牛麗霞+鄭繪霞+梁建芳+肖虹
【摘要】 目的:研究Flavopiridol對胃腸道間質(zhì)瘤細胞GIST882增殖、侵襲、凋亡及細胞周期的影響。方法:體外培養(yǎng)GIST882細胞至指數(shù)增長期,采用不同濃度的Flavopiridol對其進行干預(yù),MTT法檢測細胞增殖活性,Transwell小室實驗檢測細胞侵襲能力,流式細胞術(shù)檢測凋亡及周期比例,western-blot檢測CDK1,CDK2及caspase3蛋白的表達。結(jié)果:Flavopiridol呈濃度和時間依賴性抑制GIST882細胞增殖;Flavopiridol作用后GIST882細胞穿膜數(shù)量減少,侵襲能力降低,細胞凋亡率及G0/G1期比例增加,CDK1及CDK2蛋白的表達逐漸降低,caspase-3蛋白的表達逐漸增高。結(jié)論:Flavopiridol可抑制GIST882細胞增殖、降低侵襲力、阻滯細胞周期并誘導(dǎo)細胞凋亡,其抗腫瘤效應(yīng)可能成為胃腸道間質(zhì)瘤新的治療途徑。
【關(guān)鍵詞】 胃腸道間質(zhì)瘤; Flavopiridol; 增殖; 凋亡; 侵襲; 細胞周期
【Abstract】 Objective:To investigate the effect of Flavopiridol on the proliferation,invasion,apoptosis and cell cycle of gastrointestinal stromal tumors(GIST) cells GIST882.Method:GIST882 was cultured in vitro,flavopiridol was administered at different concentrations,MTT assay was used to detect cell proliferation,transwell chamber assay was used to detect cell invasion,flow cytometry was used to detect apoptosis and cell cycle,the expression of CDK1,CDK2 and caspase3 protein was detected by western-blot.Result:Flavopiridol inhibited the growth of GIST882 cells in a concentration-dependent and time-dependent way.Flavopiridol can reduce the ability of invasion,the apoptosis rate and G0/G1 phase ratio of GIST882 cells were increased after Flavopiridol treatment,the expression of CDK1 and CDK2 protein were decreased and caspase-3 protein was increased after Flavopiridol treatment.Conclusion:Flavopiridol can inhibit the proliferation of GIST882 cells,decrease the invasion capacities,block the cell cycle and induce apoptosis,the antitumor effect of Flavopiridol may be applicable on the treatment of gastrointestinal stromal tumors.
【Key words】 Gastrointestinal stromal tumor; Flavopiridol; Proliferation; Apoptosis; Invasion; Cell cycle
doi:10.3969/j.issn.1674-4985.2017.20.007
胃腸道間質(zhì)瘤(Gastrointestinal stromal tumor,GIST)是一種特殊起源的間葉源性腫瘤,對常規(guī)放化療不敏感,臨床主要以外科治療為主[1-2]。以甲磺酸伊馬替尼(imatinib)為代表的靶向藥物是一類酪氨酸激酶抑制劑,可作用于c-kit或PDGFRα,抑制腫瘤生長,改善患者預(yù)后[3-4]。然而,伊馬替尼的耐藥問題使其應(yīng)用受限,部分患者不能從中獲益[5]。Flavopiridol是一種黃酮類抗癌新藥,主要通過抑制細胞周期依賴性蛋白激酶的活性發(fā)揮腫瘤抑制作用[6-7],據(jù)報道Flavopiridol可抑制c-kit mRNA表達,下調(diào)c-kit啟動子活性,通過酪氨酸殘基自身磷酸化作用抑制或減弱c-kit轉(zhuǎn)錄,可能成為治療GIST的另一個選擇[8-9]。本研究以GIST882細胞為研究對象,觀察Flavopiridol對細胞增殖、侵襲、凋亡及相關(guān)蛋白表達的影響,為胃腸道間質(zhì)瘤的研究提供新的思路,現(xiàn)報道如下。
1 材料與方法
1.1 實驗材料 Flavopiridol,噻唑藍MTT粉及碘化丙啶PI由美國Sigma提供;DMEM高糖培養(yǎng)基、胰酶、胎牛血清及hanks平衡鹽溶液由美國Thermo提供;青鏈霉素雙抗液及PBS液由武漢博士德提供;細胞凋亡檢測試劑盒由美國beckman提供;CDK1,CDK2及caspase-3一抗由美國santa-cruz提供。
1.2 細胞培養(yǎng)及藥物干預(yù) 人GIST882細胞由華中科技大學(xué)同濟醫(yī)學(xué)院王國平教授惠贈。常規(guī)復(fù)蘇后采用含10%胎牛血清的DMEM高糖培養(yǎng)基培養(yǎng),孵箱溫度37 ℃,飽和濕度,每天更換培養(yǎng)基一次,待細胞生長至指數(shù)增長期時胰酶消化傳代。實驗分為五組,F(xiàn)lavopiridol濃度依次為0 nmol/L(對照組),10、100、500及1000 nmol/L組。endprint
1.3 MTT實驗 將GIST882細胞胰酶消化懸浮,計數(shù)調(diào)整細胞密度為1×104,均勻接種于96孔板內(nèi),待細胞生長至指數(shù)增長期時更換含有不同濃度Flavopiridol的培養(yǎng)液,每組藥物設(shè)立6個重復(fù)孔。分別于加藥后12、24、36、48、72 h進行MTT檢測:加入20 μL MTT(0.5%)繼續(xù)培養(yǎng)4 h,棄去液體,加入150 μL DMSO,水平搖床輕搖5 min,上酶標(biāo)儀檢測490 nm波長下的吸光度值(A)。計算細胞生長抑制率:抑制率(%)=1-藥物孔A/對照孔A×100%。
1.4 侵襲實驗 將GIST882細胞懸浮后接種于transwell小室上層,細胞密度1×104,上層血清濃度為10%,含不同濃度的Flavopiridol。下層血清濃度為20%。置于孵箱培養(yǎng)24 h后去除上層的細胞,中性福爾馬林固定,蘇木素染色。觀察細胞穿膜情況,顯微鏡下隨機計數(shù)10個200倍視野細胞數(shù)量,取平均值。
1.5 細胞凋亡及周期檢測 計數(shù)并調(diào)整GIST882細胞密度為1×104個/mL,接種到6孔板中,細胞至指數(shù)增長期時加入不同濃度的Flavopiridol,24 h時檢測細胞凋亡比例:按照Annexin-V-FITC細胞凋亡檢測試劑盒步驟進行,上流式細胞儀檢測,數(shù)據(jù)采用儀器自帶CELLquest軟件進行分析;細胞周期采用PI標(biāo)記法檢測,冷卻的PBS液及70%乙醇處理細胞,加入PI及RNaseA,上機檢測,CELLquest軟件進行分析。
1.6 western-blot實驗 不同濃度Flavopiridol作用后72 h,胰酶消化后收集各組GIST882細胞,提取細胞總蛋白,標(biāo)準(zhǔn)曲線法檢測蛋白濃度。10%聚丙烯酰胺SDS凝膠電泳,濕轉(zhuǎn)法轉(zhuǎn)膜至硝酸纖維素膜,蛋白干粉封閉,分別滴加一抗(CDK1∶CDK2濃度1∶600;caspase-3:β-actin濃度1∶800),4 ℃過夜孵育,滴加二抗(濃度1∶3000),化學(xué)發(fā)光成像顯影,目的蛋白的相對表達量以其灰度值與內(nèi)參的灰度值比值表示。
1.7 統(tǒng)計學(xué)處理 采用SPSS 18.0軟件對所得數(shù)據(jù)進行統(tǒng)計分析,計量資料用(x±s)表示,多組資料比較采用one-way-ANOVA,兩兩比較采用t檢驗,檢驗水準(zhǔn)α=0.05,P<0.05為差異有統(tǒng)計學(xué)意義。
2 結(jié)果
2.1 MTT實驗結(jié)果 由吸光度值計算所得的細胞生長抑制曲線可以看出,F(xiàn)lavopiridol對GIST882細胞的增殖具有抑制作用,隨著濃度的增加和時間的延長,抑制率逐漸增高。其中500 nmol/L自48 h開始抑制率大于50%,1000 nmol/L自24 h開始抑制率大于50%,即有效抑制濃度,見圖1。
2.2 侵襲實驗結(jié)果 經(jīng)Flavopiridol作用24 h后,對照組,10、100、500及1000 nmol/L組細胞通過半透膜的平均數(shù)目依次為(28.4±5.2)、(26.1±6.9)、(19.6±5.8)、(13.5±7.7)、(9.6±4.2)個。其中,100、500及1000 nmol/L組與對照組比較,差異均有統(tǒng)計學(xué)意義(P<0.05),見圖2。
2.3 細胞凋亡及周期檢測結(jié)果 不同濃度的Flavopiridol作用24 h時,GIST882細胞凋亡比例增高,其中100、500及1000 nmol/L組與對照組相比差異均有統(tǒng)計學(xué)意義(P<0.05);細胞周期檢測結(jié)果表明:G0/G1期細胞比例增高,S期細胞比例下降,其中500、1000 nmol/L組與對照組比較,差異均有統(tǒng)計學(xué)意義(P<0.05),見表1和圖3。
2.4 western-blot實驗結(jié)果 Western-blot結(jié)果顯示,經(jīng)Flavopiridol作用后,GIST882細胞CDK1及CDK2蛋白的表達逐漸降低,caspase-3蛋白的表達逐漸增高,見圖4。與對照組相比,CDK1及caspase-3自500 nmol/L組起差異均有統(tǒng)計學(xué)意義(P<0.05),CDK2自100 nmol/L組起差異均有統(tǒng)計學(xué)意義(P<0.05),見圖5。
3 討論
GIST是一類具有獨立起源的間葉源性腫瘤,即使很小的腫瘤也具有潛在惡性[10],臨床及病理以危險度進行分級,所有GIST都具有復(fù)發(fā)和轉(zhuǎn)移的風(fēng)險[11]。目前,GIST的治療以手術(shù)輔以靶向治療為主,2002年,伊馬替尼正式于美國上市,作為治療GIST的一線方案用藥,伊馬替尼極大地改善了無法進行外科治療、手術(shù)復(fù)發(fā)以及轉(zhuǎn)移性GIST患者[12-13]。伊馬替尼臨床治療中原發(fā)及繼發(fā)耐藥問題是其應(yīng)用受限的主要原因,Antonescu等[14]的研究顯示,約10%的患者存在原發(fā)耐藥,且隨著治療的進行,約50%的患者對伊馬替尼產(chǎn)生耐藥性。目前,對于伊馬替尼的耐藥問題臨床尚無較好的對策。
生理狀態(tài)下的細胞增殖受細胞周期調(diào)控機制的嚴格控制,腫瘤發(fā)展過程中,細胞周期監(jiān)控失調(diào),導(dǎo)致細胞進入失控性生長狀態(tài)[15-16]。Flavopiridol的作用靶點主要是細胞周期蛋白依賴激酶(Cyclin-dependent kinase,CDK),通過抑制CDKs活性,導(dǎo)致細胞周期發(fā)生阻滯,進而抑制腫瘤細胞的增殖[17]。目前,F(xiàn)lavopiridol已進入臨床Ⅱ期實驗階段,對肝細胞癌、卵巢上皮性癌、白血病等多種腫瘤具有較為顯著的療效[18-20]。
本研究MTT結(jié)果顯示,F(xiàn)lavopiridol可抑制GIST882細胞的增殖活性,細胞生長曲線提示該作用具有濃度和時間依賴性,500 nmol/L濃度48 h以及1000 nmol/L 24 h時,生長抑制了大于50%,達到有效抑制濃度。經(jīng)Flavopiridol作用后,GIST882細胞穿過transwell半透膜的數(shù)目減少,說明腫瘤細胞的侵襲能力降低。誘導(dǎo)細胞凋亡是抗腫瘤藥物發(fā)揮作用的重要機制,caspase-3蛋白是細胞凋亡的重要執(zhí)行因子,是caspase介導(dǎo)的凋亡途徑中的關(guān)鍵效應(yīng)水解酶,活化的caspase-3可使參與細胞增殖、周期調(diào)控、DNA損傷修復(fù)等蛋白激酶失活,誘發(fā)細胞凋亡。本研究結(jié)果顯示Flavopiridol作用后GIST882細胞凋亡比例增高,caspase-3的表達上調(diào),提示Flavopiridol可能通過凋亡途徑發(fā)揮增殖抑制作用。細胞周期分析顯示:Flavopiridol可使GIST882細胞阻滯于G0/G1期,導(dǎo)致S期細胞含量相對下降,并伴隨著CDK1及CDK2蛋白的表達下調(diào)。endprint
綜上所述,本研究結(jié)果證實Flavopiridol在體外對GIST882細胞具有一定的抗腫瘤效應(yīng),為GIST的研究提供了新的思路和實驗依據(jù)。相信隨著臨床實驗的進一步開展,以Flavopiridol為代表的CDKs抑制劑將會給GIST患者帶來新的曙光。
參考文獻
[1] Miettinen M,Sobin L H,Lasota J.Gastrointestinal stromal tumors of the stomach:a clinicopathologic,immunohistochemical,and molecular genetic study of 1765 cases with long-term follow-up[J].Am J Surg Pathol,2005,29(1):52-68.
[2] Miettinen M,Lasota J.Gastrointestinal stromal tumors[J].Gastroenterol Clin North Am,2013,42(2):399-415.
[3] Eisenberg B L,Trent J C.Adjuvant and neoadjuvant imatinib therapy:current role in the management of gastrointestinal stromal tumors[J].In J Cancer,2011,129(11):2533-2542.
[4] Verweij J,Casali P G,Zalcberg J,et al.Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib:randomised trial[J].Lancet,2004,364(9440):1127-1134
[5] Demetri C D,von M M,Blanke C D,et al.Efficacy and satety of imatinib mesylate in advanced gastrointestinal stromal tumors[J].
N Engl J Med,2002,347(7):472-480.
[6] Maddocks K,Wei L,Rozewski D,et al.Reduced occurrence of tumor flare with flavopiridol followed by combined flavopiridol and lenalidomide in patients with relapsed chronic lymphocytic(CLL)[J].Am J Hematol,2015,90(4):327-333.
[7] Aktug H,Acikgoz E,Uysal A,et al.Comparison of cell cycle components,apoptosis and cytoskeleton-related molecules and therapeutic effects of flavopiridol and geldanamycin on the mouse fibroblast,lung cancer and embryonic stem cells[J].Tumour Biol,2016,37(9):12 423-12 440.
[8] Sambol E B,Am brosini G,Geha R C,et al.Flavopirido targets c-KIT transcription and induces apoptosis in gastrointestinaI stromal tumor cells[J].Cancer Res,2006,66(11):5858-5866.
[9] Kruse U,Pallasch C P,Bantscheff M,et al.Chemoproteomics-based kinome profiling and target deconvolution of clinical multi-kinase inhibitors in primary chronic lymphocytic leukemia cells[J].Leukemia,2011,25(1):89-100.
[10] Demetri G D,Von M M,Blanke C,et al.Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors[J].
N Eng J Med,2002,247(7):472-480.
[11] Fletcher C D,Berman J J,Corless C,et al.Diagnosis of gastrointestinal stromal tumors:A consensus approach[J].Hum Pathol,2002,33(5):459-465.
[12] Joensuu H,Eriksson M,Hallk S,et al.One vs three years of adjuvant imatinib for operable gastrointestinal stromal tumor:a randomized trial[J].Jama,2012,307(12):1265-1272.endprint
[13] Gao J,Tian Y,Li J,et al.Secondarymutations of c-KIT contribute to acquired resistance to imatinib and decrease efficacy of sunitinib in Chinese patients with gastrointestinal stromal tumors[J].Medi Oncol,2013,30(2):1-7.
[14] Antonescu C R,Besmer P,Guo T,et al.Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation[J].Clin Cancer Res,2005,11(11):4182-4190.
[15] Otto T,Sicinski P.Cell cycle proteins as promising targets in cancer therapy[J].Nat Rev Cancer,2017,17(2):93-115.
[16] Di G C,Novellino E,Chilin A,Investigational drugs targeting cyclin-dependent kinases for the treatment of cancer:an update on recent findings(2013-2016)[J].Expert Opin Investig Drugs,2016,25(10):1215-1230.
[17] Roskoski R.Cyclin-dependent protein kinase inhibitors including palbociclib as anticancer drugs[J].Pharmacol Res,2016,107:249-275.
[18] Ang C,OReilly E M,Carvajal R D,et al.A nonrandomized,phase Ⅱ study of sequential irinotecan and flavopiridol in patients with advanced hepatocellular carcinoma[J].Gastrointest Cancer Res,2012,5(6):185-189.
[19]宋悅,沈鏗,徐峰.靶向調(diào)控的活性半胱氨酸天冬氨酸蛋白酶3聯(lián)合細胞周期蛋白依賴性激酶抑制劑flavopiridol對卵巢上皮性癌的治療作用[J].中華婦產(chǎn)科雜志,2010,45(10):781-786.
[20] Zeidner J F,Karp J E.Clinical activity of alvocidib(flavopiridol) in acute myeloid leukemia[J].Leuk Res,2015,39(12):1312-1318.endprint