劉艷利,黨燕娜,段玉蘭,楊小軍
?
雞原代肝細(xì)胞培養(yǎng)及葉酸對(duì)脂質(zhì)代謝相關(guān)基因表達(dá)的影響
劉艷利,黨燕娜,段玉蘭,楊小軍
(西北農(nóng)林科技大學(xué)動(dòng)物科技學(xué)院,陜西楊凌 712100)
腹脂沉積是目前家禽養(yǎng)殖過(guò)程中的一個(gè)普遍現(xiàn)象。與哺乳動(dòng)物不同,家禽的脂質(zhì)代謝主要發(fā)生在肝臟,前人很多研究發(fā)現(xiàn)葉酸和IGF2均參與調(diào)控動(dòng)物的脂質(zhì)代謝,因此,試驗(yàn)旨在建立雞原代肝細(xì)胞培養(yǎng)條件,并研究葉酸對(duì)雞原代肝細(xì)胞脂質(zhì)代謝相關(guān)基因表達(dá)的影響,為體外探究葉酸調(diào)控家禽脂質(zhì)代謝機(jī)制提供依據(jù)。采用膠原酶消化配合雞淋巴細(xì)胞分離液純化法分離得到雞原代肝細(xì)胞,用高碘酸希夫氏染色方法進(jìn)行肝細(xì)胞鑒定;同時(shí)分離得到的肝細(xì)胞用正常培養(yǎng)基培養(yǎng)36 h后,更換含不同葉酸濃度的培養(yǎng)基(0,1,5,10,15,和20 mg·L-1),每個(gè)葉酸濃度6個(gè)重復(fù),處理12 h后收集上清液,并收集細(xì)胞提取總RNA,用RT-qPCR法檢測(cè)基因相對(duì)表達(dá)量,MTT法檢測(cè)細(xì)胞增殖,商業(yè)試劑盒方法檢測(cè)上清液中LDH含量。并分析基因表達(dá)之間的相關(guān)性以及葉酸劑量與基因表達(dá)之間的回歸關(guān)系。采用膠原酶消化配合雞淋巴細(xì)胞分離液純化法可以獲得分離效果好且純度高的雞肝細(xì)胞;不同劑量的葉酸沒(méi)有影響肝細(xì)胞培養(yǎng)液中的LDH活性(>0.05),也沒(méi)有對(duì)肝細(xì)胞的增殖產(chǎn)生影響(>0.05);與1 mg·L-1劑量的葉酸對(duì)照組相比,10、15和20 mg·L-1的葉酸顯著降低了肝細(xì)胞IGF2以及與脂質(zhì)合成代謝有關(guān)的ACC和FAS基因的表達(dá)(<0.05),但葉酸并沒(méi)有對(duì)雞肝細(xì)胞中與脂質(zhì)分解代謝有關(guān)的CPT1和PPARα基因的表達(dá)產(chǎn)生影響(>0.05);并且雞肝細(xì)胞中ACC和FAS基因的表達(dá)與IGF2存在一定的正相關(guān)(<0.05);除此之外,雞肝細(xì)胞IGF2,F(xiàn)AS和ACC的表達(dá)與葉酸劑量也存在著線(xiàn)性和二次曲線(xiàn)的回歸關(guān)系(<0.05)。葉酸的添加可降低雞原代肝細(xì)胞中與脂肪酸合成相關(guān)基因的表達(dá),并且FAS和ACC基因的表達(dá)可能與IGF2具有正相關(guān)關(guān)系;本試驗(yàn)中葉酸的最適劑量為15 mg·L-1。
葉酸;IGF2;肝細(xì)胞;脂質(zhì)代謝;雞
【研究意義】在目前的家禽養(yǎng)殖過(guò)程中,畜牧工作者長(zhǎng)期偏重生產(chǎn)性能選育的同時(shí)也出現(xiàn)了體脂沉積過(guò)度等問(wèn)題,其不僅影響家禽的肉、蛋產(chǎn)量和品質(zhì),由其引發(fā)的腹水癥等代謝疾病也會(huì)給養(yǎng)禽業(yè)帶來(lái)巨大的經(jīng)濟(jì)損失。與哺乳動(dòng)物不同,雞體內(nèi)90%—95%的脂肪合成主要發(fā)生在肝臟器官[1],故而,體外研究家禽的脂質(zhì)代謝應(yīng)該首選原代肝細(xì)胞模型。家禽的脂質(zhì)沉積除了受遺傳和環(huán)境等因素的影響外,營(yíng)養(yǎng)水平也對(duì)其起重要作用,近些年來(lái),關(guān)于通過(guò)營(yíng)養(yǎng)素途徑來(lái)調(diào)控家禽脂質(zhì)代謝的報(bào)道越來(lái)越多[2-4],因此,體外建立雞原代肝細(xì)胞培養(yǎng)體系,對(duì)探究營(yíng)養(yǎng)素調(diào)控家禽脂質(zhì)代謝的分子機(jī)制具有重要意義?!厩叭搜芯窟M(jìn)展】有研究表明,日糧葉酸的添加可以降低豬血清中膽固醇[5]和甘油三脂[6]的含量;母鼠飼喂含5 mg·kg-1葉酸的日糧可顯著降低小鼠血清甘油三脂濃度[7]。日糧單獨(dú)添加1.5 mg·kg-1葉酸或者混合添加煙酸60 mg·kg-1與葉酸1.5 mg·kg-1均顯著降低了肉雞的腹脂率[8];喻小瓊的研究指出種雞日糧高的葉酸添加量能降低后代出殼時(shí)脂肪酸合成基因的表達(dá)[3]。除此之外,有研究報(bào)道給妊娠期和哺乳期的小鼠飼喂高脂日糧能夠提高子代肝臟IGF2、PPARα和CPT1的表達(dá),指出IGF2可能參與調(diào)控脂質(zhì)代謝[9]。【本研究切入點(diǎn)】家禽腹脂率高的問(wèn)題會(huì)給養(yǎng)殖業(yè)帶來(lái)一定的損失,SPENCER等[10]研究表明雞被植入人重組IGF2后能顯著提高腹脂率;并且IGF2基因也被研究表明與雞脂肪性狀有關(guān),可作為候選基因去選育低腹脂雞品系[11],因此IGF2基因在家禽中與脂質(zhì)代謝有關(guān)。家禽養(yǎng)殖中本研究團(tuán)隊(duì)前期研究指出葉酸能改變雞脾臟和胸腺I(mǎi)GF2的表達(dá)[12]。但葉酸和IGF2在家禽的脂質(zhì)代謝中究竟如何發(fā)揮調(diào)控作用?它們之間又存在怎樣的內(nèi)在聯(lián)系?很少有關(guān)于這方面的報(bào)道?!緮M解決的關(guān)鍵問(wèn)題】葉酸作為營(yíng)養(yǎng)素在機(jī)體內(nèi)的代謝較為復(fù)雜,無(wú)法直接進(jìn)行機(jī)制探究,故本試驗(yàn)通過(guò)建立體外培養(yǎng)雞原代肝細(xì)胞模型,探究葉酸對(duì)雞原代肝細(xì)胞脂質(zhì)代謝相關(guān)基因表達(dá)的影響,為體外探究葉酸調(diào)控家禽脂質(zhì)代謝機(jī)制提供依據(jù)。
1日齡剛出殼的健康公雞,購(gòu)自陜西楊凌巨隆禽業(yè)有限公司。
葉酸、MTT和膠原酶IV購(gòu)自Sigma公司;Trizol、RNA反轉(zhuǎn)錄試劑盒和SYBR試劑盒購(gòu)自TaKaRa公司;RPMI 1640正常培養(yǎng)基、無(wú)葉酸培養(yǎng)基以及青鏈霉素(雙抗)購(gòu)自Gibco公司;胎牛血清購(gòu)自南美BIOWEST公司;乳酸脫氫酶(LDH)和高碘酸希夫氏染色(PAS)試劑盒購(gòu)自南京建成生物工程研究所,雞淋巴細(xì)胞分離液和DMSO購(gòu)自索萊寶公司。
核酸定量分析儀(Nanodrop ND-1000);實(shí)時(shí)熒光定量PCR儀(iQ5),購(gòu)自Bio-Rad 公司;多功能酶標(biāo)儀(基因有限公司);細(xì)胞培養(yǎng)六孔板(美國(guó)康寧公司);離心機(jī)(Eppendorf);CO2培養(yǎng)箱;搖床;倒置顯微鏡。
試驗(yàn)雞處死后置于75%酒精中消毒15 min后轉(zhuǎn)至無(wú)菌超凈臺(tái),打開(kāi)腹腔取出肝臟浸到含有5×雙抗的PBS中進(jìn)行清洗;隨后用眼科剪子將肝臟剪成小碎塊,并用PBS低速離心清洗4遍;將干凈的組織碎塊轉(zhuǎn)至PBS配制的消化液中(含0.5 g·L-1的膠原酶IV和0.6 g·L-1的CaCl2)37℃恒溫?fù)u床消化50 min;細(xì)胞懸液分別經(jīng)100目和200目細(xì)胞篩過(guò)濾后,先50×g低速離心去除部分非實(shí)質(zhì)性肝細(xì)胞,然后用含1×雙抗的PBS 120 ×g離心清洗細(xì)胞3遍;將細(xì)胞制成懸液之后輕輕加至雞淋巴細(xì)胞分離液之上,250×g離心20min去除血細(xì)胞和非實(shí)質(zhì)性肝細(xì)胞,抽取分離液與細(xì)胞懸液界面的霧狀肝細(xì)胞懸液并用PBS清洗2遍,用培養(yǎng)基重懸細(xì)胞,計(jì)算細(xì)胞濃度后,按106·mL-1細(xì)胞密度接種到六孔板中,進(jìn)行試驗(yàn),按5×105·mL-1接種到培養(yǎng)皿進(jìn)行后續(xù)染色形態(tài)學(xué)觀察。消化體系中鈣離子濃度、膠原酶類(lèi)型及濃度確定參考陳黎龍和劉騰飛的方法[13-14],低速離心及淋巴細(xì)胞分離液去除血細(xì)胞和非實(shí)質(zhì)性肝細(xì)胞參考江青艷和Puviani的試驗(yàn)方法[15-16]。
細(xì)胞在12 h過(guò)夜貼壁后換液,培養(yǎng)36 h后細(xì)胞長(zhǎng)勢(shì)穩(wěn)定并出現(xiàn)融合交匯基本鋪滿(mǎn)板壁80%左右時(shí),開(kāi)始換處理培養(yǎng)基,處理培養(yǎng)基分別含0、1(正常對(duì)照培養(yǎng)基)、5、10、15和20 mg·L-1葉酸,每個(gè)葉酸濃度下6個(gè)重復(fù)。在處理12 h后,收集上清液,用PBS清洗細(xì)胞2遍后加Trizol,裂解5 min后用移液槍吹打收集裂解液,轉(zhuǎn)至﹣80℃保存。
細(xì)胞RNA的提取以及RNA反轉(zhuǎn)錄合成cDNA的過(guò)程均參照試劑盒說(shuō)明書(shū)進(jìn)行。熒光定量試驗(yàn)使用TaKaRa 公司的SYBR Premix Ex TaqTMII試劑盒,選用β-actin作內(nèi)參基因?;蛞镄蛄幸?jiàn)表1。RT-PCR的反應(yīng)程序?yàn)椋?5℃預(yù)變性10 min,95℃變性10 s,60℃退火30 s,72℃延伸 30 s,40個(gè)循環(huán)。采用2-△△Ct法計(jì)算基因相對(duì)表達(dá)量[17]。
細(xì)胞上清液中乳酸脫氫酶的酶活及細(xì)胞PAS染色進(jìn)行形態(tài)學(xué)觀察的步驟均參照試劑盒說(shuō)明書(shū)進(jìn)行操作。
表1 基因引物序列
細(xì)胞的培養(yǎng)處理方法同1.4,參照前人研究方法[18],在96孔板上每個(gè)葉酸濃度設(shè)置10個(gè)重復(fù),在處理結(jié)束前4 h,每孔加入20 μL MTT(5 g·L-1),輕輕拍打培養(yǎng)板四周使其均勻,處理結(jié)束后,去除培養(yǎng)液,每孔加入180 μL DMSO,搖床搖10 min,用酶標(biāo)儀檢測(cè)各孔的吸光度。
數(shù)據(jù)分析利用SPSS 20.0統(tǒng)計(jì)軟件,采用One-way ANOVA進(jìn)行單因素方差分析,并用Duncan法進(jìn)行多重比較,顯著性判斷標(biāo)準(zhǔn)均設(shè)置為<0.05。
如圖1所示,細(xì)胞培養(yǎng)24 h時(shí),肝細(xì)胞呈典型上皮細(xì)胞樣的多角形,外周有鋸齒狀偽足向外伸展,呈集落狀生長(zhǎng);48 h時(shí),肝細(xì)胞集落之間相互接觸出現(xiàn)連接匯合,呈現(xiàn)島嶼狀生長(zhǎng)狀態(tài);72 h時(shí),島嶼狀間連接融合成片,細(xì)胞排列緊密;96 h時(shí),細(xì)胞生長(zhǎng)狀態(tài)仍維持良好,并且基本鋪滿(mǎn)整個(gè)培養(yǎng)皿底。PAS染色是一種糖原染色方法,能將肝細(xì)胞胞質(zhì)中的肝糖原顆粒染成紅色,從對(duì)分離的雞原代肝細(xì)胞PAS染色可以看出,所分離的肝細(xì)胞純度較高,可用于后續(xù)試驗(yàn)。
葉酸對(duì)細(xì)胞上清液中LDH活性的影響見(jiàn)圖2,由圖可知,各個(gè)處理組LDH活性無(wú)顯著差異(>0.05),LDH是由胞漿釋放到培養(yǎng)液中的,表明本試驗(yàn)中的葉酸劑量并沒(méi)有對(duì)肝細(xì)胞產(chǎn)生損傷。
葉酸對(duì)雞肝細(xì)胞增殖的影響見(jiàn)圖3,本試驗(yàn)中不同劑量的葉酸對(duì)雞原代肝細(xì)胞的增殖并沒(méi)有產(chǎn)生影響(>0.05)。
葉酸對(duì)肝細(xì)胞脂質(zhì)代謝相關(guān)基因表達(dá)的影響如表2所示,與正常培養(yǎng)基對(duì)照組(含葉酸1 mg·L-1)相比,10、15和20 mg·L-1的葉酸顯著降低了雞肝細(xì)胞IGF2的表達(dá)(<0.05),但0和5 mg·L-1的葉酸并沒(méi)有對(duì)IGF2基因的表達(dá)產(chǎn)生影響(>0.05)。不同劑量葉酸對(duì)脂質(zhì)分解代謝相關(guān)的肉堿酯酰轉(zhuǎn)移酶1(CPT-1)和過(guò)氧化物酶體增殖物活化受體α(PPARα)基因的表達(dá)沒(méi)有影響(>0.05);但與對(duì)照組相比,10、15和20 mg·L-1的葉酸顯著降低了脂肪酸合成酶(FAS)和乙酰輔酶A羧化酶(ACC)的表達(dá)(<0.05);同樣,0和5 mg·L-1的葉酸并沒(méi)有對(duì)FAS和ACC的mRNA表達(dá)產(chǎn)生影響(>0.05)。
圖1 不同培養(yǎng)時(shí)間的肝細(xì)胞PAS染色及形態(tài)
圖2 葉酸對(duì)肝細(xì)胞培養(yǎng)液中LDH活性的影響
圖3 葉酸對(duì)雞肝細(xì)胞增殖的影響
表2 葉酸對(duì)肝細(xì)胞脂質(zhì)代謝相關(guān)基因表達(dá)的影響
不同劑量葉酸處理下雞原代肝細(xì)胞IGF2表達(dá)與脂質(zhì)合成代謝相關(guān)的FAS和ACC基因表達(dá)的相關(guān)性分析見(jiàn)圖4,F(xiàn)AS和ACC的表達(dá)與肝細(xì)胞IGF2的表達(dá)呈一定的正相關(guān)(<0.05),值分別為0.685和0.808。
由表3可知,肝細(xì)胞基因的表達(dá)與葉酸的處理劑量存在著線(xiàn)性和二次曲線(xiàn)回歸關(guān)系(<0.05),再結(jié)合表2中的基因表達(dá)分析,可以得出,在本試驗(yàn)中葉酸的最佳處理劑量為15 mg·L-1。
圖4 雞肝細(xì)胞FAS和ACC表達(dá)與IGF2表達(dá)的相關(guān)性分析
表3 葉酸劑量與基因表達(dá)的回歸分析
肝細(xì)胞的分離主要包括經(jīng)典的原位灌注法[19]和酶消化法[20],而前者需要專(zhuān)門(mén)的灌注設(shè)備,試驗(yàn)所用酶量大、消費(fèi)較高,也易污染[4],故本試驗(yàn)選擇酶消化法進(jìn)行肝細(xì)胞的分離,并且為保證肝細(xì)胞不受動(dòng)物采食日糧的影響,選擇1日齡剛出殼小雞作為試驗(yàn)動(dòng)物。肝細(xì)胞主要有肝實(shí)質(zhì)細(xì)胞、非肝實(shí)質(zhì)細(xì)胞和細(xì)胞內(nèi)間隙組成[21],本試驗(yàn)結(jié)合前人的差速離心[22]和密度梯度離心方法[21],用雞淋巴細(xì)胞分離液純化肝細(xì)胞。PAS肝糖原染色結(jié)果顯示細(xì)胞形態(tài)與前人描述的肝細(xì)胞形態(tài)一致[14, 16],染色后細(xì)胞呈紅色反應(yīng),證明分離得到的是肝實(shí)質(zhì)細(xì)胞,與蔣志惠的結(jié)果一致[23]。
LDH是存在于活細(xì)胞內(nèi)的胞內(nèi)酶,當(dāng)細(xì)胞受到損傷后,才會(huì)通過(guò)細(xì)胞膜被釋放到細(xì)胞培養(yǎng)液中,因此,細(xì)胞培養(yǎng)液中的LDH活性在一定程度上反應(yīng)了細(xì)胞的損傷情況[24]。劉騰飛等[14]通過(guò)檢測(cè)培養(yǎng)液中LDH活性指出分離的原代肝細(xì)胞在培養(yǎng)24 h后就可以適應(yīng)體外的新環(huán)境并對(duì)在原代分離過(guò)程中損傷的細(xì)胞進(jìn)行自我修復(fù),因此本試驗(yàn)選擇在細(xì)胞離體分離培養(yǎng)36 h,細(xì)胞融合并鋪滿(mǎn)80%左右開(kāi)始添加處理。并且在處理結(jié)束后,各組培養(yǎng)液中的LDH活性并無(wú)顯著差異,說(shuō)明本試驗(yàn)中所添加的葉酸劑量并沒(méi)有對(duì)肝細(xì)胞產(chǎn)生損傷,并且MTT細(xì)胞增殖試驗(yàn)也驗(yàn)證了這一結(jié)果。
有研究指出IGF2過(guò)表達(dá)的轉(zhuǎn)基因小鼠其脂肪量顯著降低[25],通過(guò)基因敲除使IGF2低表達(dá)的成年鼠往往也伴隨脂肪沉積的增加和肥胖的發(fā)生[26],這些結(jié)果都顯示IGF2在哺乳動(dòng)物中可能與脂肪的沉積是呈負(fù)相關(guān)的。但是,在家禽上的研究卻與此相反,人重組IGF2植入在雞體內(nèi)后顯著增加了腹脂的沉積[10],這種矛盾可能與不同動(dòng)物機(jī)體脂質(zhì)代謝的差異有關(guān),畢竟家禽的脂質(zhì)代謝多集中在肝臟而哺乳動(dòng)物多是在脂肪組織。
本試驗(yàn)的結(jié)果顯示葉酸的添加可降低肝細(xì)胞IGF2的表達(dá),WANG等[27]的文中也提到IGF2與雞的脂質(zhì)合成有關(guān)。雞肝細(xì)胞中與脂質(zhì)代謝相關(guān)的基因表達(dá)結(jié)果也表明葉酸雖沒(méi)有影響脂質(zhì)分解代謝相關(guān)基因的表達(dá),但10、15、和20 mg·L-1的葉酸顯著降低了ACC和FAS的表達(dá),此結(jié)果與喻小瓊[28]的研究類(lèi)似,其試驗(yàn)表明種雞日糧添加5 mg·kg-1的葉酸能顯著降低仔雞1日齡肝臟FAS的表達(dá)和仔雞16胚齡肝臟ACC的表達(dá)。并且葉酸的添加也能顯著降低雞脂肪細(xì)胞中FAS的表達(dá)[29]。ACC和FAS均是所參與反應(yīng)的限速酶,控制脂肪酸的從頭合成,對(duì)肝細(xì)胞中FAS和ACC基因表達(dá)與IGF2進(jìn)行相關(guān)性分析結(jié)果顯示它們之前具有正相關(guān)關(guān)系,因此印證了WANG等[27]的觀點(diǎn),表明在家禽的脂質(zhì)代謝中,IGF2可能與脂肪酸的合成具有正相關(guān)關(guān)系,但I(xiàn)GF2與FAS和ACC之間的具體聯(lián)系途徑,以及葉酸參與調(diào)控這些基因表達(dá)的機(jī)制,還有待進(jìn)一步研究。
葉酸的添加可降低雞原代肝細(xì)胞中與脂肪酸合成相關(guān)基因的表達(dá),并且FAS和ACC基因的表達(dá)可能與IGF2具有正相關(guān)關(guān)系;本試驗(yàn)中葉酸的最適劑量為15 mg·L-1。
[1] LEVEILLE GILBERT A, ROMSOS DALE R, YEH Y Y, O’HEA E K. Lipid biosynthesis in the chick. A consideration of site of synthesis, influence of diet and possible regulatory mechanisms., 1975, 54(4): 1075-1093.
[2] 聞治國(guó). 膽堿對(duì)北京鴨生長(zhǎng)發(fā)育和脂肪代謝的影響及其調(diào)控機(jī)制 [D]. 北京: 中國(guó)農(nóng)業(yè)大學(xué), 2015.
WEN Z G. The effect of choline on growth performance and lipid metabolism in Pekin ducks and its regulation mechanism [D]. Beijing: China Agricultural University, 2015. (in Chinese)
[3] 喻小瓊. 葉酸對(duì)雞脂肪沉積的影響及表觀遺傳調(diào)控機(jī)制研究 [D]. 北京: 中國(guó)農(nóng)業(yè)科學(xué)院, 2014.
YU X Q. Study of the effect of folic acid on fat deposition and the underlying epigenetic mechanisms in chicken [D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. ( in Chinese)
[4] 王美玲. 錳對(duì)原代培養(yǎng)肉雞肝細(xì)胞脂肪合成關(guān)鍵酶活性及其基因表達(dá)的影響 [D]. 北京: 中國(guó)農(nóng)業(yè)科學(xué)院, 2011.
WANG M L. Effect of manganese on activities and gene expression of key enzymes in fat synthesis in primary cultured hepatocytes of broilers [D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. ( in Chinese)
[5] WANG S P, YIN Y L, QIAN Y, LI L L, LI F N, TAN B E, TANG X S, HUANG R L. Effects of folic acid on the performance of suckling piglets and sows during lactation., 2011, 91(13): 2371-2377.
[6] 姚英, 陳代文, 劉靜波, 毛湘冰, 毛倩, 余冰. 葉酸對(duì)超早期斷奶宮內(nèi)發(fā)育遲緩仔豬肝臟結(jié)構(gòu)和細(xì)胞凋亡相關(guān)基因表達(dá)的影響. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào), 2012, 24(2): 271-279.
YAO Y, CHEN D W, LIU J B, MAO X B, MAO Q, YU B. Folic acid in intrauterine growth retarded early weaner piglets: effects on hepatic structure and apoptosis-related gene expression., 2012, 24(2): 271-279. ( in Chinese)
[7] BURDGE G C, LILLYCROP K A, JACKSON A A, GLUCKMAN P D, HANSON M A. The nature of the growth pattern and of the metabolic response to fasting in the rat are dependent upon the dietary protein and folic acid intakes of their pregnant dams and post-weaning fat consumption., 2008, 99(3): 540-549.
[8] 葛文霞. 煙酸和不同水平葉酸對(duì)肉仔雞生產(chǎn)性能和血清理化指標(biāo)影響的研究 [D]. 石河子: 石河子大學(xué), 2006.
GE W X. Effect of nicotinic acid and different levels of folic acid on growth performance and physiological and biochemical serum indexes in broilers [D]. Shihezi: Shihezi Unixersity. 2006. ( in Chinese)
[9] ZHANG J, ZHANG F, DIDELOT X, BRUCE K D, CAGAMPANG F R, VATISH M, BYRNE C D. Maternal high fat diet during pregnancy and lactation alters hepatic expression of insulin like growth factor-2 and key microRNAs in the adult offspring., 2009, 10: 478.
[10] SPENCER G S, DECUYPERE E, BUYSE J, ZEMAN M. Effect of recombinant human insulin-like growth factor-II on weight gain and body composition of broiler chickens., 1996, 75(3): 388-392.
[11] ZHI H L, HUI L, QI G W, ZHAO J, WANG Y. The study on correlation analysis of single nucleotide polymorphism of IGF2 gene and body fatness traits in chicken., 2004, 3(10): 789-794.
[12] 劉艷利, 申靜, 支麗慧, 李世召, 姚軍虎, 楊小軍. 葉酸調(diào)控雞脾和胸腺 IGF2 表達(dá)的表觀遺傳機(jī)制探究. 畜牧獸醫(yī)學(xué)報(bào), 2016, 47(2): 296-304.
LIU Y L, SHEN J, ZHI L H, LI S Z, YAO J H, YANG X J. The study on epigenetic mechanism of IGF2 expression in spleen and thymus regulated by folic acid in broilers., 2016, 47(2): 296-304.( in Chinese)
[13] 陳黎龍, 江青艷, 朱曉彤, 束剛, 高淑靜, 高萍, 張永亮. 成年雞肝細(xì)胞的分離與原代培養(yǎng). 江西農(nóng)業(yè)大學(xué)學(xué)報(bào), 2008, 30(3): 385-389.
CHEN L L, JIANG Q Y, ZHU X T, SHU G, GAO S J, GAO P, ZHANG Y L. Separation and primary culture of adult chicken hepatocytes., 2008, 30(3): 385-389. ( in Chinese)
[14] 劉騰飛, 田靜, 李會(huì)敏, 余祖功. 半原位灌流法分離成年雞肝細(xì)胞及原代培養(yǎng). 畜牧與獸醫(yī), 2015(6): 115-118.
LIU T F, TIAN J, LI H M, YU Z G. Primary culture and isolation hepatocytes in chicken by half perfusion method., 2015(6): 115-118. ( in Chinese)
[15] 江青艷, 傅偉龍, 高淑靜, 吳榮輝. 雞離體肝細(xì)胞幾種分離方法的比較. 華南農(nóng)業(yè)大學(xué)學(xué)報(bào), 2001, 22(1): 66-69.
JIANG Q Y, FU W L, GAO S J, WU R H. Comparison of several methods for isolating chicken hepatocytes., 2001, 22(1): 66-69. ( in Chinese)
[16] LEGRAND P, CATHELINE D, LE B E, LEMARCHAL P. Effect of insulin on triacylglycerol synthesis and secretion by chicken hepatocytes in primary culture., 1996, 28(4): 431-440.
[17] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCTmethod., 2001, 25(4): 402-408.
[18] 劉騰飛, 田靜, 耿智霞, 李會(huì)敏, 余祖功. 抗菌藥物對(duì) LPS 誘導(dǎo)雞肝細(xì)胞損傷的影響及復(fù)方甘草酸單胺的修復(fù)效應(yīng). 畜牧獸醫(yī)學(xué)報(bào), 2015, 46(2): 309-316.
LIU T F, TIAN J, GENG Z X, LI H M, YU Z G. Effect of antibiotic on LPS induced licer cell injury and hepatoprotective acitivity of compound ammonium glycyrrhizin., 2015, 46(2): 309-316. ( in Chinese)
[19] SEGLEN P O. Preparation of isolated rat liver cells., 1976, 13: 29-83.
[20] LI J, LEGHARI I H, HE B, MI Y, ZHANG C. Estrogen stimulates expression of chicken hepatic vitellogenin II and very low-density apolipoprotein II through ER-alpha., 2014, 82(3): 517-524.
[21] PUVIANI A C, OTTOLENGHI C, TASSINARI B, PAZZI P, MORSIANI E. An update on high-yield hepatocyte isolation methods and on the potential clinical use of isolated liver cells., 1998, 121(2): 99-109.
[22] YAMANAKA N, KITANI H, MIKAMI O, NAKAJIMA Y, MIURA K. Serum-free culture of adult chicken hepatocytes; morphological and biochemical characterization., 1997, 62 (3): 233-237.
[23] 蔣志惠. 硒蛋白W對(duì)雞肝臟細(xì)胞凋亡影響的研究[D]. 哈爾濱: 東北農(nóng)業(yè)大學(xué), 2013.
JIANG Z H. The effect of selW on apoptosis in liver cells of chicken [D]. Harbin: Northeast Agricultural University. 2013. ( in Chinese)
[24] CHENG Y B, WANG Y J, ZHANGS C, LIU J, CHEN Z, LI J J. Response of porcine hepatocytes in primary culture to plasma from severe viral hepatitis patients., 2005, 11(48): 7585.
[25] ROGLER C E, YANG D Y, ROSSETTI L, DONOHOE J, ALT E, CHANG C J, ROSENFELD R, NEELY K, HINTZ R. Altered body composition and increased frequency of diverse malignancies in insulin-like growth factor-II transgenic mice., 1994, 269(19): 13779-13784.
[26] JONES B K, LEVORSE J, TILGHMAN S M. Deletion of a nuclease-sensitive region between the Igf2 and H19 genes leads to Igf2 misregulation and increased adiposity., 2001, 10(8): 807-814.
[27] WANG H B, LI H, WANG Q G, ZHANG X Y, WANG S Z, WANG Y X, WANG X P. Profiling of chicken adipose tissue gene expression by genome array., 2007, 8: 193.
[28] 喻小瓊, 劉冉冉, 趙桂蘋(píng), 鄭麥青, 李鵬, 文杰. 葉酸對(duì)種雞子代胚胎期脂代謝基因表達(dá)及甲基化的影響. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào), 2014, 26(7): 1796-1806.
YU X Q, LIU R R, ZHAO G P, ZHENG M Q, LI P, WEN J. Effects of maternal folate supplementation for breeding chickens on lipid metabolism-related gene expression and methylation in offspring during embryonic development., 2014, 26(7): 1796-1806. ( in Chinese)
[29] YU X Q, LIU R R, ZHAO G P, ZHENG M Q, CHEN J, WEN J. Folate supplementation modifies CCAAT/enhancer-binding protein α methylation to mediate differentiation of preadipocytes in chickens., 2014, 93 (10): 2596-2603.
(責(zé)任編輯 林鑒非)
Effect of Folic Acid on Lipid Metabolism Associated Gene Expression in Primarily Cultured Chickens Hepatocytes
LIU Yanli, DANG Yanna, DUAN Yulan, YANG Xiaojun
(College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi)
Abdominal fat deposition is a universal phenomenon at present in poultry industry. Different from mammals, 90%-95% of lipid metabolism in poultry occurs in the liver. Previous studies have demonstrated folic acid and IGF2 were involved in animals lipid metabolism. The study was conducted to establish the method for primary culture of chicken hepatocytes and investigate the effects of folic acid on IGF2 and genes expression associated with lipid metabolism in primary chicken hepatocytes, further providing a basis for exploring lipid metabolism of poultry.Chicken hepatocytes were isolated by collagenase digestion combined with purification of chicken lymphocyte separation fluid, and evaluated by PAS staining,respectively. After 36 h culture of hepatocytes, cells were treated with different concentration of folic acid for 12 h. Hepatocytes proliferation and injury was detected by MTT method and LDH activity in culture medium respectively. Cells were collected to get total RNA for gene expression analysis by RT-PCR. Later, correlation analysis was carried out between IGF2 and lipid metabolism related genes expression. Regression analysis was performed between folic acid concentration and genes expression.The results showed that hepatocytes were isolated with high purity. Folic acid didn’t affect cell proliferation and cellular LDH activity (>0.05).When compared with the control group (1 mg·L-1folic acid), 10, 15 and 20 mg·L-1folic acid significantly reduced IGF2 expression in chicken hepatocytes (<0.05), and same phenomenon was observed in FAS and ACC expression. However, folic acid had no effects on CPT-1 and PPARα expression(>0.05) . In addition, FAS and ACC expression had positive correlation with IGF2 mRNA level in chicken hepatocytes (<0.05). There existed linear and quadratic regression between genes expression and folic acid concentration (<0.05).In conclusion, folic acid could reduce gene expression associated with fatty acid synthesis in chicken hepatocytes. In addition, FAS and ACC mRNA level might have positive connection with IGF2 expression. Optimum treatment dose of folic acid was 15 mg·L-1in this study.
folic acid; IGF2; hepatocytes; lipid metabolism; chicken
2016-09-01;接受日期:2017-09-14
國(guó)家重點(diǎn)研發(fā)計(jì)劃(20170502200,2017YFD0500500)、陜西省科技統(tǒng)籌創(chuàng)新工程計(jì)劃項(xiàng)目(2017TSCXL-NY-04-04,2015KTCQ02-19)
劉艷利,Tel:18700807384;E-mail:1085752204@qq.com。通信作者楊小軍,E-mail:yangxj@ nwsuaf.edu.cn