亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        雙核釕-DMBA雙芳香炔化合物的合成和電化學(xué)性質(zhì)

        2017-11-13 12:22:07SusannahBanzigerEileenJudkinsMatthiasZeller
        無機化學(xué)學(xué)報 2017年11期
        關(guān)鍵詞:異丙基酰亞胺雙核

        Susannah D.Banziger Eileen C.Judkins Matthias Zeller 任 彤

        (Department of Chemistry,Purdue University,West Lafayette,Indiana 47907,USA)

        雙核釕-DMBA雙芳香炔化合物的合成和電化學(xué)性質(zhì)

        Susannah D.Banziger Eileen C.Judkins Matthias Zeller 任 彤*

        (Department of Chemistry,Purdue University,West Lafayette,Indiana 47907,USA)

        摘要: 在弱堿性條件下,雙核釕(Ⅲ)配合物 Ru2(DMBA)4(NO3)2(DMBA=tetrakis-N,N′-dimethylbenzamidinate)與不同芳香炔反應(yīng)(其中芳香基團包括:NAPme,N-甲基-1,8-萘二甲酰亞胺;NAPiso,N-異丙基-1,8-萘二甲酰亞胺;Naphth,萘;Ant,蒽),制備了相應(yīng)的端基炔取代配合物 trans-Ru2(DMBA)4(C2Ar)2(Ar=NAPme,1;NAPiso,2;Naphth,3;Ant,4)。 利用 X 射線晶體衍射測定了它們的結(jié)構(gòu)。 所有化合物的Ru-Ru鍵長處于單鍵范圍(0.245 0~0.249 1 nm),它們均是抗磁性物質(zhì)。進一步通過1H NMR和UV-Vis-NIR光譜進行了表征。電化學(xué)研究表明,所有化合物顯示出與芳香基團有關(guān)的2個可逆的單電子氧化還原過程(包括一個氧化過程和一個還原過程)。

        雙核釕;炔基;1,8-萘二甲酰亞胺;萘基;蒽基

        0 Introduction

        Conjugated metal-alkynylcompounds are of interest to both the inorganic and materials chemistry communities[1-3]and have been studied as prototypical molecular wires[4-7],light emitting materials[8-9]and photovoltaic materials[10].Recent interesting examples of linearly conjugated metal alkynyl or metal alkenyl species include those based on mono-and bimetallic Ru compounds supported by phosphine[11-14]and PtAu2heterometallics[15-16].

        Diruthenium compounds bearing axial alkynyl ligands are known for their capacity to undergo multiple reversible one-electron oxidation/reduction[2],strongly couple across oligoyn-diyl bridges[17-19],mediate couplings between two ferrocenyls[20],facilitate the formation of supramolecules[21-22],and function as the active species in molecular devices[23-24].Among N,N′-bidentate ligands used to support the Ru2core,DMBA(N,N′-dimethylbenzamidinate)and its derivatives are the most electron donating and support a variety of Ru2(Ⅲ,Ⅲ)bis-alkynyls[25-27]and Fe-Ru2heterometallic complexes[28].Reported in this contribution are four new trans-Ru2(DMBA)4(C2Ar)2type compounds with Ar as 4-N-methyl-1,8-naphthalimide (1),4-N-isopropyl-1,8-naphthalimide (2),1-naphthalene (3)and 9-anthracene(4),as sketched in Scheme 1.

        1 Experimental

        1.1 Materials and measurements

        [Ru2(DMBA)4(NO3)]wasprepared according to literature procedures[29].Also prepared according literature procedures were 1-ethynylnaphthalene[30],9-ethynylanthracene[31],and 4-ethynyl-N-methyl-1,8-naphthalimide[32].THF was distilled over Na/benzophenone under a N2atmosphere.Diisopropylamine was purchased from Acros Organics and distilled over potassium hydroxide.The synthesis of Ru2compoundswas performed underambientatmosphere.Allother reactions were carried out using Schlenk techniques under N2.UV-Vis-NIR spectra were obtained with a JASCO V-670 UV-Vis-NIR spectrophotometer.Infrared spectra were obtained on a JASCO FT-IR 6300 spectrometer via ATR on a ZnSe crystal.1H NMR spectra were recorded on a Varian MERCURY300 NMR.Cyclic voltammograms were recorded in 0.1 mol·L-1n-Bu4NPF6and 1.0 mmol·L-1ruthenium species solution (THF,Ar degassed)using a CHI620A voltammetric analyzerwith aglassycarbon workingelectrode(Diameter=2 mm),Pt-wire counter electrode,and an Ag/AgCl reference electrode with ferrocene used as an internal reference.

        1.2 Preparation of 4-Ethynyl-N-isopropyl-1,8-naphthalimide and its precursors

        4-Bromo-1,8-naphthalic anhydride (1.00 g,3.61 mmol)and isopropylamine (1.00 mL,11.66 mmol)were added to degassed ethanol (30 mL).The mixture was refluxed under nitrogen for 18 hours to yield a dark yellow solution and then placed in an ice bath.A light yellow precipitate formed which was then filtered,and rinsed with methanol(30 mL)to afford 0.89 g of 4-bromo-N-isopropyl-1,8-naphthalimide (77%based on 4-bromo-1,8-naphthalic anhydride).1H NMR (CD3OD):δ 8.64 (dd,J=7.3,1.1 Hz,1H),8.55 (dd,J=8.5,1.1 Hz,1H),8.40 (d,J=7.9 Hz,1H),8.03 (d,J=7.9 Hz,1H),7.84 (dd,J=8.5,7.4 Hz,1H),5.42 (hept,J=7.0 Hz,1H),1.60 (d,J=7.0 Hz,6H).IR (cm-1):C=O:1 656 (s),1 700 (s).

        4-Bromo-N-isopropyl-1,8-naphthalimide (890 mg,2.80 mmol),Pd(PPh3)2Cl2(40 mg,0.057 mmol)and CuI (11 mg,0.058 mmol)were dried under vacuum for 3 hours,upon which 35 mL of diisopropylamine and ethynyltrimethylsilane (0.8 mL,5.78 mmol)were added.The dark brown solution was allowed to stir at room temperature for 30 minutes and then heated to reflux for 30 minutes until the solvent became black.Upon rotary evaporation,the off-white solid was redissolved in EtOAc,rinsed through a short silica plug,and purified by column chromatography (SiO2,VCH2Cl2/Vhexanes=1)to afford 855 mg of 4-ethynyltrimethylsilyl-N-isopropyl-1,8-naphthalimide (91% based on 4-bromo-N-isopropyl-1,8-naphthalimide).Desilylation of 4-ethynyltrimethylsilyl-N-isopropyl-1,8-naphthalimide(675 mg,2.01 mmol)was accomplished using K2CO3in a MeOH/CH2Cl2(2∶1,V/V)solution to afford 524 mg of 4-ethynyl-N-isopropyl-1,8-naphthalimide (98%).1H NMR (CD3OD):δ 8.63 (dd,J=8.6 Hz,2H),8.51 (d,J=7.5 Hz,1H),7.93 (d,J=7.7 Hz,1H),7.82 (t,J=7.9 Hz,1H),5.43 (hept,1H),3.72 (s,1H),1.60 (dd,J=7.0,0.6 Hz,6H).Visible spectra,λmax/nm (ε /(L·mol-1·cm-1):350 (35 240),366 (32 580).IR (cm-1):C=O:1653 (s),1700 (s);C≡C:2102 (m);C≡C-H:3 227 (s).

        1.3 Preparation of 1

        Ru2(DMBA)4(NO3)2(45.2 mg,0.049 mmol),4-ethynyl-N-methyl-1,8-naphthalimide (70.1 mg,0.298 mmol),and Et3N (0.6 mL)were dissolved in 50 mL THF and reacted for 4 h to yield a dark red solution.Upon solvent removal,the residue was purified by column chromatography (SiO2,Vhexanes/VTHF=9).Unreacted ligand eluted first,followed closely by the desired product as a deep red band.Upon solvent removal,the red fraction was recrystallized from hexanes-THF to afford 43.7 mg of 1 (70%based on Ru).ESI-MS(m/z): [M]+,1 260.0.1H NMR (CD3OD):δ 8.82 (d,J=8.2 Hz,2H),8.54 (d,J=7.4 Hz,2H),8.43 (d,J=7.8 Hz,2H),7.60(d,J=7.8 Hz,2H),7.53~7.46 (m,12H),7.41 (d,J=7.8 Hz,2H),7.07 (d,J=7.1 Hz,8H),3.53 (s,6H),3.40 (s,24H).Visible spectra,λmax/nm (ε /(L·mol-1·cm-1):322(16 160),460 (15 200),550 (28 200),877 (1 690).IR(cm-1):C=O:1 654 (s),1 691 (s);C≡C:2 047 (s).Anal.Found (Calcd.)for C70H68N10O5Ru2(1·THF,%):C,63.28 (63.14);H,5.04 (5.14);N,10.52 (10.52).

        1.4 Preparation of 2

        Ru2(DMBA)4(NO3)2(93mg,0.102mmol),4-ethynyl-N-isopropyl-1,8-naphthalimide (134 mg,0.508 mmol)and Et3N (0.3 mL)were reacted in 100 mL of THF for 3 h.The reaction mixture was purified similarly to that of 1 to afford 112 mg of 2 (84%based on Ru).ESI-MS(m/z): [M]+,1 316.1.1H NMR (CD3OD): δ 8.78(dd,J=8.3,1.3 Hz,2H),8.50 (dt,J=7.3,1.6 Hz,2H),8.40 (dd,J=7.8,1.8 Hz,2H),7.74~7.27 (m,16H),7.10~7.02 (m,8H),5.47~5.34 (m,2H),3.40 (d,J=1.8 Hz,24H),1.57 (dd,J=3.1,1.9 Hz,12H).Visible spectra,λmax/nm (ε /(L·mol-1·cm-1):323 (20 940),462 (20 050),549 (37 140),870 (2 450).IR (cm-1):C=O:1 653 (s),1 690 (s);C≡C:2 049 (s).Anal.Found (Calcd.)for C74H80N10O7Ru2(2·THF·2H2O,%):C,62.31 (62.43);H,5.40 (5.66);N,9.82 (9.83).

        1.5 Preparation of 3

        Ru2(DMBA)4(NO3)2(0.095 g,0.104 mmol)was added to a solution of 1-ethynylnaphthalene (0.043 g,0.28 mmol)and 3 mL Et3N in THF (30 mL)and stirred for 4 h.The crude solution was run over a silica plug,eluting 3 with a solvent mixture with Vhexanes∶VEtOAc∶VTHF=89∶10∶1.The ensuing recrystallization from THF/MeOH yielded 3 as deep red,crystalline solid (52 mg,0.048 mmol,46%based on Ru).ESI-MS(m/z):[M+H]+,1094.1H NMR (CDCl3): δ 8.59 (dd,J=7.9,1.4 Hz,2H),7.71 (dd,J=6.9,1.3 Hz,2H),7.51~7.32 (m,22H),7.10~7.03 (m,8H),3.42 (s,24H).Visible spectra,λmax/nm (ε /(L·mol-1·cm-1):372sh (32 162),391 (33 184),508 (18 195),681sh (1 791),892 (3 214).IR (cm-1):C ≡C:2 063 (s).Anal.Found (Calcd.)for C60H60N8O1Ru2(3·H2O,%):C,64.85 (64.85);H,5.64(5.44);N,9.97 (10.08).

        1.6 Preparation of 4

        Ru2(DMBA)4(NO3)2(0.085 g,0.093 mmol)was added to a solution of 9-ethynylanthracene (0.055 g,0.27 mmol)and 1.5 mL Et2NH in THF (20 mL)and stirred 12 h.The crude solution was purified similarly to that of 3 to afford 50 mg of 4 (0.042 mmol,45%based on Ru).ESI-MS (m/z): [M+H]+,1195.1H NMR(CDCl3): δ 8.88 (d,J=8.4 Hz,4H),7.93 (s,2H),7.86(d,J=8.5 Hz,4H),7.51~7.30 (m,20H),7.13 (d,J=6.8 Hz,8H),3.55 (s,24H).Visible spectra,λmax/nm (ε /(L·mol-1·cm-1):283sh (35 544),289 (49 953),502(41 938),699sh (1 785),903 (2 291).IR (cm-1):C≡C:2045 (s).Anal.Found (Calcd.)for C72H73N8O2.5Ru2(4·1.5H2O·THF,%):C,66.97 (66.91);H,5.76 (5.69);N,8.53 (8.67).

        CCDC:1555598,1;1555599,2;1555609,3;1555611,4.

        2 Results and discussion

        2.1 Syntheses

        As shown in Scheme 1,compounds 1~4 were prepared from the direct reaction between Ru2(DMBA)4(NO3)2[29]and HC2Ar in the presence of Et3N/Et2NH in satisfactory to very good yields after purification.Consistentwith the previous studies ofrelated compounds,compounds 1~4 are diamagnetic,which facilitate their characterization using1H NMR.In addition,the purity of these compounds was also confirmed by combustion analysis.

        2.2 Crystal structures

        Molecularstructuresofcompounds 1~4 have been determined using single crystal X-ray diffraction and structural plots are shown in Fig.1.While molecules 2~4 do not contain a crystallographic symmetry element,there is a C2axis passing through the midpoint of the Ru-Ru bond and relating two adjacent DMBA ligands in 1.It is clear from Fig.1 that all compounds adopt the expected paddlewheel geometry with four equatorial bridging DMBA and two axial arylethynyl ligands.The Ru-Ru bond lengths are within a narrow range of 0.245 0~0.249 1 nm,which agrees with the values reported for other Ru2(DMBA)4(C2R)2type compounds[2]and is consistent with the presence of a Ru-Ru single bond.The Ru-C bond lengths in 1~4 (0.196~0.201 nm)are also in agreement with the previous reports[2,33].

        A notable structural feature of the Ru2(DMBA)4(C2Ar)2type compounds is the significant distortion of the first coordination sphere of the Ru2core from an idealized paddlewheel structure (D4h).The origin of such distortion is rooted in a second order Jahn-Teller effect,as originally proposed to rationalize the structures of the Ru2(DArF)4(C2Ph)2type compounds (DArF=N,N′-diarylformamidinate)[34].The structural distortion is typically reflected by (i)the large variation in Ru-N bond lengths, (ii)both acute and obtuse Ru-Ru-N angles,and (iii)significantly nonlinear Ru-Ru-C angles.These are clearly the case for the structures of 1~3.However,the distortion is completely suppressed in 4:Ru-N bond lengths are within a narrow range,Ru-Ru-N angles are all acute and Ru-Ru-C angles are fairly linear.We surmise that the steric effect of anthracene may be responsible for a more symmetric structure.

        Fig.1 ORTEP plots of compounds 1 (a),2 (b),3 (c)and 4 (d)at 30%probability level

        Table 1 Selected bond lengths (nm)and angles (°)for compounds 1~4*

        Continued Table 1

        2.3 Vis-NIR spectroscopy and voltammetry

        As noted earlier,all four compounds have a deep wine red color with a slight variation in hue.The Vis-NIR absorption spectra of 1~4 are shown in Fig.2,featuring a distinctive NIR band around ca.880 nm that is responsible for the wine red color.This absorption is likely attributed to the π*(Ru2)→δ*(Ru2)transition according to a prior TD-DFT analysis of related Ru2(DMBA)4(C2R)2compounds[20].TheVis region is dominated by a very intense band with a transition energy depending on the nature of Ar.While the λmaxfor Ar as both NAPme(1)and NAPiso(2)are 550 nm,the λmaxfor Ar as Naphth (3)and Ant (4)are blue-shifted to 508 and 502 nm,respectively.This absorption may be assigned to the δ(Ru2)+π(C≡C)→σ*(Ru-C)transition based on the said TD-DFT study,which provides a ready rationale for the observed energy dependence on Ar.Electron donating Naphth and Ant destabilize σ*(Ru-C)more significantly than electron withdrawing NAPmeand NAPiso,which led to significantly wider optical gaps for 3 and 4.The Vis spectra of both 1 and 2 also feature a shoulder at ca.450 nm that is absent in the spectra of 3 and 4,pointing to a possible NAP based transition.Also noteworthy is that while all four aryl ligands are strongly fluorescent,compounds 1~4 are non-emissive,reflecting the efficient quenching by the Ru2(DMBA)4core.

        Fig.2 Vis-NIR spectra of compounds 1~4 recorded in THF solution

        Ru2(DMBA)4(C2R)2type compounds often display rich electrochemical characteristics[20,26-27,33]and compounds 1~4 are no exception.As shown in Fig.3,their cyclic voltammograms (CV)all consist of two reversible one-electron couples,an oxidation (A)and a reduction (B),and both are Ru2-based.It is also clear that the electrode potentials of compounds 1 and 2 are far more positive than those of the corresponding couples in 3 and 4,reflecting the electron-deficient nature of NAP ligands.Since the oxidation and reduction potentials can be respectively correlated with the HOMO and LUMO energies[35-36],the electrochemical HOMO-LUMO gap (Eg)can be directly calculated from the difference between E1/2(A)and E1/2(B),and the values for 1 ~4 are listed in Table 2.Interestingly,the Egremains fairly constant across the series despite the large variance in electrode potentials.Clearly,both the HOMO and LUMO are Ru2-based,and the inductive ligand effects on their energies are about the same within the experimental errors.

        Fig.3 Cyclic voltammograms of compounds 1~4 recorded in 0.10 mol·L-1THF solution of Bu4NBF4at the scan rate of 100 mV·s-1

        Table 2 Electrode potentials of observed redox couples in Ru2(DMBA)4(C2Ar)2

        3 Conclusions

        Four new Ru2(DMBA)4(C2Ar)2compounds have been prepared and structurally characterized.While both the voltammetric responses and electronic absorption spectra are dominated by the Ru2-centered processes,both the electrode potentials and excitation energies exhibitsignificant dependence on the arylethynyl ligands.

        [1]Paul F,Lapinte C.Coord.Chem.Rev.,1998,178-180:431-509

        [2]Ren T.Organometallics,2005,24:4854-4870

        [3]Costuas K,Rigaut S.Dalton Trans.,2011,40:5643-5658

        [4]Blum A S,Ren T,Parish D A,et al.J.Am.Chem.Soc.,2005,127:10010-10011

        [5]Meng F B,Hervault Y M,Norel L,et al.Chem.Sci.,2012,3:3113-3118

        [6]ZHANG Xiang-Yi(張相宜),ZHENG Qi(鄭啟),QIAN Chen-Xi(錢晨熹),et al.Chinese J.Inorg.Chem.(無機化學(xué)學(xué)報),2011,27:1451-1464

        [7]Wen H M,Yang Y,Zhou X S,et al.Chem.Sci.,2013,4:2471-2477

        [8]Chen Z N,Zhao N,F(xiàn)an Y,et al.Coord.Chem.Rev.,2009,253:1-20

        [9]Yam V W-W.Acc.Chem.Res.,2002,35:555-563

        [10]Wong W Y,Ho C L.Acc.Chem.Res.,2010,43:1246-1256

        [11]Liu S H,Xia H P,Wen T B,et al.Organometallics,2003,22:737-743

        [12]Liu S H,Hu Q Y,Xue P,et al.Organometallics,2005,24:769-772

        [13]Kong D D,Xue L S,Jiang R,et al.Chem.Eur.J.,2015,21:9895-9904

        [14]Ou Y P,Zhang J,Zhang F X,et al.Dalton Trans.,2016,45:6503-6516

        [15]Xu L J,Zeng X C,Wang J Y,et al.ACS Appl.Mater.Interfaces,2016,8:20251-20257

        [16]Zhang L Y,Xu L J,Wang J Y,et al.Dalton Trans.,2017,46:865-874

        [17]Xu G L,Zou G,Ni Y H,et al.J.Am.Chem.Soc.,2003,125:10057-10065

        [18]Cao Z,Xi B,Jodoin D S,et al.J.Am.Chem.Soc.,2014,136:12174-12183

        [19]Wong K T,Lehn J M,Peng S M,et al.Chem.Commun.,2000:2259-2260

        [20]Xu G L,Crutchley R J,DeRosa M C,et al.J.Am.Chem.Soc.,2005,127:13354-13363

        [21]Zuo J L,Herdtweck E,de Biani F F,et al.New J.Chem.,2002,26:889-894

        [22]Zuo J L,Herdtweck E,Kühn F E.Dalton Trans.,2002:1244-1246

        [23]Mahapatro A K,Ying J,Ren T,et al.Nano Lett.,2008,8:2131-2136

        [24]Zhu H,Pookpanratana S J,Bonevich J E,et al.ACS Appl.Mater.Interfaces,2015,7:27306-27313

        [25]Ying J W,Cordova A,Ren T Y,et al.Chem.Eur.J.,2007,13:6874-6882

        [26]Ying J W,Liu I P C,Xi B,et al.Angew.Chem.Int.Ed.,2010,49:954-957

        [27]Cai X M,Zhang X Y,Savchenko J,et al.Organometallics,2012,31:8591-8597

        [28]Wang C F,Zuo J L,Ying J W,et al.Inorg.Chem.,2008,47:9716-9722

        [29]Xu G L,Jablonski C G,Ren T.Inorg.Chim.Acta,2003,343:387-390

        [30]Chang N H,Mori H,Chen X C,et al.Chem.Lett.,2013,42:1257-1259

        [31]Takahashi S,Kuriyama Y,Sonogashira K,et al.Synthesis,1980:627-630

        [32]McAdam C J,Morgan J L,Murray R E,et al.Aust.J.Chem.,2004,57:525-530

        [33]Xu G L,Campana C,Ren T.Inorg.Chem.,2002,41:3521-3527

        [34]Lin C,Ren T,Valente E J,et al.J.Chem.Soc.,Dalton Trans.,1998:571-576

        [35]Ren T.Coord.Chem.Rev.,1998,175:43-58

        [36]Loutfy R O,Loutfy R O.Can.J.Chem.,1976,54:1454-1463

        Diruthenium-DMBA Bis-Alkynyl Compounds with Hetero-and Extended-Aryl Appendant:Preparation and Electrochemical Property

        Susannah D.Banziger Eileen C.Judkins Matthias Zeller Tong Ren*
        (Department of Chemistry,Purdue University,West Lafayette,Indiana 47907,USA)

        Under weak base conditions,diruthenium(Ⅲ) tetrakis-N,N′-dimethylbenzamidinate (DMBA)nitrate Ru2(DMBA)4(NO3)2was reacted with arylethyne ligands,where aryl=NAPme(N-methyl-1,8-naphthalimide),NAPiso(N-isopropyl-1,8-naphthalimide),Naphth (naphthalene)and Ant (anthracene),to afford four new compounds:trans-Ru2(DMBA)4(C2Ar)2(Ar=NAPme,1;NAPiso,2;Naphth,3;Ant,4).Molecular structures of new compounds were determined using single crystal X-ray diffraction,and the Ru-Ru bond lengths (0.245 0~0.249 1 nm)are consistent with the existence of a Ru-Ru single bond.These compounds are diamagnetic and were further characterized with1H NMR and UV-Vis-NIR spectroscopic techniques.Cyclic voltammograms of compounds 1~4 consist of two reversible one-electron processes,an oxidation and a reduction,and their potentials depend on the nature of Ar.CCDC 1555598,1;1555599,2;1555609,3;1555611,4.

        diruthenium;alkynyl;naphthalimide;naphthalene;anthracene

        O614.82+1

        A

        1001-4861(2017)11-2103-07

        10.11862/CJIC.2017.238

        2017-06-14。收修改稿日期:2017-08-23。

        美國國家科學(xué)基金會(No.CHE 1362214,CHE 1625543)資助項目。

        *通信聯(lián)系人。E-mail:tren@purdue.edu

        猜你喜歡
        異丙基酰亞胺雙核
        全球金融“F20”在此召開!橫瀝進入“雙核”時代
        精制2, 6-二異丙基萘的方法
        能源化工(2021年3期)2021-12-31 11:59:23
        改性雙馬來酰亞胺樹脂預(yù)浸料性能研究
        雙馬來酰亞胺對丙烯酸酯結(jié)構(gòu)膠的改性研究
        中國塑料(2017年2期)2017-05-17 06:13:21
        1種制備六氟異丙基甲醚的方法
        新型夾心雙核配和物[Zn2(ABTC)(phen)2(H2O)6·2H2O]的合成及其熒光性能
        EG/DMMP阻燃聚氨酯-酰亞胺泡沫塑料的研究
        中國塑料(2015年6期)2015-11-13 03:02:49
        聚N-異丙基丙烯酰胺/黏土納米復(fù)合自修復(fù)水凝膠的制備及性能
        中國塑料(2015年12期)2015-10-16 00:57:12
        聚琥珀酰亞胺的熱力學(xué)性質(zhì)研究
        三螺旋N-N橋連的雙核Co(Ⅲ)配合物的合成、結(jié)構(gòu)和性質(zhì)
        少妇精品揄拍高潮少妇桃花岛 | 真人做爰片免费观看播放| 狠狠色综合网站久久久久久久 | 日韩无码尤物视频| 97超碰中文字幕久久| 亚洲av男人的天堂一区| 在线播放真实国产乱子伦| 国产suv精品一区二区6| 亚洲人妻无缓冲av不卡| 久久激情人妻中文字幕| av免费网站免费久久网| 国产欧美日韩中文久久| 久久久久久国产精品mv| 亚洲免费天堂| 中文熟女av一区二区| 激情五月天色婷婷久久| 国产日韩精品suv| 又污又爽又黄的网站| 国产av综合一区二区三区最新 | 亚洲av综合永久无码精品天堂| 夜爽8888视频在线观看| 一区二区三无码| 日韩不卡一区二区三区色图| 国产日产精品_国产精品毛片| 337p西西人体大胆瓣开下部| 国产精品九九九无码喷水| 女同性恋亚洲一区二区| 在线成人影院国产av| 久久精品国产只有精品96| 亚洲av综合色区无码一二三区| 久久综合给合久久狠狠狠9| 日韩精品极品免费在线视频| 手机看片自拍偷拍福利| 亚洲一区二区三区播放| av色综合网站| 男女视频网站免费精品播放| 亚洲精品第一页在线观看| 欧美人妻少妇精品久久黑人| 极品熟妇大蝴蝶20p| 西西少妇一区二区三区精品| 日本黑人亚洲一区二区|