亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        HYDRUS模型與遙感集合卡爾曼濾波同化提高土壤水分監(jiān)測(cè)精度

        2017-11-24 06:07:16丁建麗陳文倩
        關(guān)鍵詞:土壤水分表層反演

        丁建麗,陳文倩,王 璐

        (1. 新疆大學(xué)資源與環(huán)境科學(xué)學(xué)院,烏魯木齊 830046;2. 綠洲生態(tài)教育部重點(diǎn)實(shí)驗(yàn)室,烏魯木齊 830046)

        HYDRUS模型與遙感集合卡爾曼濾波同化提高土壤水分監(jiān)測(cè)精度

        丁建麗,陳文倩,王 璐

        (1. 新疆大學(xué)資源與環(huán)境科學(xué)學(xué)院,烏魯木齊 830046;2. 綠洲生態(tài)教育部重點(diǎn)實(shí)驗(yàn)室,烏魯木齊 830046)

        精確地估測(cè)干旱區(qū)土壤水分含量,對(duì)該區(qū)域的農(nóng)業(yè)發(fā)展與水土保持具有重要意義。該文以MODIS與Landsat TM數(shù)據(jù)為數(shù)據(jù)源,利用其反演獲得的條件溫度植被指數(shù)(temperature-vegetation drought Index,TVDI)作為觀測(cè)算子,將集合卡爾曼濾波(ensemble Kalman filter,En-KF)同化方法應(yīng)用于水文模型(HYDRUS-1D),進(jìn)行干旱區(qū)表層土壤水分的模擬。結(jié)果表明:遙感數(shù)據(jù)反演土壤水分所構(gòu)建的二維特征空間TVDI與表層土壤水分有較好的一致性;En-KF同化方法對(duì)模型變量與觀測(cè)算子的更新,與單純使用HYDRUS模型相比,獲得的表層土壤水分含量精度有了明顯提高,其均方根誤差縮小了1個(gè)百分點(diǎn),平均誤差縮小了5個(gè)百分點(diǎn)??梢?jiàn),基于多源遙感數(shù)據(jù)對(duì)表層土壤水分的En-KF同化模擬在干旱區(qū)具有較大的潛力,是提高干旱區(qū)土壤水分含水量監(jiān)測(cè)精度的有效手段。

        土壤水分;遙感;同化;HYDRUS模型;En-KF;TVDI特征空間

        0 引 言

        土壤水分作為水文、大氣、陸面的重要組成部分,是地表水與地下水的重要紐帶,也是描述陸地、大氣和植被生長(zhǎng)能量交換的重要參數(shù)[1]。近年來(lái),干旱區(qū)綠洲農(nóng)業(yè)發(fā)展迅速,人類活動(dòng)已嚴(yán)重影響到區(qū)域性土壤水分的平衡,產(chǎn)生大面積的鹽漬化現(xiàn)象。因此,土壤水分的監(jiān)測(cè)對(duì)綠洲農(nóng)業(yè)與經(jīng)濟(jì)的發(fā)展,均有著十分重要的現(xiàn)實(shí)意義。

        準(zhǔn)確估算土壤水分含量是一項(xiàng)十分困難而復(fù)雜的工作,但遙感技術(shù)的應(yīng)用使得長(zhǎng)時(shí)間、大面積的估測(cè)土壤含水量成為可能。現(xiàn)階段,利用遙感技術(shù)與水熱傳輸模型相結(jié)合反演土壤水分信息已經(jīng)得到廣泛應(yīng)用[2-3]。數(shù)據(jù)同化作為數(shù)據(jù)處理的關(guān)鍵技術(shù),也已日趨成為生態(tài)水文過(guò)程研究與遙感反演研究的前沿與熱點(diǎn)問(wèn)題[4],其在協(xié)調(diào)、融合遙感技術(shù)與生態(tài)建模方面起到了重要的橋梁作用,能夠有效地融合多源遙感數(shù)據(jù)以及模型的模擬結(jié)果,進(jìn)而提高土壤水分的預(yù)測(cè)精度。數(shù)據(jù)同化中的集合卡爾曼濾波(ensemble Kalman filter,En-KF)算法由于適用于非線性系統(tǒng)、且同時(shí)具有較好的可實(shí)現(xiàn)性,得到廣泛的認(rèn)可與應(yīng)用[5]。En-KF同化算法最大的優(yōu)勢(shì)在于可以較好地處理非線性問(wèn)題,能夠較為理想地將遙感觀測(cè)結(jié)果與模型模擬數(shù)據(jù)進(jìn)行有效整合及分析。

        HYDRUS模型是在模擬非飽和流和溶質(zhì)運(yùn)移應(yīng)用最廣的模型之一[6-7],由于其在熱量交換、土壤水分運(yùn)動(dòng)、作物根系吸收與溶質(zhì)運(yùn)移等方面,可靈活輸入?yún)?shù)變量,得到了廣泛應(yīng)用[8-9]。

        現(xiàn)階段,雖然En-KF算法已被廣泛應(yīng)用在大氣、海洋和陸地?cái)?shù)據(jù)同化研究中[10-11],但針對(duì)干旱區(qū)綠洲數(shù)據(jù)同化技術(shù)研究,結(jié)合不同遙感方式、運(yùn)用En-KF算法的參數(shù)化方案國(guó)內(nèi)外還沒(méi)有對(duì)其進(jìn)行深入系統(tǒng)的研究。

        因此,本文采用多源光學(xué)遙感數(shù)據(jù)作為數(shù)據(jù)源,反演溫度植被干旱指數(shù)(temperature vegetation drought index,TVDI),利用HYDRUS模型結(jié)合數(shù)據(jù)同化方法中的En-KF算法,再結(jié)合土壤水分的實(shí)測(cè)資料,對(duì)綠洲荒漠交錯(cuò)帶的典型地區(qū)(渭干河-庫(kù)車河綠洲)的土壤水分進(jìn)行模擬與預(yù)測(cè),通過(guò)比較同化前后的模擬結(jié)果,針對(duì)影響同化結(jié)果的因素進(jìn)行分析,以探究此方法在土壤水分估算方面的精度與適用性,為干旱區(qū)流域的生態(tài)環(huán)境修復(fù)提供一定的理論支持。

        1 研究區(qū)概況與土樣采集

        1.1 研究區(qū)概況

        新疆維吾爾自治區(qū)南疆地區(qū)的渭干河-庫(kù)車河三角洲地區(qū)(以下簡(jiǎn)稱渭-庫(kù)綠洲),由庫(kù)車河與渭干河發(fā)育而來(lái),是南疆地區(qū)最具代表性的干旱區(qū)綠洲[12]。渭-庫(kù)綠洲位于塔里木盆地北緣,天山南麓,經(jīng)緯度范圍處于81°28′30″~84°05′06″E,39°29′51″~42°38′01″N 之間[13]。綠洲內(nèi)南部為平原區(qū),北部為山地,地勢(shì)北高南低[14],且從西北向東南傾斜。由于其地處干旱區(qū)內(nèi)陸腹地,具有十分典型的大陸性氣候特征,氣候極度干燥,降水稀少,年均降水量約為65 mm[14]。研究區(qū)域的極端最高溫度為40 ℃,極端最低溫度為-28.70 ℃,多年平均氣溫為 10.50~14.40 ℃左右,多年平均蒸發(fā)量高達(dá)1 992.00~2 863.40 mm。綠洲區(qū)降水主要集中在每年的 7、8月份,干濕季分異十分明顯,植被以自然植被和人工耕作的農(nóng)田植被為主,而自然植被則主要是鹽生植被,多分布于綠洲外圍與綠洲荒漠交錯(cuò)帶之上。研究區(qū)的土壤類型主要由潮土與草甸土、鹽土、沼澤土、棕鈣土等;土壤 pH值為7.69~8.00;平均土壤電導(dǎo)率為8.23 mS/cm;土壤耕作層含鹽量為0.3%~0.6%,局部達(dá)0.6%~1.0%;總固體溶解度(total dissolved solids,TDS)為200~12 000 mg/L。

        1.2 土壤樣品采集

        野外土壤樣品的采樣主要從以下幾個(gè)方面進(jìn)行考慮:第一,依托綠洲重點(diǎn)實(shí)驗(yàn)室的常年野外設(shè)點(diǎn)的數(shù)據(jù)累積;第二,考慮遙感圖像的目視解譯的可達(dá)性;第三,綜合分析研究區(qū)海拔梯度、地形、植被類型等;共選取了39個(gè)具有代表性的樣點(diǎn)進(jìn)行取樣(圖1),雖然樣點(diǎn)數(shù)量不是太多,但研究區(qū)的地物類型較為單一,氣候變化較為穩(wěn)定,加之以上幾個(gè)方面的綜合考慮與以往研究成果的產(chǎn)出分析,39個(gè)樣點(diǎn)可達(dá)到研究目的。利用GPS定位,對(duì)每個(gè)點(diǎn)位的土壤進(jìn)行分層取樣,垂直方向上選取0~50 cm(0~10 cm、>10~30 cm、>30~50 cm)的土壤樣品。烘干法(105 ℃)測(cè)定的土壤39個(gè)點(diǎn)含水率值如表1所示。

        圖1 研究區(qū)采樣點(diǎn)分布Fig.1 Sampling points distribution in study area

        表1 土壤含水率實(shí)測(cè)值統(tǒng)計(jì)描述Table 1 Statistic description of measured soil moisture

        2 數(shù)據(jù)來(lái)源與同化方法

        2.1 氣象與土壤數(shù)據(jù)

        由于本研究中的模型初始驅(qū)動(dòng)數(shù)據(jù)是氣象與土壤數(shù)據(jù)(這也是 HYDRUS模型的邊界條件),所以本文利用網(wǎng)站數(shù)據(jù) http://cdc.cma.gov.cn/(中國(guó)氣象科學(xué)數(shù)據(jù)共享服務(wù)網(wǎng))下載2013年9月3日—12月9日98 d的氣象站點(diǎn)逐日的日照時(shí)數(shù),風(fēng)速、降水量、蒸發(fā)量、最高溫、最低溫、氣壓和相對(duì)濕度等數(shù)據(jù)。采用HOBO U20自動(dòng)水位計(jì)記錄了研究區(qū)地下水位、水溫等,且對(duì) 2013年 9—12月10個(gè)點(diǎn)位每2 h井內(nèi)的水溫與氣壓變化作了記錄。

        對(duì)野外采集的土壤樣品去除樹(shù)葉、石頭等雜物,經(jīng)過(guò)風(fēng)干、過(guò)0.25 mm的篩子,稱取20 g,按照土水質(zhì)量比1∶5的配比配置溶液,使用Cond 7310電導(dǎo)率測(cè)定儀(德國(guó)WTW公司)測(cè)定土壤電導(dǎo)率、pH值、TDS等。

        2.2 遙感數(shù)據(jù)

        采用Landsat TM的2013年的數(shù)據(jù)以及MODIS 1B產(chǎn)品協(xié)同反演土壤水分。于2013年9月3日—12月9日篩選出1期(10月14日)質(zhì)量較好的影像數(shù)據(jù),依次對(duì)其進(jìn)行輻射定標(biāo)、幾何校正、大氣校正等圖像預(yù)處理。

        在采用2種數(shù)據(jù)進(jìn)行地表溫度計(jì)算時(shí)[15],TM數(shù)據(jù)采用第6波段的輻射亮度值計(jì)算地表溫度Ts,而MODIS數(shù)據(jù)采用第31和第32波段的波段亮度溫度計(jì)算Ts。計(jì)算歸一化植被指數(shù)(normalized difference vegetation index,NDVI)時(shí),Landsat TM數(shù)據(jù)采用的是TM 傳感器的第4波段和第3波段,對(duì)應(yīng)于MODIS影像,則是其第2波段與第1波段。

        2.3 研究方法

        2.3.1 HYDRUS模型

        HYDRUS的邊界條件設(shè)置十分靈活,可以根據(jù)已有的實(shí)測(cè)數(shù)據(jù)與研究區(qū)的實(shí)地考察情況選擇邊界條件。對(duì)于本研究來(lái)說(shuō),邊界條件主要包括定壓力水頭、變壓力水頭、表層大氣邊界、深部排水、自由排水、定通量、變通量、水平滲水邊界等[16]。

        2.3.2 TVDI構(gòu)建

        單獨(dú)運(yùn)用地表溫度或者植被指數(shù)對(duì)干旱進(jìn)行監(jiān)測(cè),會(huì)受植被對(duì)暫時(shí)的水分脅迫反映不敏感的因素影響,或受到土壤背景的干擾,很大程度上影響了對(duì)土壤濕度的監(jiān)測(cè)[17]。研究表明[18-19],當(dāng)研究區(qū)的植被覆蓋度和土壤濕度變化較明顯時(shí),遙感影像監(jiān)測(cè)到的地表溫度和植被指數(shù)構(gòu)成的二維散點(diǎn)圖呈現(xiàn)一定的規(guī)則形狀,植被指數(shù)所對(duì)應(yīng)最高地表溫度構(gòu)成的干邊與最低地表溫度構(gòu)成的濕邊相連,呈現(xiàn)三角形。Sandholt等[20]簡(jiǎn)化了 NDVI-Ts二維特征空間,提出了TVDI。

        式中 TVDI為溫度植被干旱指數(shù);Ts是像元地表溫度;Tsmax和Tsmin分別由植被指數(shù)和地表溫度由干邊、濕邊線性擬合獲得;VI是像元植被指數(shù);a、b、c、d分別是干邊和濕邊線性擬合方程的系數(shù)。TVDI的構(gòu)建使得溫度與植被指數(shù)的信息得到互補(bǔ),既消除了土壤背景的影響,又消除了植被指數(shù)對(duì)作物的缺水后生長(zhǎng)受阻才會(huì)變化的滯后性[21]。用MODIS地表溫度數(shù)據(jù)按照式(1)擬合干濕邊,將獲取的公式代入同時(shí)期的TM數(shù)據(jù)中,構(gòu)建TVDI特征空間。

        2.3.3 數(shù)據(jù)同化步驟

        數(shù)據(jù)同化系統(tǒng)一般包括觀測(cè)算子、模型算子、同化算法和觀測(cè)數(shù)據(jù)集。本研究將HYDRUS模型作為本文的模型算子,TVDI模型為觀測(cè)算子,建立觀測(cè)數(shù)據(jù)(遙感數(shù)據(jù)與實(shí)測(cè)數(shù)據(jù))與模型模擬的土壤含水率之間的關(guān)系。

        En-KF是基于集合預(yù)報(bào)發(fā)展起來(lái)的一種順序的數(shù)據(jù)同化算法,它通過(guò)計(jì)算觀測(cè)與狀態(tài)變量的協(xié)方差,獲得誤差協(xié)方差矩陣,再利用協(xié)方差和觀測(cè)信息,通過(guò)方程運(yùn)算,更新預(yù)報(bào)集合。

        1)利用土壤水分的初始集合,確定 HYDRUS模型模擬的步長(zhǎng)、時(shí)間、迭代次數(shù)等;2)確定初始條件與邊界條件,結(jié)合 Burgers等[22]提出的擾動(dòng)觀測(cè)的En-KF算法更新土壤水分值,獲取土壤水分的預(yù)報(bào)值;3)將更新后的土壤水分值重新初始化,輸入模型的參數(shù),輸出相應(yīng)的模擬結(jié)果,進(jìn)入下一時(shí)刻,在遙感觀測(cè)再次可用時(shí),再次進(jìn)行同化。具體流程圖如圖2所示。

        圖2 數(shù)據(jù)同化技術(shù)路線圖Fig.2 Flow diagram of data assimilation

        2.4 HYDRUS模型邊界測(cè)定及模型參數(shù)確定方法

        采用2013年9—12月每個(gè)樣點(diǎn)0~10的表層的土壤含水率數(shù)據(jù)進(jìn)行同化。為了測(cè)定模型邊界條件的準(zhǔn)確性,在數(shù)據(jù)輸入前先進(jìn)行模型誤差與背景誤差的估計(jì)。對(duì)實(shí)測(cè)數(shù)據(jù)標(biāo)定后,水分觀測(cè)誤差為 0.05(誤差規(guī)定不超過(guò)5%),初始背景場(chǎng)誤差為0.03(對(duì)于多個(gè)同化時(shí)刻,每個(gè)時(shí)刻的背景場(chǎng)就是由上一個(gè)時(shí)刻加入資料同化后預(yù)報(bào)過(guò)來(lái)的,本初始背景場(chǎng)就是9月3日,初始誤差規(guī)定不超過(guò)5%),模型誤差為0.1(不超過(guò)10%),均達(dá)到邊界條件初始精度要求。同化過(guò)程中,單獨(dú)運(yùn)行HYDRUS模型作為不同化遙感數(shù)據(jù)的對(duì)比試驗(yàn)。

        根據(jù)野外采樣數(shù)據(jù),土壤樣品在垂直方向上分為 3層:0~10、>10~30、>30~50 cm。首先利用試估的方法,對(duì)模型的參數(shù)進(jìn)行初步估算,結(jié)合實(shí)際含水率進(jìn)行粗略調(diào)整,以縮小取值范圍;再結(jié)合軟件自帶土壤類型的參數(shù)以及納什系數(shù)(Nash-Sutcliffe coefficient,NSE)作為目標(biāo)函數(shù),利用SCE-UA[23]反演算法估計(jì)土壤參數(shù);最后利用遙感反演的土壤水分?jǐn)?shù)據(jù),擬合出表層土壤的水力參數(shù)。通過(guò)迭代后的NSE值以及最后得到的土壤參數(shù),通過(guò)HYDRUS模型運(yùn)行可以模擬土壤水分的運(yùn)移情況。

        模型的運(yùn)行需要確定殘余含水率θr、飽和含水率θs、進(jìn)氣值α、孔隙分布指數(shù)n、飽和導(dǎo)水率Ks、氣孔連通參數(shù)L參數(shù)。這6個(gè)參數(shù)可利用水文模型常用的SCE-UA反演算法率定,本文采用 SCE-UA反演算法的大多數(shù)參數(shù)都基于已有研究成果的默認(rèn)值[24],可作為模型經(jīng)驗(yàn)值,直接進(jìn)行計(jì)算。通過(guò)結(jié)合新疆其他區(qū)域的土壤巖性參數(shù)的取值[25],利用SCE-UA方法逐步確定參數(shù),經(jīng)過(guò)39個(gè)實(shí)測(cè)土壤水分的輸入推導(dǎo)出各個(gè)參數(shù)的初始值如表 2所示。

        表2 HYDRUS模型參數(shù)取值Table 2 Model parameter values in HYDRUS model

        3 結(jié)果與分析

        3.1 基于特征空間的土壤含水率模擬

        由于遙感反演的土壤含水率是表層水分(0~10 cm),因而本文只對(duì)表層土壤水分進(jìn)行同化結(jié)果分析。圖 3是TVDI特征空間對(duì)研究區(qū)表層土壤水分的反演結(jié)果,TVDI越高,土壤含水率越低。研究區(qū)整體來(lái)看,土壤含水率較高區(qū)域處于植被覆蓋度較高的中部地區(qū)(主要為農(nóng)業(yè)灌溉區(qū)),而邊緣的綠洲與荒漠交錯(cuò)帶地區(qū),土壤含水率較低。

        為了驗(yàn)證遙感圖像與實(shí)測(cè)值之間的誤差,從39個(gè)土壤樣本的表層土壤含水率中隨機(jī)選取 10個(gè)樣本進(jìn)行TVDI特征空間的土壤含水率模擬(另外29個(gè)樣點(diǎn)數(shù)據(jù)作為后續(xù)實(shí)測(cè)數(shù)據(jù)與同化值進(jìn)行誤差對(duì)比研究),再與同期實(shí)測(cè)土壤含水率進(jìn)行對(duì)比,如表 3所示,實(shí)測(cè)值與遙感模擬值具有較好的空間一致性,相對(duì)誤差平均為13.06%,與其他相關(guān)文獻(xiàn)[15,26-27]獲取的精度誤差基本一致,可用于數(shù)據(jù)同化過(guò)程中的真值,反映長(zhǎng)時(shí)間序列研究區(qū)整體空間的土壤含水率變化趨勢(shì)。

        圖3 研究區(qū)基于歸一化植被指數(shù)-地表溫度反演的溫度植被干旱指數(shù)的空間分布Fig.3 Distribution of temperature vegetation drought index(TVDI) inversed by normalized difference vegetation index-surface temperature in study area

        表3 基于TVDI空間特征的0~10 cm表層土壤含水率預(yù)測(cè)值與實(shí)測(cè)值比較Table 3 Comparison of TVDI-based simulated and measured surface soil moisture at 0-10 cm

        3.2 同化過(guò)程分析

        由于遙感反演只對(duì)表層土壤有效,因此本文僅對(duì)0~10 cm的表層土壤進(jìn)行同化,而>10~50 cm的土壤僅利用HYDRUS-1D模型分析。2013年9月3日—12月9日HYDRUS-1D模型擬合的>10~30、>30~50 cm的土壤水分變化如圖 4所示。由圖可知,較淺層土壤(>10~30 cm)依然受到降雨影響,而深層的土壤(>30~50 cm)含水率受降雨影響較小,基本趨于穩(wěn)定,隨季節(jié)變化較小。

        2013年9月3日—12月9日(共98 d)基于集合卡爾曼濾波與HYDRUS模型的0~10 cm土壤含水率變化如圖5所示。由于土壤含水率實(shí)測(cè)數(shù)據(jù)獲取時(shí)間段不夠,而基于遙感反演的土壤含水率與實(shí)測(cè)值有很好的一致性(相對(duì)誤差平均為 13.06%),故將遙感反演值看作實(shí)測(cè)值,與HYDRUS模型模擬值及同化值進(jìn)行對(duì)比。由圖5可知,在表層土壤同化過(guò)程中,HYDRUS模型模擬值與實(shí)測(cè)值存在一定的差距,尤其是在18 d之前,差值較大。而同化值在整個(gè)過(guò)程中更接近實(shí)測(cè)值,在有降水的情況下,同化效果更佳。

        圖4 2013年9月3日—12月9日HYDRUS-1D模型模擬的10~50 cm土壤含水率變化Fig.4 Variation of simulated soil moisture at 10-50 cm by HYDRUS-1D model from September 3rd to December 9th in 2013

        圖5 2013年9月3日—12月9日基于不同方法模擬的0~10 cm土壤含水率變化Fig.5 Variation of soil moisture at 0-10 cm based on different methods from September 3rd to December 9th in 2013

        同化過(guò)程能有效地改進(jìn)表層土壤含水率的預(yù)測(cè)精度,且利用En-KF同化方法能減少HYDRUS模型模擬值與遙感反演值的誤差,但無(wú)法完全消除這種模擬值過(guò)高的影響。這與模型所需的大氣驅(qū)動(dòng)參數(shù)(大氣輻射、大氣溫度以及空氣濕度),以及模型參數(shù)包括土壤參數(shù)和植被參數(shù)密切相關(guān)。在數(shù)據(jù)同化過(guò)程中,若某個(gè)參數(shù)的經(jīng)驗(yàn)值,存在較大誤差,利用同化(即HYDRUS模型中加入遙感反演值)與未同化值(即HYDRUS模型中未加入遙感反演值)之差來(lái)調(diào)整這個(gè)參數(shù),如此反復(fù),直到同化結(jié)果最佳。

        3.3 同化值與HYDRAUS模型模擬比較

        將29個(gè)實(shí)測(cè)值與HYDRAUS模型模擬值、同化值進(jìn)行對(duì)比,結(jié)果如表4所示。HYDRAUS模型模擬值與實(shí)測(cè)值的均方根誤差和平均誤差分別為10%與 13%;而同化值的均方根誤差和平均誤差分別為9%和8%,分別較HYDRAUS模型模擬值減小1個(gè)百分點(diǎn)和5個(gè)百分點(diǎn)??梢?jiàn),En-KF算法能較為有效地運(yùn)用到模型中模擬土壤水分的動(dòng)態(tài)變化,結(jié)合遙感數(shù)據(jù)反演的數(shù)值,利用 En-KF算法同化后對(duì)數(shù)據(jù)模擬有較大程度的改進(jìn)。

        表4 同化與模擬表層土壤含水率與實(shí)測(cè)值間誤差分析Table 4 Error analysis on simulated and assimilated surface soil moisture and measured value

        同化結(jié)果產(chǎn)生的誤差可能與以下幾個(gè)方面有關(guān):1)研究受到試驗(yàn)條件的限制,如參數(shù)不多;2)在實(shí)際情況中,土壤水分一直處于波動(dòng)狀態(tài),而初始大氣驅(qū)動(dòng)數(shù)據(jù)等因素的干擾導(dǎo)致很難看到其波動(dòng)的情況[26-27];3)真實(shí)環(huán)境下,土壤各個(gè)物理參數(shù)是難以精確地模擬和確定的,并且各個(gè)參數(shù)會(huì)隨著時(shí)間變化而變化[28-29],過(guò)程遠(yuǎn)遠(yuǎn)比模型模擬過(guò)程復(fù)雜的多;4)模型本身的誤差也會(huì)在模型運(yùn)行過(guò)程中造成積累現(xiàn)象,進(jìn)而對(duì)結(jié)果造成影響;5)遙感數(shù)據(jù)本身具有一定的誤差。

        4 結(jié) 論

        本文以MODIS與Landsat TM數(shù)據(jù)為數(shù)據(jù)源,利用其反演的條件溫度植被指數(shù)作為觀測(cè)算子,將En-KF同化方法應(yīng)用于一維的水文模型HYDRUS進(jìn)行了表層土壤水分的模擬。

        En-KF算法能夠較好地處理非線性問(wèn)題,將模型經(jīng)驗(yàn)參數(shù)與預(yù)報(bào)的土壤水分含量作為輸入,利用TVDI模型反演的土壤水分作為初始的輸入值更新模型算子,與單獨(dú)使用HYDRUS模型相比,同化得到的表層土壤水分含量精度有了明顯的提高,其中均方根誤差縮小了 1個(gè)百分點(diǎn),平均誤差縮小了5個(gè)百分點(diǎn)。

        干旱區(qū)綠洲土壤水分含量是制約該區(qū)域農(nóng)業(yè)與經(jīng)濟(jì)發(fā)展的重要因素,為了更好地監(jiān)測(cè)干旱區(qū)土壤水分含量,今后的研究將更加注重?cái)?shù)據(jù)同化的尺度。后續(xù)研究可從土壤表層擴(kuò)展到剖面尺度,當(dāng)獲取更多實(shí)測(cè)剖面土壤水分?jǐn)?shù)據(jù)后,可有效提高同化的精度。同化的范圍可由單點(diǎn)擴(kuò)展到區(qū)域,獲得更加詳實(shí)而大范圍的數(shù)據(jù),以期獲得大尺度的水分運(yùn)移規(guī)律。而利用多源遙感數(shù)據(jù)研究干旱區(qū)土壤水分依然是下一步研究的重點(diǎn)。

        [1] 劉昌明. 土壤-植物-大氣系統(tǒng)水分運(yùn)行的界面過(guò)程研究[J].地理學(xué)報(bào),1997,52(1):366-373.Liu Changming. Study on interface process of soil-plantatmosphere system[J]. Acta Geographica Sinica, 1997, 52(1):366-373. (in Chinese with English abstract)

        [2] 李建國(guó),濮勵(lì)杰,朱明,等. 土壤鹽漬化研究現(xiàn)狀及未來(lái)研究熱點(diǎn)[J]. 地理學(xué)報(bào),2012,67(9):1233-1245.LI Jianguo, Pu Lijie, Zhu Ming, et al. The present situation and hot issues in the salt-affected soil research[J]. Acta Geographica Sinica, 2012, 67(9): 1233-1245. (in Chinese with English abstract)

        [3] 張仁華. 土壤含水量的熱慣量模型及其應(yīng)用[J]. 科學(xué)通報(bào),1991,36(12):924-927.Zhang Renhua. Thermal inertia model and its application of soil water content[J]. Chinese Science Bulletin, 1991, 36(12):924-927. (in Chinese with English abstract)

        [4] 馬建文,秦思嫻. 數(shù)據(jù)同化算法研究現(xiàn)狀綜述[J]. 地球科學(xué)進(jìn)展,2012,27(7):747-757.Ma Jianwen, Qin Sixian. Recent advances and development of data assimilation algorithms[J]. Advance in Earth Sciences,2012, 27(7): 747-757. (in Chinese with English abstract)

        [5] 陳思寧. 基于集合卡爾曼濾波的遙感信息和作物模型結(jié)合研究[D]. 南京:南京信息工程大學(xué),2012.Chen Sining. Study on Combination of Remote Sensing Information and Crop Model Based on Ensemble Kalman Filter[D]. Nanjing:Nanjing University of Information Science and Technology, 2012. (in Chinese with English abstract)

        [6] USDA-ARS US salinity laboratory. HYDRUS-1Dmodel[EB/OL]. (2016-01-01). www.ars.usda.gcv/services/docs/htm?docid=8921.

        [7] 李廣輝,魏世強(qiáng). 土壤溶質(zhì)運(yùn)移特性研究進(jìn)展[J]. 土壤通報(bào),2003,34(6):576-578.Li Guanghui, Wei Shiqiang. Progress in the study of soil solute transport in soil-water system[J]. Chinese Journal of Soil Science, 2003, 34(6): 576-578. (in Chinese with English abstract)

        [8] 王文,劉永偉,寇小華,等. 基于集合卡爾曼濾波和HYDRUS-1D模型的土壤剖面含水量同化試驗(yàn)[J]. 水利學(xué)報(bào),2012,43(11):1302-1311.Wang Wen, Liu Yongwei, Kou Xiaohua, et al. EnKF and HYDRUS-1D based data assimilation experiments for improving soil moisture profile prediction[J]. Journal of Hydraulic Engineering, 2012, 43(11): 1302-1311. (in Chinese with English abstract)

        [9] 李新,黃春林,車濤,等. 中國(guó)陸面數(shù)據(jù)同化系統(tǒng)研究的進(jìn)展與前瞻[J]. 自然科學(xué)進(jìn)展,2007,17(2):163-173.Li Xin, Huang Chunlin, Che Tao, et al. Progress and prospect of land surface data assimilation system in China[J].Advances in Natural Science, 2007, 17(2): 163-173. (in Chinese with English abstract)

        [10] Pauwels R N, Verhoest E C, De Lannoy JM, et al.Optimization of a coupled hydrology-crop growth model through the assimilation of observed soil moisture and leaf area index values using an ensemble Kalman filter[J]. Water Resources Research, 2007, 430(4): 244-247.

        [11] Pipunio R C, Walker J P, Western A. Assimilation of remotely sensed data for improved latent and sensible heat flux prediction: A comparative synthetic study[J]. Remote Sensing of Environment, 2008, 112 (4): 1295-1305.

        [12] 丁建麗,瞿娟,孫勇猛,等. 基于MSAVI-WI特征空間的新疆渭干河-庫(kù)車河流域綠洲土壤鹽漬化研究[J]. 地理研究,2013,32(2):224-232.Ding Jianli, Qu Juan, Sun Yongmeng. The retrieval model of soil salinization information in arid region based on MSAVI-WI feature space: A case study of the delta oasis in Weigan-Kuqa watershed[J]. Geographical Research, 2013,32(2): 224-232. (in Chinese with English abstract)

        [13] 姚遠(yuǎn),丁建麗,雷磊,等. 干濕季節(jié)下基于遙感和電磁感應(yīng)技術(shù)的塔里木盆地北緣綠洲土壤鹽分的空間變異性[J].生態(tài)學(xué)報(bào),2013,33(17):5306-5318.Yao Yuan, Ding Jianli, Lei Lei, et al. Monitoring spatial variability of soil salinity in dry and wet seasons in the North Tarim Basin using remote sensing and electromagnetic induction instruments[J]. Acta Ecologica Sinica, 2013,33(17): 5306-5318. (in Chinese with English abstract)

        [14] 江紅南,丁建麗,塔西甫拉提?特依拜,等. 基于ETM+數(shù)據(jù)的干旱區(qū)鹽漬化土壤信息提取研究[J]. 土壤學(xué)報(bào),2008,45(2):222-228.Jiang Hongnan, Ding Jianli, Tahiplot Tiyip, et al. Extraction of salinized soil information in arid area based on ETM+date[J]. Acta Pedologica Sinica, 2008, 45(2): 222-228. (in Chinese with English abstract)

        [15] 張喆,丁建麗,李鑫,等. TVDI用于干旱區(qū)農(nóng)業(yè)旱情監(jiān)測(cè)的適宜性[J]. 中國(guó)沙漠,2015,35(1):220-227.Zhang Zhe, Ding Jianli, Li Xin, et al. Suitability of TVDI for agricultural drought monitoring in arid area[J]. Journal of Desert Research, 2015, 35(1): 220-227. (in Chinese with English abstract)

        [16] 任理. 有限解析法在求解非飽和土壤水流問(wèn)題中的應(yīng)用[J]. 水利學(xué)報(bào),1990(10):55-61.Ren Li. Application of finite analytic method in solving unsaturated soil water flow[J]. Journal of Hydraulic Engineering, 1990(10): 55-61. (in Chinese with English abstract)

        [17] 李紅軍,鄭力,雷玉平,等. 植被指數(shù)-地表溫度特征空間研究及其在旱情監(jiān)測(cè)中的應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2006,22(11):170-174.Li Hongjun, Zheng Li, Lei Yuping, et al. Vegetation index-surface temperature feature space and its application in the regional drought monitoring[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(11): 170-174. (in Chinese with English abstract)

        [18] 于敏,高玉中,張洪玲. 地表溫度植被指數(shù)特征空間干旱監(jiān)測(cè)方法的改進(jìn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(9):243-250.Yu Min, Gao Yuzhong, Zhang Hongling. Improvement of Ts-NDVI space method in drought monitoring[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(9): 243-250. (in Chinese with English abstract)

        [19] Lambin E F, Ehrlich D. Combing vegetation indices and surface temperature for land-cover mapping at broad spatial scales[J]. International Journal of Remote Sensing, 1995,16(3): 573-579.

        [20] Sandholt I, Rasmussen K, Andersen J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[J]. Remote Sensing of Environment, 2002, 79(2/3): 213-224.

        [21] Newsha K A, Gupta H, Wagener T, et al. Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system[J]. Journal of Hydrology, 2004(298):112-135.

        [22] Burgers G, van Leeuwen P J, Evensen G. Analysis scheme in the ensemble Kalman filter[J].Monthly Weather Review,1998(126): 1719-1724.

        [23] Houser P R, Shuttleworth W J, Famiglietti J S, et al.Integration of soil moisture remote sensing and hydrologic modeling using data assimilation[J]. Water Resources Research, 1998,34(12): 3405-3420.

        [24] Gu Y, Brown J F, Verdin J P. A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States[J]. Geophysical Research Letters, 2007, 34(L06407): 1-6.

        [25] Waston, Rowen Offield. Application of thermal modeling in the geologic interpretation of IR images[J]. Remote Sensing of Environment, 1971(3): 2017-2041.

        [26] Rahimzadeh-Bajgiran Parinaz, Berg A A, Champagne C.Estimation of soil moisture using optical/thermal infrared remote sensing in the Canadian Prairies[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 83(4): 94-103.

        [27] Verstraeten W Willem, Veroustraete F, van der Sande C J.Soil moisture retrieval using thermal inertia, determined with visible and thermal spaceborne data, validated for European forests[J]. Remote Sensing of Environment, 2006, 101(3):299-314.

        [28] Crow W T, Kustas W P, Prueger J H. Monitoring rootzone soil moisture through the assimilation of a thermal remote sensing-based soil moisture proxy into a water balance model[J]. Remote Sensingof Environment, 2008, 112(4): 1268-1281.

        [29] 張學(xué)峰,黃人吉,章本照,等. 集合數(shù)據(jù)同化方法的發(fā)展與應(yīng)用概述[J]. 海洋學(xué)研究,2007,25(3):89-96.Zhang Xuefeng, Huang Renji, Zhang Benzhao, et al. The developments and applications of ensemble-based data assimilation methods[J]. Journal of Marine Science, 2007,25(3): 89-96. (in Chinese with English abstract)

        Improving monitoring precision of soil moisture by assimilation of HYDRUS model and remote sensing-based data by ensemble Kalman filter

        Ding Jianli, Chen Wenqian, Wang Lu
        (1.College of Resources and Environment Science, Xinjiang University, Urumqi830046,China;2.Key Laboratory of Oasis Ecosystem of Education Ministry, Xinjiang University, Urumqi830046,China)

        Soil moisture as an important part of hydrology, atmosphere and land surface, is an essential link of surface water and groundwater, and it is also a key parameter to describe the exchange of energy for land, atmosphere and vegetation.Therefore, it is of great significance to accurately estimate soil moisture content in arid area due to its huge value for food security and water and soil conservation. This study investigated the feasibility of soil moisture estimation by assimilating HYDRUS model and remote sensing-based data using ensemble Kalman filter. The study area is located in the Weigan River and Kuqa River Delta in the southern Xinjiang region of Xinjiang Uygur Autonomous, developed by the Kuqa River and the Weigan River, which is the most representative arid oasis in the southern Xinjiang. Temperature-vegetation drought index(TVDI) was adopted as an observation operator, and ensemble Kalman filter (En-KF) method was applied to one-dimensional hydrological model (HYDRUS-1D) to simulate surface soil moisture. Soil samples from 39 points were collected for soil moisture measurement. The main conclusions included: 1) According to the TVDI feature space, the soil moisture was higher in the middle area (agricultural irrigation area) with high vegetation coverage, while in the oasis and desert transitional zone,soil moisture was low with low vegetation. In order to verify the error between the remote sensing image and the measured data, 10 samples were randomly selected from the 39 soil samples to simulate the soil moisture based on the TVDI feature space. The relative error between measured data and the remote sensing data was 13.06%, indicating that the soil moisture estimated by remote sensing was reliable and the estimated value could be considered as the measured data when the measured data were not available for some reasons; 2) Because the remote sensing inversion was mostly effective for the surface soil, the data for only 0-10 cm surface soil was used for the further assimilation analysis. The change in 0-10 cm soil moisture estimated by assimilation method and HYDRUS mod el from September 3rdto December 9thin 2013, a total of 98 days,showed that there was obvious difference between the HYDRUS model simulated results and the the measured data, especially before 18 day; 3)Verifying the assimilation results using the other 29 soil samples showed that the relative error between the assimilated results and measured results were 8% and that between the HYDRUS model simulated results with the measured results was 13%. The root mean square error between the measured results and assimilated and HYDRUS model simulated results was 9% and 10%, respectively. The accuracy of the assimilation result was higher than that of the HYDRUS model simulation. Compared with using HYDRUS-1D model alone, the estimating accuracy of surface soil moisture improved significantly by the integration of HYDRUS 1D model and Kalman Filter methods. The root mean square error and average relative error were decreased by 1 and 5 percent points, respectively. Thus, the En-KF algorithm can be used to simulate the dynamic changes of soil moisture in the model. Our experiments demonstrated the great potential of multi-source remote sensing data for the data assimilation of surface soil moistures. It is an effective method of improving the estimating accuracy of soil moisture in arid area.

        soil moisture; remote sensing; assimilation; HYDRUS model; ensemble Kalman filter; feature space TVDI

        10.11975/j.issn.1002-6819.2017.14.023

        S161.4

        A

        1002-6819(2017)-14-0166-07

        丁建麗,陳文倩,王 璐. HYDRUS模型與遙感集合卡爾曼濾波同化提高土壤水分監(jiān)測(cè)精度[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(14):166-172.

        10.11975/j.issn.1002-6819.2017.14.023 http://www.tcsae.org

        Ding Jianli, Chen Wenqian, Wang Lu. Improving monitoring precision of soil moisture by assimilation of HYDRUS model and remote sensing-based data by ensemble Kalman filter[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2017, 33(14): 166-172. (in Chinese with English abstract)

        doi:10.11975/j.issn.1002-6819.2017.14.023 http://www.tcsae.org

        2016-11-04

        2017-05-10

        國(guó)家自然科學(xué)基金(U1303381、41261090);自治區(qū)重點(diǎn)實(shí)驗(yàn)室專項(xiàng)基金(2016D03001);自治區(qū)科技支疆項(xiàng)目(201591101);教育部促進(jìn)與美大地區(qū)科研合作與高層次人才培養(yǎng)項(xiàng)目;新疆大學(xué)優(yōu)秀博士生科技創(chuàng)新項(xiàng)目(XJUBSCX-2016014)

        丁建麗,男,新疆烏魯木齊人,教授,博士生導(dǎo)師,主要從事干旱區(qū)生態(tài)環(huán)境遙感研究。烏魯木齊 新疆大學(xué)資源與環(huán)境科學(xué)學(xué)院,830046。

        Email:watarid@xju.edu.cn

        猜你喜歡
        土壤水分表層反演
        反演對(duì)稱變換在解決平面幾何問(wèn)題中的應(yīng)用
        半潛式平臺(tái)表層卡套管處理與認(rèn)識(shí)
        海洋石油(2021年3期)2021-11-05 07:43:10
        水體表層沉積物對(duì)磷的吸收及釋放研究進(jìn)展
        基于低頻軟約束的疊前AVA稀疏層反演
        基于自適應(yīng)遺傳算法的CSAMT一維反演
        西藏高原土壤水分遙感監(jiān)測(cè)方法研究
        氬弧熔覆原位合成Ti(C,N)-WC增強(qiáng)鎳基表層復(fù)合材料的研究
        焊接(2015年6期)2015-07-18 11:02:25
        疊前同步反演在港中油田的應(yīng)用
        不同覆蓋措施對(duì)棗園土壤水分和溫度的影響
        超聲波光整強(qiáng)化40Cr表層顯微硬度研究
        99精品人妻少妇一区二区三区| 午夜一区欧美二区高清三区| 亚洲色大成网站www久久九| 天堂8中文在线最新版在线 | 国产精品vⅰdeoxxxx国产| 又色又爽又高潮免费视频观看| 四虎国产精品免费久久| 亚洲欧美日韩综合在线观看| 免费看国产成年无码av| 国产亚洲亚洲精品视频| 久久久国产精品首页免费| 一本大道综合久久丝袜精品| 日产一区一区三区区别| 中文字幕国产精品一二三四五区| 亚洲精品中文幕一区二区| 少妇被粗大的猛烈进出69影院一 | 成人久久精品人妻一区二区三区| 亚洲高清国产一区二区| 亚欧色一区w666天堂| 欧美一级欧美一级在线播放| 亚洲嫩模高清在线视频| 强d漂亮少妇高潮在线观看| 久久最黄性生活又爽又黄特级片| 丰满少妇被爽的高潮喷水呻吟| 亚洲欧美国产精品久久| 久久亚洲sm情趣捆绑调教| 色伊人国产高清在线| 日韩国产一区二区三区在线观看| 亚洲国产婷婷六月丁香| 欧美巨大巨粗黑人性aaaaaa| 亚洲综合色婷婷久久| 91久久精品一区二区| 国产情侣一区二区| 久久99精品久久水蜜桃| 天躁夜夜躁狼狠躁| 人妻少妇人人丰满视频网站| 日本免费三片在线播放| 4455永久免费视频| 中日av乱码一区二区三区乱码| 亚洲精品乱码久久久久久麻豆不卡| 久久91精品国产91久久麻豆|