese with English abstract)
[16] 劉煉紅,莫言玲,楊小振,等. 調(diào)虧灌溉合理滴灌頻率提高大棚西瓜產(chǎn)量及品質(zhì)[J]. 農(nóng)業(yè)工程學報,2014,30(24):95-104.Liu Lianhong, Mo Yanling, Yang Xiaozhen, et al.Reasonable drip irrigation frequency improving watermelon yield and quality under regulated deficit irrigation in plastic greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014,30(24): 95-104. (in Chinese with English abstract)
[17] 郭海濤,鄒志榮,楊興娟,等. 調(diào)虧灌溉對番茄生理指標、產(chǎn)量品質(zhì)及水分生產(chǎn)效率的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究,2007,25(3):133-137.Guo Haitao, Zou Zhirong, Yang Xingjuan, et al. Effects of regulated deficit irrigation (RDI) on physiological indexes,yield, quality and WUE of tomato[J]. Agricultural Research in the Arid Areas, 2007, 25(3): 133-137. (in Chinese with English abstract)
[18] Maía González A, Bonachela S, Fernández M D. Regulated deficit irrigation in green bean and watermelon greenhouse crops[J]. Scientia Horticulturae, 2009, 122(4): 527-531.
[19] 唐曉偉,劉明池,郝靜,等. 調(diào)虧灌溉對番茄品質(zhì)與風味組分的影響[J]. 植物營養(yǎng)與肥料學報,2010,16(4):970-977.Tang Xiaowei, Liu Mingchi, Hao Jing, et al. Influences of regulated deficit irrigation on sensory quality and flavor components of tomato[J]. Plant Nutrition and Fertilizer Science, 2010, 16(4): 970-977. (in Chinese with English abstract)
[20] 龔雪文,劉浩,孫景生,等. 調(diào)虧灌溉對溫室番茄生長發(fā)育及其產(chǎn)量和品質(zhì)的影響[J]. 節(jié)水灌溉, 2016(9): 52-56.Gong Xuewen, Liu Hao, Sun Jingsheng, et al. Effect of regulated deficit irrigation on solar greenhouse tomato growth, yield and quality[J]. Water Saving Irrigation, 2016(9): 52-56. (in Chinese with English abstract)
[21] 劉浩. 溫室番茄需水規(guī)律與優(yōu)質(zhì)高效灌溉指標研究[D].北京:中國農(nóng)業(yè)科學院,2010.Liu Hao. Water Requirement and Optimal Irrigation Index for Effective Water Use and High-quality of Tomato in Greenhouse[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010. (in Chinese with English abstract)
[22] Allen R G, Pereira L S, Howell T A, et al. Evapotranspiration information reporting: I. Factors governing measurement accuracy[J]. Agricultural Water Management, 2011, 98(6):899-920.
[23] 王會肖,劉昌明. 作物水分利用效率內(nèi)涵及研究進展[J].水科學進展,2000,11(1):99-104.Wang Huixiao, Liu Changming. Advances in crop water use efficiency research[J]. Advances in Water Science, 2000,11(1): 99-104. (in Chinese with English abstract)
[24] 劉浩,孫景生,段愛旺,等. 基于 AutoCAD軟件確定番茄與青椒葉面積的簡易方法[J]. 中國農(nóng)學通報,2009,25(5):287-293.Liu Hao, Sun Jingsheng, Duan Aiwang, et al. Simple model for tomato and green pepper leaf area based on AutoCAD software[J]. Chinese Agricultural Science Bulletin, 2009,25(5): 287-293. (in Chinese with English abstract)
[25] 李合生,陳翠蓮,洪玉枝,等. 植物生理生化實驗原理和技術(shù)[M]. 北京:高等教育出版社,2002:70.
[26] 謝季堅,劉承平. 模糊數(shù)學方法及其應用[M]. 武漢:華中科技大學出版社,2013:155.
[27] 王舉才,席磊,招笑莉,等. 基于模糊綜合評判的可視化葉色模型數(shù)據(jù)標準化[J]. 農(nóng)業(yè)工程學報,2011,27(11):155-159.Wang Jucai, Xi Lei, Zhao Xiaoli, et al. Data normalization ofleaf color based on fuzzy comprehensive evaluation for visualization model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2011, 27(11): 155-159. (in Chinese with English abstract)
[28] Bogale A, Nagle M, Latif S, et al. Regulated deficit irrigation and partial root-zone drying irrigation impact bioactive compounds and antioxidant activity in two select tomato cultivars[J]. Scientia Horticulturae, 2016, 213: 115-124.
[29] 孫雷. 主成分分析法和模糊綜合分析法在水質(zhì)評價中的實例比較[J]. 環(huán)境科學與管理,2011,36(8):178-181.Sun Lei. Comparison between performance of principal component analysis and fuzzy analysis in water quality evaluation[J]. Environmental Science and Management, 2011,36(8): 178-181. (in Chinese with English abstract)
[30] 王峰,杜太生,邱讓建. 基于品質(zhì)主成分分析的溫室番茄虧缺灌溉制度[J]. 農(nóng)業(yè)工程學報,2011,27(1):75-80.Wang Feng, Du Taisheng, Qiu Rangjian. Deficit irrigation scheduling of greenhouse tomato based on quality principle component analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2011, 27(1): 75-80. (in Chinese with English abstract)
[31] 岳冬,魯博,劉娜,等. 基于主成分分析法的番茄內(nèi)在品質(zhì)評價指標的選擇[J]. 上海農(nóng)業(yè)學報,2017,33(1):88-92.Yue Dong, Lu Bo, Liu Na, et al. Selection of internal quality evaluation index of tomato based on principal component analysis[J]. Acta Agriculturae Shanghai, 2017, 33(1): 88-92.(in Chinese with English abstract)
[32] 岳田利,彭幫柱,袁亞宏,等. 基于主成分分析法的蘋果酒香氣質(zhì)量評價模型的構(gòu)建[J]. 農(nóng)業(yè)工程學報,2007,23(6):223-227.Yue Tianli, Peng Bangzhu, Yuan Yahong, et al. Modeling of aroma quality evaluation of cider based on principal component analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2007, 23(6): 223–227. (in Chinese with English abstract)
[33] 徐家屯,朱大炯,蔡煥杰,等. 基于主成分分析和參數(shù)設計的畦灌技術(shù)參數(shù)優(yōu)化[J]. 干旱地區(qū)農(nóng)業(yè)研究,2016,34(11):89-96.Xu Jiatun, Zhu Dajiong, Cai Huanjie, et al. Optimization of technical parameters for border irrigation based on principal component analysis and parameter design[J]. Agricultural research in the arid areas, 2016, 34(11): 89-96. (in Chinese with English abstract)
Fuzzy comprehensive evaluation on regulated deficit irrigation scheduling of tomato drip irrigated in solar greenhouse
Gong Xuewen1,2,3, Liu Hao1, Liu Dongxin3, Wang Wanwan1, Sun Jingsheng1※
(1.Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang453003,China; 2.Graduate School of Chinese Academy of Agricultural Sciences, Beijing100081,China; 3.
School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou450000,China)
This study aimed to investigate the feasibility of improved fuzzy comprehensive method in the evaluation of regulated deficit drip irrigation scheduling in solar greenhouse. An experiment was conducted in a solar greenhouse from March to July, 2015 and 2016 at Xinxiang Comprehensive Experimental Station, Chinese Academy of Agriculture Sciences(35°9′ N, 113°5′ E and altitude 78.7 m). The experimental soil was loam at 0-80 cm and sandy loam at 80-100 cm. The solar greenhouse frame had a steel frame, covering an area of 510 m2(60 m by 8.5 m). The roof of solar greenhouse was covered with 2.5-cm thick cotton wadding and the heat-insulating materials were embedded in the wall to maintain the interior temperature. Irrigation scheduling was determined based on the accumulated evaporation in a standard pan in the diameter of 20 cm. The experiment was designed with full irrigation (0.9 times of the accumulated pan evaporation), mild water deficit(0.7 times of the accumulated pan evaporation) and moderate water deficit (0.5 times of the accumulated pan evaporation) in the flowering and fruit setting stage and the mature picking stage. There were 18 plots, and the plot area was 8.8 m2(8.0 m by 1.1 m). The crop growth index, yield index, water consumption index and quality index of drip-irrigated tomato were evaluated by using the improved fuzzy comprehensive method. The weight was obtained by 10 expert’s scores. The results showed that the crop growth index, yield index and water consumption index of tomato increased with the irrigation amount without considering the water deficit at different stages, but the quality index was decreased. Effect of the mild water deficit on quality index was weak, and the comprehensive evaluation index of growth index and yield index in the mature picking stage was higher than that in the flowering and fruit setting stage, while the crop evapotranspiration and irrigation amount over the whole growth stage of the former was lower. For the mild deficit irrigation for both growing stages, the quality comprehensive evaluation index was similar (0.135 and 0.138, and 0.125 and 0.124). For the moderate water deficit, the comprehensive evaluation index of growth index, yield index and quality index in the flowering and fruit setting stage was similar to that in the mature picking stage, but the crop evapotranspiration over the whole growth stage of the latter was lower. Therefore, for the drip-irrigated tomato in solar greenhouse, the mild water deficit in the mature picking stage should be recommended to the region with abundant water resource, while for the region with limited water resource, the moderate water deficit in the flowering and fruit setting stage should be applied. The improved fuzzy comprehensive evaluation method was recommended as a basis for evaluating regulated deficit irrigation system of drip-irrigated tomato in solar greenhouse.
greenhouse; soil moisture; evapotranspiration; fuzzy algorithm; regulated deficit irrigation; expert forecast method
10.11975/j.issn.1002-6819.2017.14.020
S275.6; S11+7
A
1002-6819(2017)-14-0144-08
龔雪文,劉 浩,劉東鑫,王灣灣,孫景生. 基于模糊算法的溫室番茄調(diào)虧滴灌制度綜合評判[J]. 農(nóng)業(yè)工程學報,2017,33(14):144-151.
10.11975/j.issn.1002-6819.2017.14.020 http://www.tcsae.org
Gong Xuewen, Liu Hao, Liu Dongxin, Wang Wanwan, Sun Jingsheng. Fuzzy comprehensive evaluation on regulated deficit irrigation scheduling of tomato drip irrigated in solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(14): 144-151. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.14.020 http://www.tcsae.org
2017-01-12
2017-06-10
中央級科研院所基本科研業(yè)務費專項(中國農(nóng)業(yè)科學院農(nóng)田灌溉研究所);河南省科技攻關(guān)項目(162102110017)
龔雪文,男,河南安陽人,博士生,主要從事作物水分生理與高效利用方面的研究。新鄉(xiāng) 中國農(nóng)業(yè)科學院農(nóng)田灌溉研究所,453003。
Email: gxw068@126.com
※通信作者:孫景生,男,遼寧建平人,研究員,博士生導師,主要從事節(jié)水灌溉和作物高效用水技術(shù)方面的研究。新鄉(xiāng) 中國農(nóng)業(yè)科學院農(nóng)田灌溉研究所,453003。Email: jshsun623@163.com