侯志偉, 高錦芳, 羅國芝,2
(1上海水產(chǎn)養(yǎng)殖工程技術(shù)中心,上海海洋大學(xué), 上海 201306; 2 農(nóng)業(yè)部淡水水產(chǎn)種質(zhì)資源重點(diǎn)實(shí)驗(yàn)室,水產(chǎn)科學(xué)國際級實(shí)驗(yàn)教學(xué)示范中心,上海海洋大學(xué),上海 201306)
聚己內(nèi)酯添加量對淡水養(yǎng)殖水體硝酸鹽氮處理效果的影響
侯志偉1, 高錦芳1, 羅國芝1,2
(1上海水產(chǎn)養(yǎng)殖工程技術(shù)中心,上海海洋大學(xué), 上海 201306; 2 農(nóng)業(yè)部淡水水產(chǎn)種質(zhì)資源重點(diǎn)實(shí)驗(yàn)室,水產(chǎn)科學(xué)國際級實(shí)驗(yàn)教學(xué)示范中心,上海海洋大學(xué),上海 201306)
聚己內(nèi)酯;固相反硝化;循環(huán)水養(yǎng)殖系統(tǒng);硝酸鹽氮
1.1材料
試驗(yàn)所用PCL顆粒采購自深圳市光華偉業(yè)實(shí)業(yè)有限公司,為白色結(jié)晶性米狀顆粒,平均大小為2~3 mm,主要力學(xué)性能參數(shù):密度1.12 kg/L,分子量 80 000,熔融指數(shù)1~4 g/10 min,熔點(diǎn)58℃~60℃,斷裂伸長率800%。試驗(yàn)開始前清洗PCL以去除雜質(zhì),在35℃下烘干至恒重。
1.2試驗(yàn)設(shè)計
1.3水質(zhì)測定方法
1.4顯微鏡觀察
取未使用和使用后的PCL顆粒,清洗后固定在鋁制圓盤上,真空條件下在其表面噴金,利用電子掃描顯微鏡(S3400NII,日立有限公司,日本)進(jìn)行掃描觀察并拍照。
1.5去除效率和去除率計算
RE=100%×(C進(jìn)-C出)/C進(jìn)
(1)
RR=(C進(jìn)-C出)×Q/V
(2)
RA=RR×V×t
(3)
1.6PCL利用率計算
實(shí)驗(yàn)結(jié)束后將PCL在超聲波振蕩器(KQ2200E,昆山超聲波儀器有限公司)中清洗,使生物膜與PCL完全剝離,清洗后的PCL在35℃下烘干稱重。根據(jù)公式4計算各添加量的PCL利用率。
UR=100%×(W始-W末)/RA
(4)
式中:UR—PCL利用率,%;W始—實(shí)驗(yàn)開始時PCL的質(zhì)量,kg;W末—實(shí)驗(yàn)結(jié)束時PCL的質(zhì)量,kg。
1.7數(shù)據(jù)分析
所有數(shù)據(jù)用 SPSS 17.0(SPSS, Inc., Chicago, IL, USA)分析。各種PCL添加量指標(biāo)采用單因素方差分析方法(ANOVA) 。差異顯著性用Tukey 檢驗(yàn),P<0.05為差異顯著。
圖1 各組進(jìn)出水硝酸鹽氮濃度Fig.1 Concentrations of nitrate nitrogen
試驗(yàn)結(jié)束時,各組PCL的消耗量見圖2。消耗量5 g組最少,且5 g組與其余三組差異顯著,25 g組最大,10、15和20 g組和15、20、25和30 g組消耗量均無顯著性差異。
圖2 試驗(yàn)結(jié)束時各組PCL的消耗量Fig.2 Consumptions of PCL at the end of in the influent water for each group the experiment for each group
表1 試驗(yàn)條件下去除和PCL利用情況Tab.1 Removal situation of N-N VS utilization situation of PCL under experimental conditions
注: 上標(biāo)“a”和“b”表示同一列中是否有差異顯著性。相同則差異不顯著(P>0.05),不同則差異顯著(P<0.05)
2.2DOC積累
試驗(yàn)中進(jìn)水的DOC質(zhì)量濃度為4~24 mg/L,但出水的濃度明顯高于進(jìn)水,說明發(fā)生了明顯的DOC積累。反應(yīng)過程中6個實(shí)驗(yàn)組的DOC濃度變化基本一致。試驗(yàn)期間6組出水的平均DOC濃度分別為:(57.27±59.25)、(84.07±60.17)、(112.82±62.98)、(111.14±38.86)、(126.99±47.82)和(123.77±79.45) mg/L,出水DOC的變化波動較大,但在進(jìn)水相同的情況下,其溶出量明顯與添加量相關(guān)。
圖3 6個實(shí)驗(yàn)組中出水溶解性有機(jī)碳(DOC)含量Fig.3 Concentrations of dissolved organic carbons in the effluent water for the six experimental groups
總體上,添加量越高,水中DOC濃度就越高。5 g 組沒有明顯的DOC產(chǎn)生,這表明PCL添加量是影響DOC剩余的因素之一。
即使在出水硝酸鹽氮濃度較低的情況下,出水DOC仍有明顯積累,尤其是高濃度組。這可能是因?yàn)楸緦?shí)驗(yàn)中將裝有PCL顆粒的燒瓶放置在搖床上,水流晃動帶來的沖擊會導(dǎo)致DOC的釋放[13]。這說明非生物因素在某種條件下可能會成為BDPs釋放DOC的主要因素。BDPs的DOC釋放不僅是一個生物學(xué)過程,物理、化學(xué)因素也會影響DOC的釋放量和性質(zhì)[13]。研究發(fā)現(xiàn)固相反硝化時都有一定濃度的DOC積累。Luo 等[14]以PBS為碳源時發(fā)現(xiàn)有 205 mg/L的DOC積累;Cameron等[17]、Shen等[18]發(fā)現(xiàn)啟動階段的DOC會積累,運(yùn)行穩(wěn)定時積累較少。目前關(guān)于未被利用的DOC成分分析尚未見報道。為了提高BDPs的利用效率,需要進(jìn)一步開展相關(guān)研究。
圖4 反應(yīng)器進(jìn)出水質(zhì)量濃度及TAN質(zhì)量濃度的變化Fig.4 Changes in mass concentrations of N-N and TAN in the influent water and effluent water
2.4PCL表面變化
試驗(yàn)發(fā)現(xiàn),在馴化過程中,PCL表面會逐漸形成一層淡黃色的膜狀物,隨著實(shí)驗(yàn)時間的延長,膜狀物的顏色會有所加深。顆粒和瓶壁上的膜狀物形成時間較長且較厚時會脫落到水體中。收集膜狀物并掃描電鏡下觀察,發(fā)現(xiàn)膜質(zhì)較密,附著大量的桿狀菌(圖5)。
圖6為掃描電鏡下放大40倍的PCL顆粒。Y表示使用前的PCL顆粒,其表面光滑完整,使用后整體結(jié)構(gòu)完整未被破壞,但表面變得粗糙,出現(xiàn)了很多大小不同的坑洞。其中,添加5 g PCL的實(shí)驗(yàn)組最為明顯,這是因?yàn)楦哓?fù)荷的硝酸鹽氮進(jìn)水沖擊掉該組部分微生物,之后又重新生長,所以其表面坑洞會比其他組更深、更明顯。
圖5 掃描電子顯微鏡下的生物膜Fig.5 Image of a biofilm under scanning electron microscope
圖6 未使用的PCL(Y)和試驗(yàn)結(jié)束時各組PCL顆粒表面Fig.6 Image of the particle surfaces at the end of the experiment for each group
□
[1] MARTINS C, EDING E, VERDEGEM M, et al. New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability [J]. Aquacultural Engineering. 2010,43(3): 83-93.
[2] VAN RIJN J. The potential for integrated biological treatment systems in recirculating fish culture-a review [J]. Aquaculture, 1996,139:181-201.
[3] HONDAV H, WATANAB Y, KIKUCHI K, et al. High density rearing of Japanese Flounder, Paralichthys olivaceus with a closed seawater recirculation system equipped with a denitrification unit [J]. Aquaculture, 1993,41:19-26.
[4] KAMSTRA A, VAN D H J. The effect of denitrification on feed intake and feed conversion of European eel Anguilla anguilla L. In: Grizel, H., Kestermont, P. (Eds.), Aquaculture and Water: Fish Culture, Shellfish Culture and Water Usage [M]. Belgium:Oostende,1998:128-129.
[5] European council directive. Directive no. 98/83/EC on the quality of water intented for human consumption [C] .Adopted by the Council, on November 3, 1998.
[6] SKINDE J, BHAGAT S. Industrial wastes as carbon sources in biological denitrification [J]. Journal,1982, 54(4):370-377.
[7] MULLER W, WURMTHALER J, HEINEMANN A. Biologische nitrate limination in kleinen wasserwerken (Biological nitrate elimination in small drinking water treatment plants)[D].Germany Baden: Universit?t Stuttgart Stuttgart,2013.
[8] 陳雷,姜玉,龔斌.可生物降解塑料與沸石載體體系對硝酸鹽氮污染地下水的生物修復(fù)研究[J]. 環(huán)境污染與防治,2017,39(4):345-355.
[9] HIRAISHI A., KHAN S.T. Application of polyhydroxyalkanoates for denitrification in water and wastewater treatment [J]. Applied Microbiology & Biotechnology. 2003,61 (2): 103-109.
[10] BOLEY A, MULLER W, HAIDER G. Biodegradable polymers as solid substrate and biofilm carrier for denitrification in recirculated aquaculture systems [J]. Aquaculture Engineering, 2000,22 (1/2):75-85.
[11] ZHU S, DENG Y, RUAN Y, et al. Biological denitrification using poly (Butylenesuccinate) as carbon source and biofilm carrier for recirculating aquaculture system effluent treatment [J]. Bioresource Technology, 2015,192:603-610.
[12] WANG J, CHU L, Biological nitrate removal from water and wastewater by solid-phase denitrification process [J]. Biotechnology Advances,2016,34:1103-1112.
[13] LUCAS N, BIENAIME C, BELLOY C, et al. Polymer biodegradation: mechanisms and estimation techniquesa review [J]. Chemosphere, 2008, 73: 429-442.
[14] LUO G, LI L, LIU Q, et al. Effect of dissolved oxygen on heterotrophic denitrification using poly(Butylenesuccinate) as the carbon source and biofilm carrier [J]. Bioresource Technology, 2014,171(10): 152-158.
[15] CHU L, WANG J. Denitrification performance and biofilm characteristics using biodegradable polymers PCL as carriers and carbon source [J]. Chemosphere ,2013, 91(9):1310-1316.
[16] SHEN Z, YIN Y, WANG J. Biological denitrification using poly (Butanediolsuccinate) as electron donor [J]. Appl Microbiol Biotechnol, 2016,100 (13):6047-6053.
[17] CAMERON S, SCHIPPER L. Nitrate removal and hydraulic performance of organic carbon for use in denitrification beds [J]. Ecological Engineering. 2010, 36(11):1588-1595.
[18] SHEN Z, ZHOU Y, HU J, et al. Denitrification performance and microbial diversity in a packed-bed bioreactor using biodegradable polymer as carbon source and biofilm support [J]. Journal of Hazardous Materials, 2013,431(8): 250-251.
[19] HONDA Y, OSAWA Z. Microbial denitrification of wastewater using biodegradable polycaprolactone [J]. Polymer Degradation & Stability,2002,76 (2):321-327.
[20] GREENAN C M, MOORMAN T B, KASPAR T C, et al. Comparing carbon substrates for denitrification of subsurface drainage water [J]. Journal of Environmental Quality. 2006,35: 824-829.
[21] SHEN Z Q, WANG J L. Biological denitrification using cross-linked starch/PCL blends as solid carbon source and biofilm carrier [J]. Bioresource Technology,2011:102 (19): 8835-8838.
[22] 封羽濤,吳為中.可降解聚合物PCL、PBS在低有機(jī)污染水中固相反硝化脫氮效果比較[J].生態(tài)環(huán)境學(xué)報,2011,20(Z1):1127-1132.
EffectofadditiveamountofPCLonthenitrate-nitrogenremovalintherecirculatingaquaculturefreshwater
HOUZhiwei1,GAOJinfang1,LUOGuozhi1,2
(1ResearchandDevelopmentCenterofAquaculturalEngineeringofShanghai,ShanghaiOceanUniversity,Shanghai201306,China; 2ShanghaiCollaborativeInnovationCenterforAquaticAnimalGeneticsandBreeding,NationalDemonstrationCenterforExperimentalFisheriesScienceEducation,Shanghai201306,China)
Multiple-time addition of carbon sources, and the shortages and overages of it can be avoided for a denitrification progress using biological degradable Polymers(BDPs) as organic carbon sources. It has been proven that Polycaprolactone(PCL) can act as organic carbon sources for the denitrification progress in the recirculating aquaculture freshwater. In this paper, the effect of additive amount of PCL on the nitrate-nitrogen removal in the recirculating aquaculture freshwater was studied. In a denitrification progress with a about 0.1 g/L load of nitrate nitrogen in the influent water, when the additive amount of PCL in a water body of 200ml increased from 5 g, 10 g, 15 g, 20 g, 25 g and 30 g, the removal efficiency of nitrate-nitrogen for each group showed no significant difference, but the concentration of the unused dissolved organic carbon (DOC) increased with the increasing of the additive amount of PCL. It showed that the change of additive amount of PCL did not affect the removal efficiency of nitrate-nitrogen, but had a significant effect on the accumulation of unused dissolved organic carbon (DOC). In conclusion, 5 g is the best suitable additive amount for PCL.
Polycaprolactone; solid phase denitrification; recirculating aquaculture system; nitrate-nitrogen
10.3969/j.issn.1007-9580.2017.05.003
2017-08-15
上海水產(chǎn)養(yǎng)殖工程技術(shù)研究中心項目(16DZ2281200)
侯志偉(1993—),男,碩士,研究方向:循環(huán)水養(yǎng)殖和水處理。E-mail:houzw2016@163.comn
羅國芝(1974—),女,教授,博士,研究方向:循環(huán)水養(yǎng)殖系統(tǒng)與工程。E-mail: gzhluo@shou.edu.cn
S959
A
1007-9580(2017)05-012-07